
Gradient-based Interpolation and Sampling for

Real-Time Rendering of Inhomogeneous, Single-Scattering Media

Zhong Ren Kun Zhou Stephen Lin Baining Guo

Microsoft Research Asia

Abstract

We present a real-time rendering algorithm for inhomogeneous, sin-
gle scattering media, where all-frequency shading effects such as
glows, light shafts, and volumetric shadows can all be captured.
The algorithm first computes source radiance at a small number
of sample points in the medium, then interpolates these values at
other points in the volume using a gradient-based scheme that is ef-
ficiently applied by sample splatting. The sample points are dynam-
ically determined based on a recursive sample splitting procedure
that adapts the number and locations of sample points for accurate
and efficient reproduction of shading variations in the medium. The
entire pipeline can be easily implemented on the GPU to achieve
real-time performance for dynamic lighting and scenes. Rendering
results of our method are shown to be comparable to those from ray
tracing.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing and texture;

Keywords: participating media, single scattering, gradient-based
interpolation

1 Introduction

The transport of light within an inhomogeneous participating
medium produces a number of volumetric shading effects essential
to realistic rendering. Effects such as glows around a light source
and shafts of directional light reveal the density variations of the
medium and the structure of the illumination. Mutually cast shad-
ows between scene objects and the medium provide further cues for
perceiving the organization and properties of the scene.

These shading effects can be accurately reconstructed by a full
Monte Carlo simulation, but at an enormous expense in computa-
tion. Kajiya and Herzen [1984] reduce computation by separating
the rendering procedure into two steps. The first step computes the
source radiance at each voxel center in the volume, and the sec-
ond step then marches along view rays to gather the source radi-
ance among these sample points. Because of the dense sampling of
source radiance, the first step requires substantial computation and
offline processing.

To reduce sampling of source radiance, subsequent techniques have
assumed shading to be smooth within the medium, such that the
source radiance throughout the volume can be well approximated
by interpolation from a small number of samples. Specifically,
they first sample radiance at only a small number of points ac-
cording to the density distribution of the medium. Then these
sampled radiances are smoothly interpolated by radial basis func-
tions (RBFs) to determine the source radiance at other points in
the volume [Dobashi et al. 2000; Zhou et al. 2007b]. This opti-
mization works well with distant, low-frequency lighting for which
the assumption of shading smoothness generally holds. However,
sharp shading variations often exist with local, directional, or high-
frequency illumination. This variability in shading arises not only
from profiles of light paths (e.g., light shafts from spot lights), but

Figure 1: Real-time rendering of single scattering media that cap-
tures fast shading variations inside the volume and generates com-
plex volumetric shadows. The scene is rendered at 23.4 fps, with
dynamic lighting, medium and scene object.

also from volumetric shadows cast by scene objects. In such cases,
these RBF-based interpolation methods cannot accurately compute
shading in the medium, and may produce severe rendering artifacts.

In this paper, we propose a real-time rendering algorithm for inho-
mogeneous, single scattering media that accounts for sharp varia-
tions of shading in the volume. In contrast to previous works which
determine sample points based on density distributions, our method
dynamically distributes sample points in the medium in a manner
that allows for more accurate reconstruction of source radiance by
interpolation and reduces shading errors in the rendered result. Ar-
eas in the medium whose reconstructed source radiance results in
significant shading errors are assigned more samples to improve
rendering accuracy, while other areas are lightly sampled to save
computation. At each of the sample points, we numerically com-
pute the source radiance and its gradient, which is used to heighten
the accuracy of source radiance interpolation at other points in the
volume. The computation of source radiances is followed by a ray
march to composite the final radiance along view rays.

This approach yields the first real-time rendering algorithm that
captures all-frequency shading effects in scattering media, includ-
ing glows in inhomogeneous media, volumetric shadows, and shafts
of light. Furthermore, no precomputation of light transport is
needed, and dynamic changes in lighting, media and scene config-
urations are supported. As in many real-time volumetric rendering
algorithms, we assume the medium to be single scattering and to
have a volume representation. With this technique, results compa-
rable to ray tracing can be achieved for challenging illumination
and scene conditions, as illustrated in Fig. 1.

