
Motion Field Texture Synthesis
Chongyang Ma∗‡ Li-Yi Wei† Baining Guo‡ ∗ Kun Zhou§

‡Microsoft Research Asia †Microsoft Research ∗Tsinghua University §Zhejiang University

original
motion

exemplar synthesized detail motion combined motion field original density field final density field

Figure 1: Motion field texture synthesis. Given a low-resolution motion field and an input exemplar, we synthesize a high-resolution detailed motion field that
resembles the exemplar while follows the local orientation of the low-resolution field. This synthesized detail motion field is then combined with the original
low-res motion field to produce the final motion. Our method can produce non-physics-based artistic effects such as fluids with heart-shaped motions.

Abstract

A variety of animation effects such as herds and fluids contain de-
tailed motion fields characterized by repetitive structures. Such
detailed motion fields are often visually important, but tedious to
specify manually or expensive to simulate computationally. Due to
the repetitive nature, some of these motion fields (e.g. turbulence in
fluids) could be synthesized by procedural texturing, but procedural
texturing is known for its limited generality.

We apply example-based texture synthesis for motion fields. Our
technique is general and can take on a variety of user inputs, includ-
ing captured data, manual art, and physical/procedural simulation.
This data-driven approach enables artistic effects that are difficult
to achieve via previous methods, such as heart shaped swirls in fluid
animation. Due to the use of texture synthesis, our method is able to
populate a large output field from a small input exemplar, imposing
minimum user workload. Our algorithm also allows the synthesis of
output motion fields not only with the same dimension as the input
(e.g. 2D to 2D) but also of higher dimension, such as 3D volumet-
ric outputs from 2D planar inputs. This cross-dimension capability
supports a convenient usage scenario, i.e. the user could simply
supply 2D images and our method produces a 3D motion field with
similar characteristics. The motion fields produced by our method
are generic, and could be combined with a variety of large-scale
low-resolution motions that are easy to specify either manually or
computationally but lack the repetitive structures to be character-
ized as textures. We apply our technique to a variety of animation
phenomena, including smoke, liquid, and group motion.

Keywords: motion field, texture synthesis, fluids, group motion

1 Introduction

A variety of animation effects are characterized by a distinctive
large scale motion plus repetitive small scale details, such as fluids
with turbulence or herds with individual behaviors. Usually, a user
would prefer to direct only the large scale motion, while avoiding
tedious manual work by leaving the small scale details to be either
roughly sketched or automatically generated.

One possible method to generate such small scale motions is
physics simulation. This has the advantage of reality-based ef-
fects, but could be expensive to compute and difficult to control.
Another possibility is procedural texturing (e.g. noise [Kim et al.
2008; Narain et al. 2008]). This is usually more computationally ef-
ficient than full fledged physics simulation, but procedural texturing
is known for its limited generality, e.g. only applicable to specific
phenomenon such as turbulence in fluids. Furthermore, both phys-
ical and procedural simulation might not offer the kind of artistic
control that a user desires.

Our goal is to provide a method to generate detailed motion fields
that is general, controllable, and easy to use. We attempt to achieve
this by applying example-based texture synthesis to detailed motion
fields. This method is general and allows us to take on a variety
of user inputs as texture exemplars, include captured motion data,
manual doodling, or physically/procedurally simulated animations.
Due to the nature of texture synthesis, our method is able to popu-
late a large output field from a small input exemplar, thus imposing
minimum user workload. Our method also supports artistic effects
that are difficult to achieve by physical/procedural simulation, such
as heart-shaped swirls in fluids that could be achieved simply by
providing a heart-shaped input exemplar to our algorithm.

Algorithm-wise, even though it does not require too much a leap
of faith to apply texture synthesis to motion vector fields, we have
to deal with the fact that existing texture synthesis algorithms are
designed mainly for colors, which have potentially different per-
ceptual implications from motion vectors. In addition, since we
would like to provide a friendly 2D interface for specifying 3D mo-
tions, we need to figure out a way to synthesize 3D motion fields
from 2D exemplars. Note that even though this has been achieved
for color textures [Kopf et al. 2007; Dong et al. 2008], these meth-

ods are not directly applicable to our scenario as colors are invari-
ant with respect to different 2D views whereas motion vectors are
subject to projection (where the 2D views could only capture the
projected vector components; see Figure 3) and coordinate trans-
formation (where the output vector field has to be properly oriented
not only during, but also after, synthesis; see Figure 2). One of
our core technical contributions is to incorporate these projection
and coordinate-transformation effects into the synthesis process for
motion fields.

The texture motion fields produced by our technique are generic,
and could be combined with a variety of large scale motions ob-
tained from other sources, such as fluid simulation, group move-
ments, or manual drawings. Such large scale motions are often dis-
tinctive and lack repetitive texture structures so that texture synthe-
sis is not applicable, but on the other hand they are usually coarse
enough to be easily specified either manually or computationally.
We demonstrate the applicability of our method to a variety of phe-
nomenon, such as smoke, liquid, and group motions.

2 Related Work

Animation A variety of animation effects contain a distinctive
large scale motion plus a detailed motion field characterized by
stochastic and/or repetitive patterns; some examples include indi-
vidual behaviors in a large crowd/herd [Reynolds 1987; Treuille
et al. 2006; van den Berg et al. 2008] and vortices [Fedkiw et al.
2001], bubbles [Hong et al. 2008], or turbulences [Kim et al. 2008;
Narain et al. 2008] in fluids. It is usually desirable to intention-
ally direct only the large scale motion while leaving the detailed
behaviors to certain automatic computation. Even though the in-
dividual phenomenon can be simulated with high fidelity by vari-
ous methods as mentioned above, it might be desirable to have a
more general method that is applicable to a wider variety of effects.
Furthermore, the simulation based approaches could be difficult to
control, and offers limited artistic choices. Our method aims to aug-
ment these prior methods via example-based texture synthesis. In
particular, we aim at automatic synthesis of motion details, and can
be considered as complementary to prior techniques for controlling
large scale fluid motions such as [Fattal and Lischinski 2004; Mc-
Namara et al. 2004].

