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Figure 1: Our shape interpolation can interactively provide a dynamic motion between two poses. Here, the interpolation is demonstrated on an elephant

model, the first pose being with the trunk down (leftmost) and the final pose (the rest state) being with the trunk up in the air (rightmost). Although many

dynamical coefficients can be interactively edited, we show in the top row a direct vibration-free interpolation generated (µ = −1 and η = −1), while the

bottom row demonstrates the effect of adding low frequency to the motion: the trunk and ears now dynamically deform throughout the pose interpolation.

Abstract

In this paper, we introduce an interactive approach to generate
physically-based shape interpolation between two poses. We com-
bine an extension of modal analysis to large deformation and a Pois-
son reconstruction from deformation gradient to offer physically-
plausible dynamics at interactive rates. Our method also provides a
rich set of intuitive editing tools with real-time feedback, including
control over vibration frequencies, amplitudes, and damping of the
resulting interpolation sequence. We demonstrate the versatility of
our approach through a series of complex dynamic shape interpola-
tions.

Keywords: Deformation Gradient, Shape Interpolation, Space-
Time Constraints

1 Introduction

In computer animation of characters or deformable objects, inter-
polating between two given poses (key frames) of a same mesh is
a ubiquitous task. One must not only produce visually-pleasing
deformations between shapes, but also create complex dynamic id-
iosyncracies along the way to increase realism and visual impact.
Offering an easy-to-use, interactive framework for a dynamic shape
interpolation is currently, however, considered fastidious.

1.1 Problem Statement

In this paper, we will deal with 3D objects, each represented as
a simplicial complex (x, C), where C encodes the connectivity of
the tetrahedral mesh and x = (xt

1, · · · , xt
n)t ∈ R3n denotes the

shape, i.e., the set of positions of the mesh vertices. We assume
that an object (r, C), where r is its rest shape, is provided by the
user, along with two poses xA, xB of this 3D object. We wish to
evaluate a physically-based shape deformation x(t), with t∈ [0, T ],
such that: {

x(0) = xA

x(T ) = xB ,

while offering intuitive and interactive control over the dynamics
throughout the interpolation sequence.

1.2 Previous Work

Pose interpolation has been investigated in a number of contexts.
We briefly review the main approaches next.

Purely Geometric Interpolation Shape interpolation methods pro-
vide fast and reasonable inbetweening of two given geometric
shapes, albeit without control over dynamical effects. For example,
“as-rigid-as-possible” shape interpolation establishes compatible
triangulation of 2D or 3D shapes, and creates per-simplex interpo-
lations of the corresponding simplices based on a geometric decom-
position of the transformation matrix into a rotation and a stretching
matrix. The final vertex paths are computed through a global best
fit of these per-simplex transformations [Alexa et al. 2000]. Geo-
metric modeling in “shape space” is another purely geometric ap-
proach to shape interpolation, where a notion of geodesics in shape
space is used to provide an as-isometric-as-possible path between
two poses [Kilian et al. 2007].

Physically-based Interpolation If material properties are known,
one can theoretically solve for the optimal deformation between
two given poses of an elastic object through space-time con-
straints and/or optimal control methods [Witkin and Kass 1988;
Popović et al. 2000]. However, nonlinearities induced by the



laws of physics render these approaches dramatically slower than
purely geometric methods for complex objects (if not intractable).
More recently, an approach based on coarse and meshless mod-
eling [Adams et al. 2008] of deformable shapes was introduced to
produce smooth interpolations at interactive frame rates through a
minimization of rigidity and volume-preservation energies. How-
ever, the results are visually similar to purely geometric meth-
ods, producing little to no vibrations due to the choice of mostly
geometrically-motivated energies. Optimal control was also ex-
plored lately to adjust a motion to a desired trajectory in real-
time[Barbič and Popović 2008], but it did not address the challeng-
ing problem of getting the initial trajectory connecting the input key
frames at interactive rates.