2 Related Work

Numerous methods have been proposed for rendering of scattering
media [Cerezo et al. 2005]. Here, we review representative works



that are most closely related to ours.

Offline Algorithms Starting from [Kajiya and Herzen 1984], re-
searchers have been seeking numerical solutions to the radiative
transfer equation [Chandrasekhar 1960] by ray tracing [Kajiya and
Herzen 1984; Levoy 1990; Lafortune and Willems 1996] or by fi-
nite element methods [Rushmeier and Torrance 1987]. Photoreal-
istic images can be produced with such methods, but at the cost
of hours of simulation. Although several acceleration techniques
have been proposed [Sakas 1990; Stam 1995; Max 1994; Jensen
and Christensen 1998], their performance nevertheless remains far
from real-time.

Real-time Algorithms Most real-time rendering algorithms for
scattering media exploit the power of graphics hardware. Ebert and
Parent [1990] combine volume rendering and the A-buffer tech-
nique to render animations of both scene objects and gaseous phe-
nomena. A reduced resolution shadow table is constructed on the
fly for volume rendering, but the construction of this table remains
too expensive for real-time rendering. Real-time performance with
volumetric shading can be achieved with precomputation of radi-
ance data, as done in [Harris and Lastra 2001; Riley et al. 2004]
for sky and clouds, in [Dobashi et al. 2002; Hegeman et al. 2005]
for shafts of light in foggy scenes, and in [Sloan et al. 2002] for
scattering media under distant, low-frequency lighting. However,
with precomputed radiance quantities, interactive changes cannot
be made to media properties and scene configuration, as well as
lighting in some cases.

Kniss et al. [2003] propose a hardware-accelerated algorithm based
on half-angle slicing that achieves interactive frame rates for gen-
eral inhomogeneous media. But the need for explicit shading of
each voxel makes it unsuitable for real-time applications, especially
when dealing with multiple light sources. Schpok et al. [2003]
model clouds by combining implicit ellipsoids and octave noise.
Shading is computed at vertices that are uniformly distributed on
slice planes generated at runtime. The method focuses on render-
ing of clouds under directional lighting; sharper shading variations
would require more vertices than can be handled at real-time rates.
Zhou et al. [2007b] render inhomogeneous smoke animations with
both single and multiple scattering by applying a low-frequency
shading model and assuming low-frequency environment lighting.

Analytic models that are efficient to compute have been derived
for single scattering, homogeneous media. An early model was
proposed by Blinn [1982] for homogeneous media illuminated by
an infinitely distant light source. Other analytic models have been
presented for a point light source immersed in a homogeneous
medium [Max 1986; Narasimhan and Nayar 2003; Biri et al. 2006;
Sun et al. 2005]. An approximate, analytic expression of radiance
was recently derived for smooth, inhomogeneous media modeled
as a sum of Gaussians [Zhou et al. 2007a]. This method, however,
cannot handle media with fine-scale density variations and cannot
generate sharp lighting effects such as shafts of light.

Gradient-based Interpolation and Sampling Gradient-based
interpolation and sampling has been used in several offline render-
ing applications. Ward and Heckbert [1992] compute gradients for
interpolation of global illumination on object surfaces. Ramamoor-
thi et al. [2007] give a first order analysis of lighting, shading and
shadows, and show how visibility gradients can be efficiently eval-
uated by sampling along discontinuities. Gradient-based interpo-
lation and sampling methods for soft shadows on surfaces are also
discussed. Jarosz et al. [2007] compute gradients of the radiative
transport equation, under the assumption of constant visibility, to
estimate the local variation of scattered radiance and to improve the

Figure 2: Light transport in a single scattering medium from a
point light source to the viewer.

accuracy of interpolation.