Texture Synthesis Texture synthesis is originated in the study
of color images but it has also been applied to other data categories
as well, such as geometry, videos, and motions; here, we focus on
the application of texture synthesis to motions and refer the readers
to [Wei et al. 2009] for a more comprehensive survey. For articu-
lated motion signals containing repetitive patterns such as walking
or running, the signals could be treated as one dimensional textures
[Pullen and Bregler 2002; Li et al. 2002]. Another possibility is
to treat the aggregate crowd positions as a texture [Kyriakou and
Chrysanthou 2008]. Videos containing motion textures such as wa-
terfalls could also be re-edited based on a target flow [Bhat et al.
2004]. Texture synthesis has also been applied to animate static
images [Chuang et al. 2005; Okabe et al. 2009]. Our method is
also related to static vector field generation [Liu et al. 2004; Pala-
cios and Zhang 2007; Fisher et al. 2007; Wang et al. 2009], but we
need to deal with motions. Beyond motions and videos, it is also
possible to apply color textures over dynamic fluid surfaces to ei-
ther enhance rendering or further simulate small scale effects such
as bubbles [Bargteil et al. 2006; Kwatra et al. 2007; Narain et al.
2007]. A common trait among these techniques is that texture syn-
thesis is often computationally cheaper than simulation, and offers
more flexible control via the choice of input exemplars. However,
to our knowledge, example-based texture synthesis has yet to be
applied to general motion fields; even though there exists procedu-

ral texturing approaches to augment fluid details [Kim et al. 2008;
Narain et al. 2008; Schechter and Bridson 2008], it is a well known
fact that procedural texturing is less general than example-based
synthesis. We draw inspirations from these methods, but take a step
further by applying texture exemplars for motion fields.

3 Our Method

Here, we first describe our basic methodology, followed by details
and variations. Our method consists of the following main steps :

1. Use some prior methods (e.g. manual, procedural, or physics
based) to produce a large-scale, low-resolution motion vector
field for the specific application (e.g. fluids or groups).

2. The user specifies texture exemplars to indicate the desired
detail motion. The exemplars could come from a variety of
sources, including captured data, manual art, or simulation.

3. Our system deploys texture synthesis to automatically prop-
agate the characteristics of the input exemplars to the entire
output domain. The input and output could be of the same
dimensionality (e.g. 2D to 2D) or of different dimensionality
(e.g. 2D input to 3D output).

4. We combine the synthesized high resolution details with the
given low resolution motion field.

5. We optionally perform application specific processes such as
incompressibility for fluids or boundary conditions. The for-
mer could be done as a post-process after Step 4 while the
latter via constrained synthesis during Step 3.

Below we describe algorithm details. For easy reference, we sum-
marize our algorithm in Pseudocode 1.

3.1 Motion detail synthesis - same dimension

When the input exemplar and the output motion field are of the
same dimension, synthesizing motion vectors is analogous to syn-
thesizing multi-channel texture colors. For this, our method basi-
cally follows [Kwatra et al. 2005], which performs texture synthesis
by minimizing the following energy function

Et(x; {zp}) =
∑

p∈X†

|xp − zp|2 + O(x) (1)

where Et measures local neighborhood similarity across a subset
X of the output x, and zp indicates the most similar input neighbor-
hood to each output neighborhood xp. [Kwatra et al. 2005] solved
this energy function via an iterative process alternating between
neighborhood search and pixel assignment steps. The method could
also be extended for other applications by adding extra energy terms
O(x), such as frame coherence for animation. As denoted in Pseu-
docode 1, our method follows a similar iterative search/assignment
process. For same-dimension synthesis, the main differences are:
(1) the need for coordinate transformation and (2) the perceptual
differences between colors and motions.

Figure 2: Coordinate transfor-
mation. The exemplar (left) is a
swirl pattern. The output (right)
is conditioned by a large scale di-
agonal pattern. The correct value
at the red point should be the red
arrow instead of the green one.

function F←MotionFieldTextureSynthesis({Ii}i=1:m, L, ω)
// F: final output motion field
// {Ii}i=1:m: exemplars across m views
// L: input large-scale coarse motion field
// H: synthesized detail motion field
H← DetailFieldSynthesis({Ii}i=1:m, L) // Section 3.1 & 3.2
H′← CoordinateTransform(H, L) // Section 3.1
// ω: relative weighting for L and H
F← Combine(L, H′, ω) // Section 3.5
return F

function H← DetailFieldSynthesis({Ii}i=1:m, L)
H← Initialize({Ii}i=1:m, L) // Section 3.4
iterate until convergence or enough # of iterations

// search phase, i.e. the “M-step” in [Kwatra et al. 2005]
foreach sample s ∈H

// µ(s, i): best match neighborhood for s with input i
{µ(s, i)}i=1:m← Search(s, {Ii}, L, H)

end
// assignment phase, i.e. the “E-step” in [Kwatra et al. 2005]
foreach sample s ∈H

s← Assign({µ(s, i)}i=1:m)
end

end
return H

function H← Initialize({Ii}i=1:m, L)
if first frame of animation

H← random pixels from {Ii}
else

H← advection from last frame [Kwatra et al. 2005]
end
return H

function {µ(s, i)}i=1:m← Search(s, {Ii}i=1:m, L, H)
foreach input i

N(s, i)← neighborhood sampled around s considering both
N(s, i)← orientation of Ii and local frame defined by L(s)
N(s, i)← Project(N(s, i), i) // Section 3.2
µ(s, i)← BestMatch(Ii, N(s, i))

end
return {µ(s, i)}

function µ(s, i)← BestMatch(Ii, N(s, i))
find most similar neighborhood in Ii with N(s, i)
via tree search [Kwatra et al. 2005; Kopf et al. 2007]

function s← Assign({µ(s, i)}i=1:m)
s← average the centers of {µ(s, i)}

function F← Combine(L, H, ω)
F← Upsample(L) + H × ω // upsample L to have same size as H
return F

Pseudocode 1: Pseudo-code for our algorithm.