Modal Analysis Although not directly applicable to the prob-
lem of pose interpolation per se, a particularly efficient and nat-
ural way to model physical behavior is through modal analy-
sis [Pentland and Williams 1989; James and Pai 2002], which de-
composes the space of deformations into a set of vibration
modes. Note that linear modal analysis is only physically valid
for small perturbation around the pose over which spectral anal-
ysis of the stiffness and mass matrices is performed. How-
ever, a corotational method (“Modal Warping”) was recently pro-
posed to gracefully extend the original approach to large defor-
mations [Choi and Ko 2005], at the price of an approximate time
integration to compute positions. Unfortunately, modal analysis
has been used primarily for forward physical simulation instead of
interpolation between given key frames. Recent model reduction
methods [Feng et al. 2008; Popa et al. 2009] are purely data-driven,
with no explicit modeling or control of dynamic properties, such as
mass, damping, frequency etc. Closer to our concern is a recent
approach coined Wiggly Splines [Kass and Anderson 2008], which
provides a link between traditional animation splines and vibration
modes. With their framework, assuming that vibration modes of
an object are known (via either procedural or example-based meth-
ods), an animator can design a motion from one pose to another
containing intentional vibrations whose frequency, damping, and
relative phase can be tweaked as desired for cinematic effect. While
this method offers intuitive control of the deformation and its dy-
namics, the linear space of deformations that the authors restrict the
approach to seems mostly amenable, as is, to wiggly motions.

1.3 Rationale and Contributions

We depart from previous methods by proposing an approach that
draws both on physically-based (in particular, through spectral mo-
tion decomposition) and geometric methods (through a geometric
decomposition of eigenmodes). Building upon the equations of lin-
ear elasticity that govern small deformations, our hybrid technique
treats linear deformation modes as tangent vectors in a rotation-
strain space, which describes the deformed object through its de-
formation gradient field represented as the product of a local rota-
tion and a material stretch tensor. Linear combinations of modes in
this new representation produce physically-plausible large elastic
deformations akin to those in Modal Warping. However, our ap-
proach further allows a simple map between the shape change in
time, and analytic solutions of the time evolution of modes. As a
result, we contribute to the problem of elastic shape deformation
by proposing an interactive alternative to Space-Time Constraints
as efficient as purely geometric methods, yet offering a rich set of
controls over the dynamics of interpolation: any pair of poses can
be interpolated, while the frequency, amplitude, and damping of
vibration modes can be intuitively and interactively edited.

1.4 Algorithm Overview

Our algorithm is composed of a pre-computation part and a runtime
computation part.

• Pre-computation: Given a tetrahedron mesh in its rest shape, we

compute the vibration modes W through classical Modal Analy-

sis. Then we convert them into a basis Ŵ in rotation-strain space
(Section 2.2), capable of representing large deformation.

• Runtime computation: Key frames x(0), x(T ) are also con-
verted into rotation-strain space as x̂(0), x̂(T ) (Section 2.1).
Their modal coordinates z(0), z(T ) are then computed through

the relation Ŵz(t) = x̂(t). With (optional) user controls, we
interpolate z(0) and z(T ) according to the free vibration mo-
tion equation with optimal frequency and damping parameters
(Section 2.3), and finally reconstruct the shape through Poisson
reconstruction (Section 2.1).

2 Dynamic Shape Interpolation

Our approach consists in a succession of a few simple steps, some
performed offline before any user-interaction, and some performed
at runtime to allow for interactive design of a dynamic shape inter-
polation between two poses. This section elaborates on each indi-
vidual component one by one, before presenting the overall algo-
rithm in Section 2.4.

2.1 Rotation-Strain Coordinates

To help us deal with large deformation, we introduce rotation-strain
coordinates based on polar decomposition of the deformation gra-
dient of a pose. Given a shape vector x, its deformation gradi-
ent with respect to the rest shape r is computed as m=Gx (one
3x3 matrix per tet), where G is the commonly-used discrete gra-
dient operator corresponding to the continuous gradient operator
∇ with respect to r through linear finite elements [Bathe 1995].
For each tet Ti, we further decompose mi = (Gx)i using po-
lar decomposition [Bertram 2005] into the product of a rotation
Ri and a symmetric tensor Id + Si (where Id is the identity ma-
trix, and Si is the Biot strain tensor [Bertram 2005]). Similarly
to [Der et al. 2006], we finally apply the logarithm function to the
rotation matrix, thus decomposing the deformation gradient mi per
tet into a pair [log(Ri), Si]. The array x̂ := {{log(Ri)}i, {Si}i}
(where the index i goes through every tet) thus encodes the defor-
mation gradient for the whole shape x, and forms what we will
abusively refer to as rotation-strain coordinates for simplicity. We
will denote by T (·) the map between the Euclidean coordinates of
shape x and the rotation-strain coordinates x̂ := T (x). Note that
this map is non-linear, but simple to compute through local polar
decomposition of the deformation gradient. Note also that by defi-
nition, the rest shape r has null rotation-strain coordinates: r̂ = 0.