In a real-time application, Gautron et al. [2005] perform radiance
splatting on the GPU for gradient-based interpolation of indirect
illumination on surfaces. In our work, we also employ splatting for
gradient-based interpolation, but formulate it instead for shading in
participating media.

3 Overview

In this section, we describe basic concepts of our algorithm, namely
the lighting model and density field representation, and provide a
brief overview of the rendering algorithm.

3.1 Lighting Model

Our work addresses light transport within an inhomogeneous
medium represented by a density field D defined in a volume V.
The volume is considered to contain a single medium, whose pa-
rameters include the extinction cross section σt, the scattering cross
section σs and the scattering albedo Ω = σs/σt. We assume
the medium to be single scattering, such that radiance reaching
the viewer has undergone at most one scattering interaction in the
medium, and that the scattering is isotropic, i.e., uniform in all di-
rections.

For simplicity, let us consider here the scenario of a point light
source as shown in Fig. 2. Lighting for other source types can be
straightforwardly derived from the point source case.

Source radiance refers to light that is directed towards the viewer
from a point x in the medium. For a point source s and an isotropic,
single scattering medium, source radiance is computed as

Lx =
I0

4πd2
sx

τsx, (1)

where I0 is the point source intensity, dab denotes the distance
from a to b, and the transmittance τab models the reduction
of radiance due to extinction from point a to b, computed as

exp(−σt

∫ b

a
D(x)dx).

In terms of source radiance, the radiance L seen at the viewer can
be computed as

L =
I0

d2
sv

τsv +
Ω

4π

∫ xin

xout

D(x)Lxτxvdx, (2)

where the first term describes direct transmission of radiance from
the source to the viewer, and the second term accounts for sin-
gle scattered radiance in the medium, which is the cause of glows



around a light source. We note that for a point light source, the first
term in Eq. (2) contributes to at most a single point on the screen. In
the second term, source radiances are modulated by media density
and transmittance before being integrated along view rays.

An extension of Eq. (2) to volumes containing scene objects will
later be presented in Section 6.

3.2 Density Field Representation

To compactly represent the density field D, we employ the Gaus-
sian model described in [Zhou et al. 2007b]. Density is represented
by a weighted sum of Gaussians and a hashed residual field F :

D(x) = D̃(x) + F (x) =

n∑

j=1

wj exp(−‖x − cj‖
2/r2

j ) + F (x),

(3)
where each Gaussian is defined by its center cj , radius rj and
weight wj . A media animation is then modeled as a sequence of
Gaussians and residual fields, which are computed in a preprocess
as done in [Zhou et al. 2007b].

We note that preprocessing is used here only for representation of
the density field, and it does not prevent run-time changes to media
properties, lighting, or scene configuration. This representation was
chosen for its efficient modeling of fine density field details, but our
rendering algorithm can accommodate any representation that can
be rapidly reconstructed at runtime, e.g., the Gaussian+noise repre-
sentation in [Zhou et al. 2007a] or the advected RBF representation
in [Pighin et al. 2004]. With these alternative representations, no
preprocessing would be needed.

3.3 Algorithm Overview

For each frame in an animated sequence, our algorithm first gener-
ates a set of sample points {xj} at which to evaluate source radi-
ance. This set is selected using a dynamic sampling strategy that
aims to minimize shading error in the rendered image by accurately
reconstructing the distribution of source radiance. Details of this
sampling procedure will be described in Section 5.

Then at each xj , a volume ray tracer numerically evaluates the
source radiance Lxj

and its gradient ∇Lxj
. The source radi-

ance Lx at other points x in the volume are reconstructed using
a gradient-based interpolation scheme, which we present in Sec-
tion 4. This interpolation is shown to yield significant improve-
ments in quality even without the use of dynamic sampling.

Finally, a ray march is performed for discrete computation of the
integral in Eq. (2). Implementation details of the algorithm will be
given in Section 6.