Given an input exemplar and a large-scale coarse-resolution vector
field (Figure 2), our goal is to synthesize a detailed output motion
field so that the local patterns (1) properly orient with respect to
the large scale field and (2) resemble the input exemplar in the
texture synthesis sense. If the input exemplar is a color texture
instead of a vector field, these goals can be achieved by properly
orienting the output texture neighborhoods during the search pro-
cess, as described in prior algorithms such as [Turk 2001; Wei and
Levoy 2001]. However, for vector fields, simply orienting the out-
put neighborhoods is not enough, as the synthesized vector field
will still retain the value from the original input coordinate frame,
as indicated by the green arrow at the red point in Figure 2. The cor-
rect value, as indicated by the red arrow, is obtained by transforming

the directly-synthesized green arrow by the local coordinate system
(the blue vector field). Note that this coordinate transformation of
the synthesized value should be performed as a post process, as we
need to use the un-transformed values during texture synthesis to
match the (un-transformed) values in the input exemplar.

Aside from this algorithm-wise coordinate transformation issue,
motion vectors also differ from colors in that they have different
perceptual implications. In particular, it has been found for colors,
local coherence is very important and occasional high frequency
discontinuities are more tolerable than a texture that is entirely con-
tinuous but subject to blur or noise; see discussions in coherence
synthesis [Ashikhmin 2001; Tong et al. 2002; Han et al. 2006]
and patch-based synthesis [Liang et al. 2001; Efros and Freeman
2001]. However, for motion vectors, we have found the opposite
holds true: low frequency noise or blur is usually better than high
frequency discontinuity. Thus, in our current implementation, we
prefer the original least-squares based texture optimization algo-
rithm [Kwatra et al. 2005] rather than the k-coherence enhanced
version [Han et al. 2006] for quality reasons. However, for speed
reasons, we have also developed a version of our algorithm based
on k-coherence. This will be discussed in Section 3.7.

3.2 Motion detail synthesis - cross dimension

In Section 3.1 we have described how to perform same-dimension
synthesis. Here we extend the idea further for cross-dimension syn-
thesis [Kopf et al. 2007; Dong et al. 2008]. This could be useful for
a variety of scenarios, such as synthesizing 3D output motions from
2D inputs. Just like same-dimension synthesis, cross-dimension
synthesis for motion vectors is very similar to colors. The main
difference, in addition to those mentioned for same-dimension syn-
thesis, is the need to handle projection. Details are as follows.

The basic idea behind previous 2D-to-3D synthesis algorithms
[Kopf et al. 2007; Dong et al. 2008] is to match up neighborhoods
centered around each 3D output voxel with neighborhoods from
several 2D inputs with different orientations. Specifically, the
value of each output voxel s is determined by a two phase process
as follows. In the search phase, m neighborhoods {N(s, i)}i=1:m

centered at s are built with orientations matching each one of the
m input exemplars {Ii}i=1:m. (A classical scenario is when three
input views are perpendicular to the three coordinate axes of the
output volume.) A best match neighborhood µ(s, i) for N(s, i) is
then found from Ii for each input i. In the assignment phase, the
centers of the matches {µ(s, i)}i=1:m are then combined together
to yield the final value for the output voxel s. (This combination
could be achieved either by weighted least squares [Kopf et al.
2007] or k-coherence [Dong et al. 2008].) These two phases are
iterated enough times until convergence or a maximum number of
iterations is reached.

x

y

y
z

x
z

z
y

x

Figure 3: Vector projection. Each one of the
three 2D input views specifies only the corre-
sponding projected components of an output
3D field. In this example, the three views are
aligned with the three coordinate axes, and
thus the projection reduces to dropping one
of the 3D vector components.

We follow a similar two phase process for motion vector synthesis,
but unlike colors which remain invariant with respect to different
views, motion vectors are subject to projections. For example, as
illustrated in Figure 3, each one of the 2D views specifies only the
corresponding projected components of the 3D motion field. This
projection issue affects both the search and assignment phases of

our algorithm as follows. In the search phase, after building the
output neighborhoods {N(s, i)}, we project the vector components
with respect to each one of the input views i before conducing the
best match. For example, if N(s, 1) corresponds to the view per-
pendicular to the x-axis in Figure 3, we then simply zero out the x
components in N(s, 1) and use only the y/z components for Best-
Match(). In the assignment phase, each input match µ(s, i) con-
tributes only to its vector components to the output voxel s. For
example, if a direct average is to be performed from the three or-
thogonal views in Figure 3, then we have

sx =
µ(s, 2)x + µ(s, 3)x

2

sy =
µ(s, 3)y + µ(s, 1)y

2

sz =
µ(s, 1)z + µ(s, 2)z

2
(2)

In our implementation we perform a simple averaging for the as-
signment phase instead of the fancier weighted average + histogram
match in [Kopf et al. 2007], as we have found the latter unneces-
sary. This could be another example of perceptual difference be-
tween colors and motion vectors.

