
Supplementary Material #1: BSGP Primitive Algorithms

Table 1 summarizes the algorithms of BSGP’s primitive functions.

1 Fork algorithm

We first use a collective scan on fork’s parameter to compute the
new rank of each thread’s first child. A list of thread.oldrank
for each child thread is then filled in log

2
m iterations. m is

the maximal number of child threads for a single parent. This is
achieved by filling O(2i) entries for each parent thread in iteration
i. Listing 1 is the pseudo code of the algorithm.

2 Sorting algorithm

We use a binary search based merge sort in our library. An array a
with n elements is said to be m-sorted if a[k*m+i]<=a[k*m+j]
for all non-negative integers i,j,k satisfying that i<j<m,

k*m+j<n. Any array is trivially 1-sorted. For a m-sorted array,
neighboring sorted segments may be merged in parallel to yield a
2*m-sorted array. We perform such merge iteratively until array a
becomes at least n-sorted.

We implement the merge using binary search. Each element is bi-
nary searched in its neighboring sorted segment to compute its off-
set in the merged array. All elements are processed entirely in par-
allel in each iteration. See Listing 2 for a pseudo code of the merge
algorithm.

In actual implementation, first few merges are done in a single su-
perstep using CUDA’s shared memory and local synchronization.
These merges may be bundled with previous superstep. Such detail
is omitted in Listing 2 for simplicity. Also, Listing 2 assumes ele-
ments in a to be distinct. Duplicated elements may be handled with
minimal modification.

The algorithm has a coherent memory access pattern and is highly
parallel. Therefore, it outperforms the asymptotically more optimal
radix sort in our experiments. Also, our algorithm is comparison
based and easier to generalize than radix sort. Table 2 compares our
performance with the O(n) work O(1) passes radix sort in CUDA
SDK.

n 2M 4M 8M

Radix 69.6ms 179ms 403ms

Merge 46.8ms 97.8ms 230ms

Table 2: Sort time for array with n elements. Each element consists
of a 32-bit integer key and a 32-bit integer data.

References

CHATTERJEE, S., BLELLOCH, G. E., AND ZAGHA, M. 1990.
Scan primitives for vector computers. In Supercomputing ’90:
Proceedings of the 1990 ACM/IEEE conference on Supercom-
puting, 666–675.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for gpu computing. In Graphics Hard-
ware, 97–106.

Listing 1 Pseudo code of fork algorithm

inline int fork(int m){
require{

pchild = dnew[thread.size]int;

nchild = dnew[thread.size]int;

}
p = m;

n = scan(p);

pchild[thread.rank] = p;

nchild[thread.rank] = m;

barrier(RANK REASSIGNED); require{
//compute oldrank for children

rankp = dnew[n]int;

fork fill(rankp,pchild,nchild,thread.size);

thread.size = n;

}
thread.oldrank = rankp[thread.rank];

return thread.rank-pchild[thread.oldrank];

}

int fork fill(int* rankp, int* pc, int* nc, int n0){
sz = 1;

id = dnew[n0]int;

spawn(n0){
i = thread.rank;

id[i] = i;

}
while(n0>0){

//fill sz oldranks for each parent thread

spawn(n0*sz){
i = thread.rank/sz;

f = thread.rank%sz;

if(f<nc[i])

rankp[pc[i]+f]=id[i];

}
/*
remove parent threads with all children’s

oldrank completely filled

*/

spawn(n0){
i = thread.rank;

p = pc[i];

m = nc[i];

d = id[i];

thread.kill(m-sz<0);

i = thread.rank;

pc[i] = p+sz;

nc[i] = m-sz;

id[i] = d;

barrier; require

n0 = thread.size;

}
sz*=2;

}
}



Primitive Work Supersteps Algorithm

reduce O(n) O(1) We follow the reduction sample in CUDA SDK.

scan O(n) O(1) First perform one local scan as in [Sengupta et al. 2007]. [Chatterjee et al. 1990] is
then used to scan per-block result in O(1) supersteps. Local result are finally added
with per-block result. Local scan and result adding may be bundled with surrounding
supersteps.

compact O(n) O(1) Implemented using scan as in [Sengupta et al. 2007].

split O(n) O(1) Implemented using scan as in [Sengupta et al. 2007].

sort idx O(n log2
n) O(log n) Binary search based merge sort, see Section 2 of the paper.

thread.split O(n) O(1) Implemented by passing thread.rank to split and using its result as new rank.

thread.sortby O(n log2
n) O(log n) Implemented by adjusting rank to sort idx.

thread.kill O(n) O(1) Implemented by passing thread.rank to compact and using its result as new
rank. thread.size is adjusted accordingly.

thread.fork O(n′) O(log m) n
′ is the total amount of child threads. m is the maximum number of child threads

of a single thread. For details, see Section 1 of the paper.

Table 1: Algorithm of primitive functions

Listing 2 Pseudo code of sort idx and the merge algorithm.

inline int sort idx(int k){
//make key and index arrays

require{
n = thread.size;

ka = dnew[n]int;

a = dnew[n]int;

kb = dnew[n]int;

b = dnew[n]int;

}
ka[thread.rank] = k;

a[thread.rank] = thread.rank;

barrier require{
//merge sort

for(int m=1;m<n;m+=m){
merge(b,kb,a,ka,n,m);

swap(b,a);

swap(kb,ka);

}
}
return a[thread.rank];

}

//merge (ka,a) to (kb,b)

merge(int* b, int* kb, int* a, int* ka, int n, int m){
spawn(n){

id = thread.rank;

ofs = id%m;

k = ka[id]; d = a[id];

//locate the neighboring segment

l = ((id-ofs)˜m); r = min(l+m,n)-1;

//binary search

l0 = l;

while(l<=r){
m = (l+r)>>1;

if(a[m]<=k)

l = m+1;

else

r = m-1;

}
/*
copy element to new position:

id-id%(2*m) is start of the merged segment.

There’re ofs and (l-l0) elements less than

k in the two segments respectively, and it should

be stored at offset ofs+(l-l0).

*/

addr = (id-id%(2*m))+ofs+(l-l0);

kb[addr] = k;

b[addr] = d;

}
}