4 Gradient Based Interpolation

In this section, we present a real-time interpolation algorithm that
reconstructs the source radiance throughout the volume from a
small set of samples. For heightened accuracy in interpolation, the
source radiance at an arbitrary point is evaluated using both the ra-
diance values and radiance gradients of the sample points. We uti-
lize the GPU to expedite this computation by calculating sampled
radiance quantities in multiple threads and by splatting the samples
into the volume in a manner analogous to [Gautron et al. 2005].

Radiance Samples For gradient-based interpolation, we define
a sample j by a point xj in the media volume, the source radiance
Lxj

at that point, and the radiance gradient ∇Lxj
. In addition,

we associate with each sample a valid radius Rj that describes the
range from xj within which a sample j may be used for interpo-
lation. The sphere determined by point xj and valid radius Rj is
referred to as the valid sphere of sample j.

In our algorithm, the set of sample points is determined using the
dynamic sampling method in Section 5. However, to allow com-
parison of our gradient-based interpolation to RBF-based interpo-
lation, we will instead in this section construct the sample set from
the Gaussian centers cj of the density representation in Eq. (3), such
that xj = cj . The valid radius of each valid sphere is set to the
culling radius of the corresponding Gaussian: Rj = 3rj .

Evaluation of Source Radiance and Gradient At each sample
point x, we use Eq. (1) to evaluate its source radiance. In computing
Eq. (1), we use volume tracing for discrete integration along the ray
from x to the light source s at intervals of ∆1:

Lx =
I0

4πd2
sv

exp

(
−σt∆1

∑

u∈U

D(u)

)
,

U = {uk : uk = x+vk∆1, k = 0, 1, . . . ⌊‖s−x‖/∆1⌋, uk ∈ V},

where v = (s − x)/‖s − x‖ represents the ray direction. At each
volume tracing step, the density is obtained from the density field
and accumulated into the running sum until u exits the volume V.
The transmittance is then evaluated and multiplied by I0/(4πd2

sv)
to yield Lx.

The gradient is determined numerically from the source radiance
values at six points surrounding x along the three axis directions
X, Y, Z:

∇Lx =

(
Lx+∆2X − Lx−∆2X

2∆2

,
Lx+∆2Y − Lx−∆2Y

2∆2

,
Lx+∆2Z − Lx−∆2Z

2∆2

)
.

We note that the source radiance at the various sample points are
computed in parallel on the GPU. Also, the precision of this nu-
merical evaluation is controlled by the user defined intervals ∆1

and ∆2.

Gradient-based Interpolation by Sample Splatting With the
computed values of Lxj

and ∇Lxj
at each sample point xj , the

radiance Lx at an arbitrary point x is computed as a weighted av-
erage of the first-order Taylor approximations evaluated from each
contributing sample to x. More precisely,

Lx =
∑

S
Wj(x)

(
Lxj

+ (x − xj) · ∇Lxj

)
/
∑

S
Wj(x),

S = {j : ‖x − xj‖ < Rj}, Wj(x) = Rj/‖x − xj‖.
(4)

In interpolating the source radiance of a point x, rather than di-
rectly retrieve samples whose valid sphere covers x, we utilize
the GPU to splat the samples into the volume. First, the valid
sphere of each sample is intersected with each X − Y slice of
the volume, with +Z aligned to the viewing axis. The bounding
quads of the intersection circles are found and grouped by slices.
Then, for each slice, these bounding quads are rendered with alpha
blending enabled. For each pixel, the weighted approximate ra-
diance Wj(x)

(
Lxj

+ (xj − x) · ∇Lxj

)
and the weighting func-

tion Wj(x) are evaluated and accumulated. Rendering all bounding
quads for a slice yields the numerator and denominator of Eq. (4),
from which we compute Lx. The bounding quad of all intersection
circles in the slice is then rendered, with Lx evaluated at each pixel.
The result is rendered into a 3D volume texture, using the technique
described in [NVIDIA 2007].



(a) RBF Interp.

with 500 samples

(b) Reference (c) Gradient Interp.

with 500 samples

(d) Sample points

for Gradient Interp.