3.3 Neighborhood orientation

As described in Section 3.1, to produce natural looking results the
synthesized motion field H should be properly oriented with re-
spect to the given coarse motion field L. This can be achieved by
collecting output neighborhoods with respect to properly defined
local frames during texture synthesis. In 2D, the local frame is
completely defined by L as we could have the x-axis follows L
and y-axis rotated 90 degrees from x-axis. However, in 3D, L only
specifies one of the three coordinate axes and the orientation of the
other two are under-constrained. In general, we have found that the
exact specifications of the additional constraint not very crucial, as
long as the resulting local frames are coherent both spatially and
temporally. In our experiments, we either define the additional con-
straint through specific application properties (e.g. gradient from
the density for smoke rendering) or specify it manually at sparse
locations followed by interpolation (similar to the specification of
surface vector fields in [Turk 2001]).

3.4 Initialization

For the first frame of the detailed motion field H in the entire ani-
mation sequence, we initialize it by randomly copying pixels from
the input exemplars {Ii}. If the output H is of the same dimen-
sion as the exemplars (e.g. 2D to 2D), then there could be only
one exemplar and the random copy could be done directly. If H
is in 3D, we randomly take neighborhoods from the different input
views {Ii} and blend them together via the assign phase algorithm
as described in Section 3.2 to take into account projection.

For subsequent frames of the animation, we initialize the detailed
motion field H by advecting H from the previous frame via the
low-resolution motion field L as described in [Kwatra et al. 2005].

3.5 Final combination

After the detailed motion field H is synthesized, we could combine
it with the given low resolution motion L to produce the final result.
As shown in Pseudocode 1, we perform this combination via a user
specifiable weighting ω, which could be either a global constant
(essentially allowing the user to tune the amount of detail motion)
or a spatially varying function with the same dimension as H, such

as setting ω proportional to the kinetic energy [Kim et al. 2008] or
vorticity [Fedkiw et al. 2001] of L.

3.6 Application specific process

Since the detailed motion field H is produced by texture synthesis
instead of physics simulation, the final combined motion F might
not satisfy the relevant physics properties of the target application
scenario, such as incompressibility and boundary conditions for
fluid motions. To handle these situations, we perform an optional
application-specific process.

Incompressibility When the input exemplars {Ii} and coarse
motion field L are both incompressible, we have found that the syn-
thesized detail motion field H visually incompressible, even though
it may not be really so. (Intuitively, texture synthesis, by matching
spatial neighborhoods, does not tend to alter the divergence of the
motion fields too much.) If strict incompressibility is desired, one
could perform Helmholtz-Hodge decomposition [Tong et al. 2003]
on the final combined F before rendering. We have not done so
in our current implementation as strict incompressibility is not our
main goal.

Boundary condition To observe the boundary condition, we
need to ensure that the relevant components of F match that of
the shared boundaries [Bridson and Müller-Fischer 2007]. We
achieve this by performing constrained texture synthesis during De-
tailFieldSynthesis in Pseudocode 1. Constrained texture synthesis
has been applied to color images for hole filling and object replace-
ment [Fidaner 2008]. The basic idea is to keep the constrained
portions of the image fixed (e.g. boundary of a hole) while trying
to synthesize textures over the target region (e.g. a hole or an ob-
ject to be replaced) so that the newly synthesized portion not only
resembles the input exemplar but also remains consistent with the
constrained regions.

We can apply a similar idea here for motion fields, with the main
difference that unlike colors where the entire pixel values serve as
constraints, boundary conditions for motion fields often only in-
volve a specific vector component (e.g. normal to the boundary).
This is related to the issue of projection in Section 3.2, and could
be easily addressed by matching only the proper sub vector compo-
nents of the boundaries during the synthesis process. Specifically,
we add the following constraint energy term to the basic texture
similarity term Et in Equation 1:

En(x) =
∑
p∈X

λp|xn
p − bp|2 (3)

where x indicates the output motion field, xn
p the sub-vector com-

ponent at sample p corresponding to the boundary direction (e.g.
normal to a wall), b the specified boundary condition (e.g. 0 ve-
locity normal to a wall), and λ a Gaussian weighting function that
peaks on and attenuates away from boundaries. This equation es-
sentially enforces boundary conditions via a soft constraint as an
additional energy term over Equation 1, and we opt this over a
hard constraint for better synthesis quality and the need to deal
with multi-resolution synthesis (where hard boundary constraints
could not really apply at lower resolutions). In addition, since En

formulates a quadratic energy term, the combined energy function
En + Et can be solved via the search/assignment iterative process
as depicted in Pseudocode 1. In our current implementation, we
let λ be wider at lower resolutions for better quality, but shaper at
higher resolutions for better boundary condition enforcement.

Discussion To synthesize motion fields that are known to be
incompressible (e.g. fluids), one might conjecture that it would
be better to convert the input exemplars {Ii} into potential fields
{Ψi}, perform texture synthesis on {Ψi} to produce an output Ψh,
and derive the synthesized motion field as H = ∇×Ψh. Doing so
could have several benefits compared to synthesizing motion fields
directly. Since Ψ is a scalar-valued function, it would be cheaper
to synthesize than vector-valued motion fields. It is also easier to
enforce both incompressibility and boundary conditions. However,
even though this is a possibility for 2D-to-2D synthesis, we have
encountered some difficulties for 2D-to-3D synthesis. Specifically,
for 2D-to-2D synthesis, both the input Ψi and Ψh are scalar-valued
2D functions, and thus Ψh could be directly texture-synthesized
from Ψi. However, for 2D-to-3D synthesis, the situation is more
complex. First of all, even though {Ψi} are all scalar-valued func-
tions for 2D inputs, the output Ψh is a 3-vector. Thus, somehow
we have to find a way to expand the number of channels from 1
on the input side to 3 on the output side. Second, even though
one might come up with such a magic expansion by taking advan-
tage the multiple input views {Ii}, this is not guaranteed as the
number of input exemplars might not necessarily be 3. Even if
so, we have this cross-coupling issue of the curl operator where
∇×Ψ = (∂Ψ3

∂y
− ∂Ψ2

∂z
, ∂Ψ1

∂z
− ∂Ψ3

∂x
, ∂Ψ2

∂x
− ∂Ψ1

∂y
) and thus each

channel of ∇×Ψ is coupled to two of the inputs, making the syn-
thesis of Ψh from {Ψi} a quite complex issue. All these are further
compounded by the projection issue we discussed in Section 3.2.
Due to the complexity for performing 2D-to-3D synthesis via po-
tential fields, we opt for the direct synthesis of motion fields.