Finally, one can recover the shape x from the rotation-strain co-
ordinates x̂={{log(Ri)}i, {Si}i} through a pseudo-inverse maps
T −1(x̂), defined through exponentials of matrices and a simple lin-
ear solve:

T −1(x̂)=arg min
x

∑

tet Ti

‖(Gx)i−[exp(log(Ri))(Id+Si)]‖2

subject to:
1

n

n∑

i=1

xi = c,
(1)

where the position constraint is used to remove the translation in-
variance of our representation, and ‖·‖ denotes the Frobenius norm
of matrices. The position c can, e.g., be set to the linear interpola-
tion of the two barycenters of boundary shapes, or set to follow a
parabola if the object is supposed to be free-falling. Note that this
shape recovery from our coordinates is essentially a 3D Poisson
reconstruction, as x̂ derives from the deformation gradient field.
Simply adding the (rescaled) norm of the constraint as a penalty
term to the target function, we solve the unconstrained least square
problem with the package UMFPACK [Davis 2004].



2.2 Non-linear Vibration Modes

As we now detail, the rotation-strain space we defined is a par-
ticularly convenient way to extend linear modal analysis (that we
review briefly first) and produce analytical expressions of large vi-
brations.

2.2.1 Modal Analysis Overview

When considering small deformations around the rest shape, lin-
ear elasticity is a good alternative to the full treatment of nonlinear
dynamics. Equations of motion are written in terms of the displace-
ment field u=x − r between a current shape x and the rest state r
through:

Ku + Du̇ + Mü = 0 (2)

where K is the classical linear finite element stiffness matrix (the
Hessian of the quadratic potential energy of the deformable body),
while M is the lumped mass matrix (see [Bathe 1995] for details).
Matrix D describes the commonly-used Raleigh damping, defined
as D=αKK+αMM , where αK and αM are damping parameters.

Further simplifications can be exploited through Modal Analy-
sis [Pentland and Williams 1989; Hauser et al. 2003], an approach
that makes use of the solutions of the generalized eigenproblem:

Ky = λ2My, (3)

which are vibration (eigen)modes Wi of (eigen)frequency λi rep-
resenting the natural characteristic displacements that the elastic
object can undergo. After assembling the modes in a modal dis-
placement matrix W = (W1 W2 . . . Wn) and the eigenvalues in a
diagonal modal frequency matrix Λ = diag(λ2

1, λ
2
2, . . . , λ

2
n), one

can verify that the modal displacement matrix W diagonalizes both
stiffness and mass matrices:

W tKW = Λ W tMW = Id.

Consequently, if we decompose a time-varying deformation u(t)
into its modal components through

u(t) = Wz(t)

where z(t) stores the modal coordinates (representing the “magni-
tudes” of all the eigenmodes), then Eq. (2) can be written as:

Λ z + (αKΛ + αM Id) ż + z̈ = 0, (4)

Notice that the dynamics of each eigenmode can now be computed
independently since Λ is diagonal. Finally, the shape trajectory x(t)
can easily be recombined by linear superposition of each modal
magnitude through x(t)=r+Wz(t) to get the resulting elastic mo-
tion. For efficiency, one may only keep the modes corresponding to
low frequencies as this drastically reduces the amount of computa-
tions necessary to generate a realistic motion.

2.2.2 Non-linear Geometric Extension of Linear Modes

Modal analysis is particularly attractive as there is a linear shape
reconstruction map between the modal magnitudes z and the cur-
rent shape x as we just showed. Alas, this linearity is also its
biggest limitation: such a fully linear treatment lacks rotation in-
variance (i.e., a finite rotation induces a non-zero strain), leading to
dramatic visual artifacts for large deformation. A simple remedy
resides in the use of a corotational method in computational me-
chanics [de Veubeke 1976]: one can rewrite the displacement field
per tet in a different, rotated frame (traditionally called “corotated
(CR) frame”) to obtain a smaller corotated displacement field uCR.
Modal warping [Choi and Ko 2005] exploits a similar factoring out
of the local rotation to now have a linear relation between uCR and
z. Unfortunately, this treatment still requires finding a displacement
u coherent with uCR, and a history-dependent integration is then

needed to account for the rotations in time. To circumvent this path-
dependency issue, the actual history z(τ) for τ ∈ [0, t] is replaced
by a quasi-static ramping of z(t) to get a plausible u(t). While only
very approximative for arbitrary deformation, this method convinc-
ingly outperforms the fully linear modal analysis without increasing
computational time dramatically [Nealen et al. 2006]—but it is not
appropriate for our purposes since there is no longer a simple map
from the displacement field u to the modal coordinates z indepen-
dent of time.