(e) Dense RBF Interp.

with 5900 samples

(f) Relative Error

Figure 3: Comparison of gradient-based interpolation, RBF-based
interpolation, and ray tracing. The density values range from 0.0 to
1.0, with σt = 1.2 and Ω = 0.6. The reference image is obtained
by ray tracing at each voxel of the 128×128×128 volume, followed
by standard ray marching.

Result In Fig. 3, we compare the result of gradient-based interpo-
lation, the RBF-based interpolation described in [Zhou et al. 2007b]
and a reference ray tracer. The RBF-based interpolation in (a) (rela-
tive error of 14.7%) does not adequately capture the fast variation of
source radiance near the point source because of its coarse interpo-
lation of the sparse samples. Set to a comparable performance level,
the gradient-based interpolation in (c) (relative error of 4.3%) more
faithfully approximates the reference solution in (b). Increasing the
number of RBFs in (a) can lead to comparable accuracy, as shown
in (e) (relative error of 5.4%), but results in slow performance.

5 Dynamic Sampling

With gradient-based interpolation, source radiance throughout the
medium can be better reconstructed from a sparse set of samples.
However, sharp shading variations tend not to be well modeled
without denser sampling. We illustrate this problem with the simple
case of a light shaft piercing a medium of uniform density, shown
in Fig. 4. With gradient-based interpolation and radiance samples
taken at only Gaussian centers, the shape of the shaft is seen to
be indistinct in Fig. 4(a). Moreover, in animation sequences, jit-
tering of shading boundaries often appears due to location shifts
of sparse samples. For accurate and efficient reconstruction, our
method dynamically places additional samples in areas with greater
shading error according to the current sampling configuration and
the gradient-based interpolation.

The dynamic sampling algorithm consists of two main components.
One is a metric for local shading error within the valid sphere of a
sample. We formulate this metric to account for discrepancies in in-
terpolated source radiance and the resulting errors in viewed shad-
ing. In addition, this measure is designed for rapid evaluation. The
second component is a recursive procedure that splits samples into
multiple parts that more finely sample the area within a valid sphere
if the original sample has a large local shading error. With this adap-
tive resampling scheme, our method can accurately and efficiently
generate high-frequency lighting effects as shown in Fig. 4(c).

(a) Original sampling

with 500 samples

(b) Reference (c) Dynamic sampling

with 2732 samples

Figure 4: Dynamic sampling for accurate and efficient generation
of fast shading variations in a medium. A uniform-density volume
is illuminated by a spot light, creating a shaft of light. Sufficient
sampling is needed by gradient-based interpolation to adequately
capture the shape of the shaft. Sample distributions are shown in
upper-right insets, and the reference image is computed by ray trac-
ing a 128 × 128 × 128 volume.

Local Shading Error The shading error of a given media point

due to an approximation L̃x of its source radiance can be derived
from Eq. (2) as

δLx =
Ω

4π

∫ xin

xout

D(x)(L̃x − Lx)τxvdx.

For the local shading error within a valid sphere, we seek an ef-
ficiently computable metric that represents the total error over all
the points in the sphere. We measure the local shading error of a
sample j as

Ej = R3
j

n∑

i=1

|L̃xij
− Lxij

|

n
D(xij)τxjv (5)

where {xij} is a set of n sampled points within the valid sphere,
taken in our implementation as {xj ±RjX, xj ±RjY, xj ±RjZ}.

The factor |L̃xij
− Lxij

|/n represents the average approximation
error of source radiance among the sampled points. For computa-
tional efficiency, the transmittance from each point to the viewer
is approximated as that from the sphere center, τxjv . In shading,
rays are marched through the volume of the sphere, which is pro-
portional to R3

j . Since this metric measures local shading error with

respect to a given sample, we determine L̃xij
by computing Eq. (4)

using only that sample point:

L̃xij
≈ Lxj

+ (xij − xj)∇Lxj
.

Volume tracing is used to sample source radiance values at xj and
the sampled points, and density values are determined by sampling
the density field.