3.7 Acceleration

The main performance bottleneck of our algorithm described so far
lies in the neighborhood search part, as indicated by BestMatch() in
Pseudocode 1. This search time is proportional to the input exem-
plars size. Even though tree search is doable for small exemplars,
the computation could become prohibitive for large ones. A clas-
sical solution to this problem is via k-coherence [Tong et al. 2002]
which provides constant search time per output sample. The k-
coherence idea has been employed in the 2D acceleration of [Kwa-
tra et al. 2005] by [Han et al. 2006] as well as the 3D acceleration
of [Kopf et al. 2007] by [Dong et al. 2008].

In principle, we could accelerate our algorithm by using [Han et al.
2006] for 2D synthesis and [Dong et al. 2008] for 3D synthesis
(see Pseudocode 2), after taking care of the issues of coordinate
transformation (for both 2D and 3D) and projection (for 3D) as
mentioned earlier. Specifically, our accelerated algorithm in 3D
runs just like [Dong et al. 2008] and stores for each output voxel
the indices of the best matches from the input exemplars. During
the search phase, we use k-coherence instead of tree search to find
the best match neighborhoods. During the assignment phase, we
take the candidate that is closest to the average of the centers of the
best matches (essentially minimizing the neighborhood difference
energy function [Han et al. 2006]), while still keeping the list of
indices of the best matches from the inputs. These differences from
our basic algorithm are summarized in Pseudocode 2.

4 Results

Our approach can be flexibly applied to a variety of combinations,
including different input exemplars, different dimensions, different
low resolution fields, as well as different physical phenomenon.

Different exemplars Similar to prior example-based texture
synthesis techniques, our method could be applied to input exem-

function µ(s, i)← BestMatch(Ii, N(s, i))
find most similar neighborhood in Ii with N(s, i)
via k-coherence search
// [Han et al. 2006] for 2D or [Dong et al. 2008] for 3D

function s← Assign({µ(s, i)}i=1:m)
s← k-coherence candidate most similar to
s← the average of the centers of {µ(s, i)}
s← // [Han et al. 2006] for 2D or [Dong et al. 2008] for 3D

Pseudocode 2: Pseudo-code for our accelerated algorithm. Here we show
only the differences from our unaccelerated algorithm in Pseudocode 1.

plars with different texture patterns and formats. We show some
results in Figure 1 and Figure 4 using smoke as the rendering
medium. Since our technique is entirely data driven, we are able
to produce results that are difficult to achieve via prior procedu-
ral or simulation-based techniques, such as smoke animations with
square or lightning shaped motions. In fact, even the circular swirls
might be achievable via physics simulation, our technique is still
better at enforcing the circular shapes and thus better at producing
a cartoonish effect.

In Figure 1 and Figure 4, we use primarily input exemplars that are
generated by simple procedures (e.g. circles or squares) or bitmap
images (from which we take curl on the gray scale magnitude to ob-
tain the motion field), but other formats are certainly possible such
as manual drawings or simulation results. In general, our method
could handle input formats that could be represented or converted
as vector fields.

One major difference between synthesizing color and motion tex-
tures we have observed is that to obtain visually salient effects, it is
usually preferable to use simple inputs. This is kind of contradic-
tory to color texture synthesis as the visual richness often relies on
sufficiently complex inputs. However, for motions, we have found
that an overly complex input might produce less intuitive results.
This is especially true if the synthesized detail motion H is com-
bined with a complex low resolution field L. Among our examples
shown in Figure 1 and 4, even though hearts, circles, and squares
might be too simple to produce interesting color synthesis results,
we have found them produce no less convincing results than more
complex inputs (e.g. the 161 and 295 textures shown in Figure 4).

Different dimensions So far, we have shown results primar-
ily in 2D because it is easier to visualize the effects. Figure 5
and 6 demonstrate the cross dimension capability of our algorithm.
There, the user provides 2D inputs and our system automatically
produces 3D outputs. This is a pretty handy application scenario as
it could be difficult for the user to acquire or specify 3D inputs. For
less structured textures, we have found it possible to produce rea-
sonable results from multiple views. However, for more structured
textures, it could be very difficult or downright impossible to pro-
duce similarly structured 3D outputs [Kopf et al. 2007; Dong et al.
2008]. For this latter case, we have found it beneficial to weigh the
input views differently during synthesis so that one of them has a
predominating effect to allow the formation of better output. The
choice of the favored view would be application dependent, e.g. the
one facing the viewer for static/pre-scripted view points or the one
facing outward of a density field via the method we described in
paragraph Neighborhood Orientation of Section 3.2. We use the
latter method to produce the smoke results in Figure 5. Our method
also allows the specification of different images for different views,
such as swirls with square cross sections shown in Figure 6. We
achieve this by providing square-shaped swirls for the top view and
stripe patterns for the side views.