We propose instead another extension of linear modal analysis,
based on geometric extrapolation. We keep the modal analysis
setup as is and we only modify the final shape reconstruction. That
is, we still consider Eq. (4) as the set of ODEs that the mode coordi-
nates z satisfy; however, we change the reconstruction map from z
to x to incorporate some geometric nonlinearity. To understand our
approach, consider a small deformation x around the rest shape r,
i.e., x=r+u with u being small. Remembering that we refer to ∇
as the spatial gradient with respect to r, we know from conventional
linear elasticity that:

∇x= Id+∇u= Id+
∇u+(∇u)t

2
+
∇u−(∇u)t

2
= Id+ǫ(u)+ω∗(u),

where ǫ(u) is the symmetric strain tensor and ω∗(u) is an antisym-
metric tensor representing a small rotation, similar to the local an-
gular velocity of each element when u is regarded as velocity. We
exploit this physical interpretation of the deformation gradient to
derive a shape X from u through our rotation-strain coordinates:

X := T −1

[
ω∗(u)
ǫ(u)

]
(5)

This last equation defines our shape reconstruction map from u and
the final shape X which obviously differs from the linear-elastic
shape x. Notice that when u is small, linear elasticity, modal warp-
ing, and our approach all coincides, and X ≡ x. However, for
large deformation when the linear elasticity treatment breaks down,
we employ our nonlinear shape reconstruction to get physically-
plausible results. We stress that for large deformation, neither
modal warping nor our rotation-strain extrapolation are physically
“correct”, but they both extend modal analysis with visually pleas-
ing results. As shown next, our method has the distinctive advan-
tage to provide a direct map between modal coordinates z and shape
X .

2.2.3 Linear Relationship in Rotation-Strain Space

Following the conventional modal analysis treatment, we can de-
compose the time-varying displacement u(t) into time-varying
modal components z(t) through u(t)=Wz(t). Noticing here that
ω∗(Wi) and ǫ(Wi) are in fact the rate of change of the rotation-
strain coordinates for a change in the displacement along Wi,

we can assemble a matrix Ŵ = {Ŵ1,Ŵ2,. . . ,Ŵn}, with Ŵi :=
{ω∗(Wi), ǫ(Wi)}, that will satisfy:

Ŵz(t) =

(
ω∗(u(t))
ǫ(u(t))

)
.

With this linear relationship established, we can write our shape
reconstruction map as a linear map in rotation-strain space:

X̂(t) = Ŵz(t). (6)

This expression, equivalent to Eq. (5) (with T applied to both
sides), provides another geometric interpretation of our approx-
imation: we in fact extrapolate modes to large displacements
through an approach similar to “as-rigid-as-possible” shape inter-
polation, where the modal coordinate zi plays the role of time t



Figure 2: Vibration of a rectangular box: 7th mode (left two columns) and

9th mode (right two columns). Compared with linear vibration mode (blue),

our nonlinear extension (yellow) achieves significantly better visual results,

especially under large deformation.

in [Alexa et al. 2000]. Indeed, we take the infinitesimal rotation
ω∗(Wi) dzi and stretch (Id+ǫ(Wi) dzi) induced by each mode i
around the rest position, and extrapolate these deformations for a
larger modal coordinate zi using exp(ω∗(Wi) zi) as the local ro-
tation and Id+ǫ(Wi) zi as the stretch. While this extension from
linear modal analysis does not guarantee exact physical behavior,
it gives plausible shapes and motions at interactive rates (see Fig-
ure 2). Importantly, because we now have a simple, time inde-
pendent map between modal coordinates z and shape X , we can
find a closed-form expression for the time evolution of the shape in
rotation-strain space as we show next.

2.3 Analytical Vibration Magnitudes

Since the time evolution of modal coordinates z satisfies Eq. (4),
closed-form, analytical solutions are easily derived. For each mode
i, the modal coordinate zi follows

z̈i + (αKλ2
i + αM )żi + λ2

izi = 0,

an ODE that can be integrated analytically: each mode i vibrates
exactly as a damped harmonic oscillator:

zi(t) = (Pi cos(ωit) + Qi sin(ωit))e
−αit, (7)

where the (angular) frequency is defined as ωi =
√

λ2
i−α2

i , the

decay rate as αi =(αKλ2
i+αM )/2, and Pi and Qi are two arbitrary

scalar values depicting the initial amplitude and phase of mode i.
(Note that we ignore the over- and critically-damped cases, as they
do not produce the vibration effects that we seek).