Recursive Sample Splitting Starting with a sample set Q0 =
{cj} that contains only the Gaussian centers, we compute the local
shading error Ej according to Eq. (5) for each valid sphere, and
compare it to a given threshold, ǫ. Within each valid sphere for
which Ej > ǫ, additional samples are added for more accurate
modeling of the source radiance distribution in the medium.

The set of added samples Q1
j = {q : q ∈ G1∧‖q−xj‖ < Rxj

} is
composed of vertices of a grid G1 that lie within the valid sphere to
be resampled. The vertices from all the split samples are collected
into a set Q1 =

⋃
j

Q1
j , with each vertex assigned a valid radius

equal to the grid interval of G1. The sample j that was split is then
removed from Q0.

This recursive process proceeds by iteratively computing the local
shading errors for samples in Qk, and splitting those with errors



(a) Sampling points (b) Rendering result (c) Reference image

Figure 5: Capture of sharp shading variations by dynamic sam-
pling.

greater than ǫ using an increasingly finer grid Gk+1. After reaching
a specified grid resolution, the final sample set is computed as the
union of the sample sets at each grid resolution,

⋃
k

Qk. The cor-
responding set of valid spheres covers the volume of the original
spheres, such that all points in the volume with significant density
will be shaded.

GPU Implementation This algorithm for dynamic sampling can
be implemented on the GPU by combining CUDA [NVIDIA 2004]
and Cg shaders. The core data structure is a renderable 3D grid
information buffer that records for each vertex in the correspond-
ing regular grid Gk an indicator for whether it is currently in the
set Qk. It additionally records the local shading error for the cor-
responding sample. This data structure can be passed between the
CUDA kernel and OpenGL using the interoperability APIs and the
pixel buffer object (PBO) extension.

For each iteration, three basic operations are performed: sampling,
filtering and splitting. First, the sampling step calls the volume ray
tracer and density sampler to compute Lxj

, Lxij
,∇Lxj

, D(xij)
and τxjv , which are used in computing the local shading error
(Eq. (5)). Then, a CUDA kernel is invoked to compute the shad-
ing error and filter the samples. The scan primitive [Harris et al.
2007] is used to identify samples with errors greater than ǫ. Finally,
we split these samples using a standard voxelization of their valid
spheres. We implement this splitting using the render-to-3D-texture
operation [NVIDIA 2007], with the grid information buffer bound
as the rendering target. After splitting, the scan primitive is invoked
again to generate the sample points for the next iteration, or to out-
put all the samples if the maximum resolution level is reached.

In our implementation, the maximum resolution for the regular grid
is set to half that of the density field, which is 128× 128× 128 for
all data used in this paper. Specifically, the grid resolutions in our
examples are set as follows: G1 as 16×16×16, G2 as 32×32×32,
and G3 as 64× 64× 64. For efficiency in evaluating local shading
errors, the value of τxjv for each original valid sphere defined by
the Gaussian centers is used for all of its descendant valid spheres
in computing Eq. (5).

Result In Fig. 5, a medium is illuminated by a spot light. Our dy-
namic sampling captures the sharp shading variations well. Starting
from the original set of 541 samples, the recursive sample splitting
procedure produces a total of 2705 samples, as shown in (a), result-
ing in a much more faithful capturing of the sharp shading varia-
tion(b). A reference image obtained by ray tracing is provided in
(c). Please see the accompanying video for a comparison between
the original sampling and dynamic sampling.

Like [Ramamoorthi et al. 2007], our sampling scheme operates in
a top-down manner. However, instead of computing gradients only
at each region center, our method measures source radiance gradi-
ents using multiple samples in a valid local neighborhood. Since
we deal with shading boundaries instead of soft shadows, this mul-
tiple sampling is needed to more reliably detect sharp local changes
within a given area.

6 Implementation

In this section, we discuss some implementation details of our ren-
dering pipeline.