in
pu

t
circle square lightning

161 295
de

ta
il

m
ot

io
n

co
m

bi
ne

d
m

ot
io

n
fin

al
re

nd
er

in
g

Figure 4: 2D synthesis results. Here, we use the original low resolution motion as in Figure 1, but show different inputs and the corresponding results.
The low resolution motion field is produced via simulation [Fedkiw et al. 2001]. We visualize the motion fields via LIC [Cabral and Leedom 1993], and
leave zero vectors as non-integrated white noises (with reduced amplitude). The circle and square inputs are generated by simple procedures, the lightning a
simple bitmap, and the 161 and 295 more complex ones. For the input exemplars, in addition to the motion field visualized by LIC, we also show the color
visualization for procedurals (circle and square) or the original bitmap image (lightning, 161, and 295) for clarity.

circle square heart

Figure 5: 3D synthesis results. The original low-res motion is
shown on the left. The input textures are shown in Figure 1 &
4. The data sizes are 242 × 32 for the original and 962 × 128
for our results.

Application specific process Our method also works for a
variety of large-scale coarse-resolution vector fields. In Figure 4
and 5 we use physics simulation, and in Figure 7 we use the low
resolution motion provided in the sample code from [Bridson et al.
2007]. We also utilize the incorporated scene (of river passing
through a round stone) to enforce boundary conditions for our syn-
thesized motion. Our approach is also applicable to more complex
boundary conditions as shown in Figure 8.

top view

side view

input exemplars output rendering

Figure 6: 3D synthesis result with different 2D views. To achieve this
square-shaped swirls effect, we need different input exemplars for different
views. The data sizes are: 642 for top view, 1282 for side view, and 1283

for the output motion.

Different phenomenon In addition to fluids, our method can
also be applied to other phenomenon, such as group motions. In
Figure 9, we demonstrate an example of under-water seaweed mo-
tions. There, we specify a 2D sinusoidal motion for both the top and
side views, synthesize a 3D motion field, and use that to direct the
movements of points on the seaweed polygonal models. As shown,
even with such simple input exemplars, our method is able to pro-
duce natural-looking output motions. Note that even though this
motion could also be achieved by pure procedural simulation, the
user would have to inject a certain amount of randomness to avoid

original motion combined motion

rendering, original rendering, our result

Figure 7: Boundary condition. We use the example scene from [Bridson
et al. 2007] to enforce boundary condition of our result. The image sizes are:
642 for the exemplar (295 in Figure 4), 200 × 150 for the motion fields,
and 640× 480 for the renderings.

original our result, LIC visualization our result, smoke rendering

Figure 8: More complex boundary condition. Image sizes are 642 for the
original and 2562 for our result. The input texture is shown in Figure 7.

the motion being monotonic. Our technique, in contrast, does not
require so; even if the input exemplar is purely regular, the nature
of texture synthesis would induce a certain amount of randomness
into the motions.

Parameters For the results shown in the paper, we use multi-
resolution texture synthesis with 3 pyramid levels, except when the
input size ≤ 162 for which we use only 2 levels. Within each pyra-
mid level, we perform 3 to 5 iterations with neighborhood size 172

followed by another 3 to 5 iterations with neighborhood size 92 for
2D synthesis, and fix the neighborhood size to 92 for 3D synthesis.
The user is also free to choose the texture scale (e.g. the relative
size of individual hearts on the output in Figure 1) and blending
weight ω depending on the particular inputs and desired effects. In
our experience, picking the texture scale is usually very intuitive,
but ω might require some trials and errors. But tuning ω is usually
quite easily as it does not involve any re-synthesis.

Performance Using a single thread running on a CPU, our cur-
rent implementation takes about one minute to produce a 2562 2D
result and about one hour to produce a 2562 × 64 3D result. Our
GPU implementation improves the corresponding timing to 3-to-
5 seconds for 2D and 4-to-8 minutes for 3D, as measured on an
NVIDIA GeForce 8800 GTX GPU. Our focus on this paper is not
about performance, so we have not performed much speed opti-
mization. We leave this as a potential future work.

original static geometry our result

input
exemplar

Figure 9: Group motion. We animate a group of seaweeds
via our technique. For clarity, we visualize the exemplar by
both LIC and RG color image encoding the xy motion com-
ponents. Notice the lively motion produced by our method,
even though the exemplars are produced by simple proce-
dures. The input exemplar has size 642 and is applied for all
three orthogonal views. The output field has size 2562 × 64
and is advected by a constant horizontal flow.

5 Limitations and Future Work

There are several limitations of our approach:

• Based on texture synthesis, our technique is applicable only to
detailed texture-like motions, not global coarse scale motion,
which should be produced by prior methods, e.g. simulation,
procedurals, or manual drawings. Our technique should be
deployed only as a complement to these prior techniques for
adding texture details.

• Similar to prior example-based texture synthesis algorithms
[Wei et al. 2009] and especially 3D synthesis from 2D views
[Kopf et al. 2007; Dong et al. 2008], our method will not work
well for all input exemplars.

• Even for inputs that can be well generated by texture syn-
thesis, the result might still not look good if the application
needs to enforce conditions that are incompatible with the in-
put. For example, if the input motion is very compressible
(e.g. contains sources/sinks) whereas the application requires
an incompressible output, our final result might lose resem-
blance to the input.

• In our current implementation, the synthesized detail motion
is simply combined with the low resolution motion without
considering any physical feedback or cross-coupling, even
though we believe it is doable [Narain et al. 2008].

We envision several possible directions for future work:

• Given the recent advances in fast fluid simulation and ren-
dering [Yuksel et al. 2007; Long and Reinhard 2009; van der
Laan et al. 2009], it would be useful to add texture details via
our technique at real-time. We plan to investigate further ac-
celeration and parallelization, e.g. lazy evaluation [Dong et al.
2008] for certain phenomenon such as liquids where the most
interesting effects happen near a narrow interface.