Boundary Conditions If the values of the ith mode coordinate
zi(t) are known at time t = 0 and t = T , the values Pi and Qi

are then fully determined:

Pi =zi(0), Qi =
−zi(0) cos(ωiT ) + zi(T )eαiT

sin(ωiT )
. (8)

Adjustments to Bound Derivatives Fixing these two values,
however, leaves no control over the time derivative żi(0) of the
coordinate at time 0:

żi(0)=Qiωi − αizi(0)

This derivative can in fact be quite large, potentially resulting in
strong vibrations early on in the interpolation—note that if we con-
trol this initial derivative, the final time derivative (at time t = T )
will also be small, as we use a damped oscillator on purpose with
αi≥0 to achieve physically plausible energy dissipation over time.
One can tweak ωi and αi in order to make żi(0) as small as possible
while minimizing the change of dynamics through solving:

min
ω′

i
,α′

i
≥0

γz żi(0)2 + γω(ω′
i − ωi)

2 + γα(α′
i − αi)

2

where γz, γω, γα are coefficients to weight the three terms (we use
γz = 0.5, γω = 0.25, γα = 0.25 in our implementation). A direct
Levenberg-Marquart routine (lmdif in minpack) is used to solve
this minimization for each mode.

2.4 Dynamic Shape Interpolation

We now have all the tools to define our dynamic shape interpola-
tion. Given a rest shape r, we first perform the following precom-
putations:

• Assemble a stiffness matrix K, a lumped mass matrix M , and
a deformation gradient matrix G using conventional linear finite
elements (see, for instance, [Bathe 1995]).

• Perform the eigen-analysis of Eq. (3). To increase efficiency of
further computations, keep only the leading m modes (i.e., the
eigenmodes corresponding the m smallest eigenfrequencies λi).

• Convert the non-zero m eigenmodes Wi to the rotation-strain
space through ω∗(Wi) and ǫ(Wi), and assemble them into the

matrix Ŵ as explained in Section 2.2.3.

Now, for any given poses xA and xB sharing the same connectivity
as r, we can compute and modify the dynamic shape interpolation
at runtime by proceeding as follows:

• Using user-defined damping coefficients {αK , αM}, evaluate
the vibration frequencies ωi and decay rates αi for each mode
i≤m as described in Section 2.3.

• To have x(0) = xA and x(T ) = xB , decompose both poses
into their rotation-strain coordinates as explained in Section 2.1,
yielding x̂(0) and x̂(T ) respectively.

• Using the pseudoinverse of Ŵ, obtain the modal coordinates at
time t = 0 and t = T , i.e., we compute z(0) and z(T ) such that:

Ŵz(0) = x̂(0) and Ŵz(T ) = x̂(T ), respectively.
• From this initial and final value of z, adjust the vibration fre-

quency ωi and damping αi slightly (to ω′
i and α′

i, respectively)
to make sure that the interpolation is without obvious artifacts as
detailed in Section 2.3.

• Eq. (7) then provides the analytic expression of z(t) for every
t∈ [0, T ].

• Finally, recover the time-varying shape X(t) defined in Eq. (6)
by performing Poisson reconstructions as detailed in Eq. (1).

This approach is particularly efficient when the number m of modes
is small (we use m = 80 or m = 100 in our examples). The only
artifact we witnessed for small values of m is in the interpolation at
t=0 and t=T : as the frequency domain is truncated for efficiency,
not all specified shapes can be reached in the subspace spanned by

the first m columns of Ŵ . Therefore, after projection through left

multiplication of the pseudoinverse of Ŵ , there may be some non-

zero residual ρA = xA−T (Ŵz(0)) and ρB = xB −T (Ŵz(T )).
We found it sufficient in practice to simply add their linear temporal
interpolation to the reconstructed motion to remove any inaccura-
cies in the matching of intial and final poses. Alternatively, smooth
splines or even Wiggly Splines could be used instead of this simple
linear interpolation of residuals if the number of modes m used is
so low that the residuals are significant.