Density Field Construction For each frame, the density field
is constructed by splatting, with a process similar to the radiance
splatting described in Section 4. Here, we splat the weight wj

of each Gaussian instead of the sampled radiance. Unlike for the
gradient-based interpolation, no weight normalization is needed.
If a residual field hash table exists, we perform splatting with it
as well, by retrieving R(x) from the hash table, multiplying it by

D̃(x), and saving it in another color channel. Thus after splatting

we have D̃(x) and R(x)D̃(x) stored in different color channels.
Dividing the latter by the former gives R(x), and adding R(x) to

D̃(x) yields D(x).

Volume Ray Tracing We conduct volume ray tracing for all sam-
ple points in a single call. This is done by first packing all the sam-
ple points into a 2D texture. A quad of the same size is drawn to
trigger the pixel shader, in which volume ray tracing is performed
as described in Section 4. To further improve performance, we ter-
minate the tracing of a ray if it exits the volume.

Ray Marching Given the density field and the source radiance
field, ray marching is conducted as in [Zhou et al. 2007b]. The
RBFs of the density representation are intersected with slices of
thickness ∆x that are perpendicular to the view direction. Then
the slices are rendered from far to near, with alpha blending set
to GL ONE and GL SRC ALPHA. The bounding quad of all in-
tersections with the RBFs in each slice is rendered. For each
pixel, D(x) and Lx are retrieved from 3D textures, and the RGB
channels of the output are set to D(x)Lx. The alpha channel
is set to the differential transmittance of the slice, computed as
exp(−σtD(x)∆x). After all slices are rendered, we obtain a dis-
crete version of the integration in Eq. (1).

Scene Objects In scenarios where scene objects are present in
the medium, we modify Eq. (2) to

L = LsVsv + LpVsp +

∫ xin

p

σtD(x)LxVsxτxvdx,

where p is the first intersection of the view ray with a scene ob-
ject, and Lp is the reflected radiance from the surface, computed as

I0τspρ(
−−−→
s − p,

−→
N )/d2

sp.1 The visibility term Vab is a binary func-
tion that evaluates to 1 if there exists no scene object blocking a
from b, and is equal to 0 otherwise. If the view ray does not inter-
sect a scene object, then p is set to infinity and Lp is zero.

Scene objects affect the computation of L in three ways. First, vis-
ibility terms must be incorporated, and can lead to volumetric and
cast shadows. Second, they give rise to a new background radiance
term Lp. And finally, they may change the starting point of the
source radiance integration in the ray march.

To account for the visibility term, we use shadow mapping with a
small modification made to the volume tracer. We add a compari-
son of ‖s − x‖ to the depth recorded in the shadow map, and exit
tracing if ‖s−x‖ is larger, i.e., x is occluded from s. Note that this
modification works for both the dynamic sampling algorithm and
the interpolation algorithm. In our implementation, we use variance
shadow mapping [Donnelly and Lauritzen 2006] to reduce aliasing.

1ρ is the reflectance function and N is the normal of p. The cosine term

is merged into ρ for notational simplicity.



Figure 6: A dusty room lit by sunlight passing through a win-
dow. The light is occluded by the window frame and furniture in
the room, generating complex volumetric shadows.

Scene # Vertices # Lights # Samples FPS

Fig. 6 24,180 1 3.7k-6.9k 19.2

Fig. 1 16,885 1 1.4k-3.9k 23.2

Fig. 7 16,885 1-30 0.4k-0.8k 28.7

Table 1: Statistics for the three test scenes. The values for Fig. 1
represent rendering for both daytime and night, using different con-
figurations.

To compute the reflected radiance Lp on the object surface, the
same volume tracer is used to account for the transmittance term.
For this, we could use splatting such as in [Gautron et al. 2005].
However, since we compute direct but not indirect illumination,
much denser sampling would be required. High curvature regions
on the object can also be problematic. Thus, we simply assume that
all scene objects are triangulated to a proper scale, and let the graph-
ics hardware linearly interpolate the sampled reflected radiance at
vertices.

To account for scene objects in ray marching, we first draw the
objects before ray marching, and then leverage the depth culling
built into the GPU to correctly attenuate the reflected radiance Lp

and exclude slices behind p.