• Even though we have shown only texturing results for Eule-
rian fluid systems, our method is equally applicable to La-
grangian particles. This is analogous to texture synthesis over
regular pixel grids versus irregular mesh vertices [Turk 2001;
Wei and Levoy 2001] or surface samples [Bargteil et al. 2006;
Kwatra et al. 2007].

• Extend our basic algorithm to other quantities that are also
subject to projection or coordinate transformation, such as
agent positions [Kyriakou and Chrysanthou 2008].

Acknowledgements Xin Tong, Xin Sun, Zhong Ren and Kangkang
Yin suggested on improving results quality. Qiming Hou and Minmin Gong
answered questions regarding GPU programming. Su Wang made the sea-
weed model. Kai Xu sketched the object contours in Figure 8. Matt Scott
helped with video dubbing. Bridson et al. [2007] and Kim et al. [2008]
provided source code online. Reviewers provided invaluable feedback. Kun
Zhou is partially supported by the NSF of China (No. 60825201), the 973
Program of China (No. 2009CB320801) and NVIDIA.

References
ASHIKHMIN, M. 2001. Synthesizing natural textures. In SI3D ’01,

217–226.
BARGTEIL, A. W., SIN, F., MICHAELS, J. E., GOKTEKIN, T. G.,

AND O’BRIEN, J. F. 2006. A texture synthesis method for liquid
animations. In SCA ’06, 345–351.

BHAT, K. S., SEITZ, S. M., HODGINS, J. K., AND KHOSLA,
P. K. 2004. Flow-based video synthesis and editing. In SIG-
GRAPH ’04, 360–363.

BRIDSON, R., AND MÜLLER-FISCHER, M. 2007. Fluid simula-
tion: Siggraph 2007 course notes. 1–81.

BRIDSON, R., HOURIHAM, J., AND NORDENSTAM, M. 2007.
Curl-noise for procedural fluid flow. In SIGGRAPH ’07, 46:1–3.

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging vector fields
using line integral convolution. In SIGGRAPH ’93, 263–270.

CHUANG, Y.-Y., GOLDMAN, D. B., ZHENG, K. C., CURLESS,
B., SALESIN, D. H., AND SZELISKI, R. 2005. Animating pic-
tures with stochastic motion textures. In SIGGRAPH ’05, 853–
860.

DONG, Y., LEFEBVRE, S., TONG, X., AND DRETTAKIS, G. 2008.
Lazy solid texture synthesis. In EGSR ’08, 1165–1174.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In SIGGRAPH ’01, 341–346.

FATTAL, R., AND LISCHINSKI, D. 2004. Target-driven smoke
animation. In SIGGRAPH ’04, 441–448.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simu-
lation of smoke. In SIGGRAPH ’01, 15–22.

FIDANER, I. B., 2008. A survey on variational image inpaint-
ing, texture synthesis and image completion. http://www.
scribd.com/doc/3012627/.

FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. In SIGGRAPH ’07, 56:1–
9.

HAN, J., ZHOU, K., WEI, L.-Y., GONG, M., BAO, H., ZHANG,
X., AND GUO, B. 2006. Fast example-based surface texture
synthesis via discrete optimization. Vis. Comput. 22, 9, 918–925.

HONG, J.-M., LEE, H.-Y., YOON, J.-C., AND KIM, C.-H. 2008.
Bubbles alive. In SIGGRAPH ’08, 48:1–4.

KIM, T., THÜREY, N., JAMES, D., AND GROSS, M. 2008.
Wavelet turbulence for fluid simulation. In SIGGRAPH ’08,
50:1–6.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2d exemplars. In SIGGRAPH ’07, 2:1–10.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. In SIG-
GRAPH ’05, 795–802.

KWATRA, V., ADALSTEINSSON, D., KIM, T., KWATRA, N.,
CARLSON, M., AND LIN, M. 2007. Texturing fluids. IEEE
TVCG 13, 5, 939–952.

KYRIAKOU, M., AND CHRYSANTHOU, Y. 2008. Texture synthe-
sis based simulation of secondary agents. In Motion in Games,
1–10.

LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture:
a two-level statistical model for character motion synthesis. In
SIGGRAPH ’02, 465–472.

LIANG, L., LIU, C., XU, Y.-Q., GUO, B., AND SHUM, H.-
Y. 2001. Real-time texture synthesis by patch-based sampling.
ACM TOG 20, 3, 127–150.

LIU, Y., LIN, W.-C., AND HAYS, J. 2004. Near-regular texture
analysis and manipulation. In SIGGRAPH ’04, 368–376.

LONG, B., AND REINHARD, E. 2009. Real-time fluid simulation
using discrete sine/cosine transforms. In SI3D ’09, 99–106.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J.
2004. Fluid control using the adjoint method. In SIGGRAPH
’04, 449–456.

NARAIN, R., KWATRA, V., LEE, H., KIM, T., CARLSON, M.,
AND LIN, M. 2007. Feature-guided dynamic texture synthesis
on continuous flows. In EGSR ’07, 361–370.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and proce-
dural synthesis. In SIGGRAPH Asia ’08, 166:1–8.

OKABE, M., ANJYO, K., IGARASHI, T., AND SEIDEL, H.-P.
2009. Animating pictures of fluid using video examples. In
Eurographics ’09, 677–686.

PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field
design on surfaces. In SIGGRAPH ’07, 55:1–10.

PULLEN, K., AND BREGLER, C. 2002. Motion capture assisted
animation: texturing and synthesis. In SIGGRAPH ’02, 501–
508.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87, 25–34.

SCHECHTER, H., AND BRIDSON, R. 2008. Evolving sub-grid
turbulence for smoke animation. In SCA ’08, 1–7.