7 Results and Discussion

We implemented our algorithm on a 3.7 GHz PC with 2 GB of
memory and an NVidia 8800 GTX graphics card. Images are gen-
erated at a 800 × 600 resolution.

We summarize the statistics of the test scenes in Table 1. For
animated versions of the figures, please refer to the supplemental
video, which was recorded in real time. In Fig. 1 and Fig. 7, the
media animation is generated by simulation, and approximated by
a sequence of Gaussian sets and residual fields as in [Zhou et al.
2007b]. For the dusty room scene in Fig. 6, the media data is gener-
ated analytically by simply interpolating the density from the floor
(D(x) = 0.6) to the ceiling (D(x) = 0.3). Dynamic details are
introduced as Perlin noise [2002]. Note that for this example, no
preprocessing is required, and the initial samples are obtained by
jittered stratified sampling.

The rendering cost is divided into four parts, namely density recon-
struction, sampling, gradient interpolation and ray marching. The
sampling distribution is dependent on the viewing and lighting con-

Resolution 32
3

64
3

128
3

256
3

ours (512 samples) 73.4 69.1 63.3 45.0

per-voxel 68.0 42.5 11.7 3.5

# Point Lights 1 4 16 64

ours (512 samples) 63.3 57.1 47.6 30.6

per-voxel 11.7 4.2 2.0 0.7

# Spot Lights 1 4 16 64

ours (1.5k∼3.9k samples) 26.4 22.9 17.7 10.4

per-voxel 10.3 4.2 1.9 0.7

Table 2: Performance (in fps) for different volume resolutions and
numbers of light sources. Results are shown for point light sources,
which do not require dynamic sampling, and spot light sources.

Figure 7: The scene in Fig. 1 lit by numerous dynamic point light
sources. The point light sources are considered local and do not
generate shadows. Our algorithm scales well with the number of
sources, and renders at 21.5 fps when the scene is lit by 50 point
light sources.

ditions, as well as the status of the media data. Sampling and gra-
dient interpolation is the current bottleneck of the algorithm, con-
suming 60% to 80% of the run time.

Our algorithm scales well with respect to volume resolution and
number of light sources. In Table 2, it is shown that the scalability
of our algorithm is less sensitive than per-voxel volume tracing to
volume resolution and light source number. This results from call-
ing the volume ray tracer at only a very limited number of sample
points. Volume tracing, whose performance is directly related to
the volume resolution and light number, accounts for a small por-
tion (15%-30%) of the overall cost. In contrast, it can account for
up to 90% of the overall cost if volume tracing is performed at each
voxel.

For a volume resolution of 128×128×128, the video memory cost
of our algorithm includes a 4 MB density buffer, a 6 MB radiance
buffer used as the target for sample splatting, three grid information
buffers totaling about 2.5 MB, and a temporary buffer of 10 MB
used for loading residual tables of subsequent frames. In the host
memory, the main cost is the residual tables, which add up to 79MB
for the data in Fig. 1 and Fig. 7. The residual table costs may be
avoided by using an analytical+noise representation of the medium,
as done for Fig. 6.



8 Conclusion

In this work, we presented a technique for real-time rendering of
inhomogeneous media with all-frequency shading effects. The ac-
curacy and efficiency of this system is gained from the gradient-
based interpolation and the dynamic sampling of source radiance
with respect to local shading errors.

Our current formulation utilizes certain assumptions that limit its
generality, such as an isotropic phase function and a finite volume
representation. Also, the algorithm does not consider the influence
of media on surface shading, i.e., scattering prior to surface reflec-
tion. These are issues we intend to examine in future work.

In addition, our method presently addresses only single scattering
of radiance in the medium. Within our framework, fast evaluation
of multiple scattering might also be possible, by computing it at
only the sample points and interpolating throughout the volume.
Also, the current technique has demonstrated real-time rendering
results for only compact illumination sources. By employing the
spherical harmonics domain processing of [Zhou et al. 2007b], we
believe that an extension of our method to environment lighting
may be within reach as well.
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