STAM, J. 1999. Stable fluids. In SIGGRAPH ’99, 121–128.
TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND

SHUM, H.-Y. 2002. Synthesis of bidirectional texture functions
on arbitrary surfaces. In SIGGRAPH ’02, 665–672.

TONG, Y., LOMBEYDA, S., HIRANI, A. N., AND DESBRUN, M.
2003. Discrete multiscale vector field decomposition. In SIG-
GRAPH ’03, 445–452.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In SIGGRAPH ’06, 1160–1168.

TURK, G. 2001. Texture synthesis on surfaces. In SIGGRAPH ’01,
347–354.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND
LIN, M. 2008. Interactive navigation of multiple agents in
crowded environments. In SI3D ’08, 139–147.

VAN DER LAAN, W. J., GREEN, S., AND SAINZ, M. 2009. Screen
space fluid rendering with curvature flow. In SI3D ’09, 91–98.

WANG, L., YU, Y., ZHOU, K., AND GUO, B. 2009. Example-
based hair geometry synthesis. In SIGGRAPH ’09, 56:1–9.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbi-
trary manifold surfaces. In SIGGRAPH ’01, 355–360.

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. In EG STAR,
93–117.

YUKSEL, C., HOUSE, D. H., AND KEYSER, J. 2007. Wave parti-
cles. In SIGGRAPH ’07, 99:1–8.

Supplementary Materials

A Temporal integration scheme for
smoke density rendering

In the main part of the paper we have described our algorithms for
generating motions. Here, we discuss some related issues for ren-
dering. Even though rendering is neither the main purpose nor the
contribution of this paper, we have to rely on that to show our mo-
tions. For most of the rendering methods such as particles (Fig-
ure 7) or polygonal models (Figure 9), we could generate our re-
sults by direct rendering from the final motion fields F. However,
for smoke rendering, we have to take care of the temporal integra-
tion for the density field for best quality. Details are as follows.

For smoke rendering, a naive temporal integration scheme is to ad-
vect the density fields sequentially according to our generated mo-
tion fields. Given a sequence of our combined motion fields Fi=1:n

where n is the number of frames, the output sequence of density
fields Di=1:n can be generated according to Pseudocode 3.

function Di=0:n← AdvectDensitySequenceNaive(Fi=1:n)
// Fi=1:n: final combined motion fields
D0← empty density field
for i = 1 to n

Di←Di−1

Di← inject density sources
Di← advect Di according to Fi

Di← via the semi-Lagrangian scheme [Stam 1999]
end

Pseudocode 3: Pseudo-code for a naive temporal integration scheme.

However, this naive method does not tend to produce compelling
rendering for a very simple reason. Unlike particles (Figure 7) or
polygonal models (Figure 9) whose motions could be clearly traced
visually by the distinctive geometric elements, the smoke density
could become messed up after sufficient accumulation, particularly
at later frames. This could produce the perception that the output
motion is stochastic, even though in reality it is not. (This prob-
lem is particularly pronounced in 3D when we essentially compos-
ite multiple layers of smoke for rendering.) Intuitive, this problem
could be solved by letting the old density values gradually die out
and disappear, but this is not very easy to implement in an Eulerian
method for storing density values.

To address this issue, we have found a simple heuristic that works
well. Instead of advecting smoke density according to all previous
frames as in Pseudocode 3, we perform the advection across only
a limited number frames so that only sufficiently recent density in-
jections are integrated. Our proposed temporal integration scheme
is shown in Pseudocode 4. We have applied our temporal integra-
tion scheme for all our smoke rendering results in the paper images
and video demo. There, the user simply chooses a parameter m
specifying the number of frames to look back for integration.

Figure 10 compares our results with the naive and our improved
temporal integration scheme. As can be seen, our method produces
better results. When m is too large, our scheme will have simi-
lar problems to the naive method as old density values could mess
up with the rendering quality. However, when m is too small, the
result might also not look good as there is not enough number of
frames for integration to clearly depict the motion trajectory. (This
aspect of our method is analogous to motion blur for the purpose
of emphasizing motion trajectories, but instead of integrating scene
radiance values as in traditional motion blur, we operate on the den-
sity values.) In our experience setting m in the range of 10 ∼ 20

function Di=m:n← AdvectDensitySequenceOurs(Li=1:n, Fi=1:n, m)
// Li=1:n: coarse motion fields
// Fi=1:n: final combined motion fields
// m: number of frames for integration
Oi=0:n← AdvectDensitySequenceNaive(Li=1:n)
for i = m to n

Di←Oi−m

for j = 1 to m
Di← inject density sources
Di← advect Di according to Fi−m+j

Di← via the semi-Lagrangian scheme [Stam 1999]
end

end

Pseudocode 4: Pseudo-code for our temporal integration scheme.

usually produces good results. We wish to emphasize that the pro-
posed temporal integration scheme is for rendering only and affects
only the density field, not our output motion. Thus, the rendering
and the associated parameters can be tuned outside our main algo-
rithm and do not require any re-synthesis of motions.

naive m = 40 m = 20

m = 10 m = 5 m = 2

Figure 10: Temporal integration scheme. Here, we compare the naive
temporal integration scheme with our method under different m values.

B The ω parameters

In our implementation, we treat the weighting ω as a global con-
stant, which can be tuned interactively after synthesis process. In
Figure 4, ω is set to be 15, 50, 40, 30 and 30 respectively, while
30, 40 and 120 for the results in Figure 5. Figure 11 shows final
rendering results under different values for ω while keeping all the
other parameters fixed.

ω = 5 ω = 15 ω = 30

Figure 11: The ω parameter for final combination. Here, we show results
under different constant values for ω.