3 User Controls

Defining initial and final shapes is enough to produce dynamic
shape interpolations through the algorithm we introduced above.
However, we can allow the user to control many aspects of the dy-
namic interpolation with realtime feedback as we now review.

Frequency Editing The eigenfrequencies stored in Λ can be
edited to adjust the vibration period of each mode during the in-
terpolation. For example, setting all the values of Λ close to zero
means that each vibration frequency is very low, and the resulting
interpolation will contain few vibration periods. On the contrary,
one can increase the values of Λ to decrease their respective periods,



Figure 3: User interface: by editing the curves (green for damping control

µ, red for frequency control η, and the rest for γ’s) in the parameter win-

dow (bottom lef), the user can intuitively specify µ, η and γ for each mode,

and monitor z(t) of the selected mode in the other window (top left). Opti-

mization of the parameters for each mode can be done efficiently, enabling

visual feedback at interactive rate.

Figure 4: Various damping effects: we set some non-zero damping coeffi-

cient µ to make the animation calm down gradually (the bottom row). Only

last three frames were shown here. Compared with the damping-free mo-

tion (the top row), although the initial velcoities are similar, the energy de-

cay differs widely. Please refer to the accompanying video for the complete

interpolation.

rendering the interpolation more jiggly. A simplified frequency ed-
itor, where a spline is used to edit the various vibration frequencies,
was a particularly useful editing tool when adjusting results (see
Figure 3). Modifying the dynamic system by non-uniform scaling
of K and M is feasible, however it would require solving a new
eigen problem—thus 1 to 10 seconds of additional computation.

Damping Control The user can specify different damping val-
ues αK and αM to adjust the resulting dynamics of the interpo-
lation. As expected, a large damping will make the vibrations set-
tle down more quickly (Figure 4)—and conversely. Further con-
trol, at the price of deviating a bit from the usual modal analysis
framework, can be achieved by changing the various modal damp-
ing coefficients αi; this trick will help dissipating each modes more
or less depending on the desired cinematic effects. We found that
introducing a coefficient µi ∈ [−1, 1] per mode and substituting

the damping αi of vibration mode i by
√

λi(µi + 1)/2 is par-
ticularly intuitive to adjust the motion. Scaling with a coefficient
ηi ∈ [−1, 1] was also found to work well to adjust the frequencies
λ2

i to λ2
i exp(ηi/(1 − |ηi|)) (see Figure 5).

To achieve direct (vibration-free) shape interpolation, we can sim-
ply set both µi and ηi close to −1 for all modes, thus eliminating

0
t

T

z(t)
damp freq.

µ η

−1.00 −1.00

−1.00 −0.24

−1.00 0.32

−0.41 0.32

0.40 0.32

Figure 5: Various vibrating curves satisfying the same boundary con-

straints.

Figure 6: Only exciting high frequency modes can make the geometric de-

tails (e.g., horn and beard) quiver while keeping the low frequencies (global

motion) smooth.

oscillations as shown in Figure 1(a). Conversely, to enhance vi-
bration effects, we can increase the frequencies of low frequency
modes, which will result in noticeably more jiggly behavior (Fig-
ure 4). High frequency modes can also provide subtle motion de-
tails as demonstrated in Figure 6.

Position and Orientation Constraints Position and orientation
constraints can be added during Poisson reconstruction. They
can be interpolated through shape matching technique or based on
keyframes, and then applied to the Poisson reconstruction for each
frame. For instance, Figure 7 shows an example where position
constraints are used to fix the legs of the elephant throughout shape
interpolation. Better result for position constraints can be achieved
by modifying K and M to make low frequency modes correspond
to low frequency modes of the constrained vibration, however the
computational cost would render the process non-interactive.

Removing Self-Intersections and Adding Keyframes Our re-
sults can contain self-intersections if shapes xA and xB are too
different. Moreover, the user may not be satisfied with what she
obtained using a direct application of our technique. To deal with
these two issues and allow for greater editing capabilities, we let
the user provide keyframes to alter the interpolation interactively.
Given a set of k keyframes {X(ti), i = 1, 2,. . ., k} where the ti’s
represent the times at which the keyframes need to be reached, we
first evaluate the adjustments in rotation and strain needed for our
interpolation to meet the ith keyframe through

∆̂i = T (X(ti)) − T (X(ti)).

We then smoothly blend the keyframes to the shape interpolation
using a modified shape X∗ defined as

X̂∗(t) = X̂(t) +
i=k∑

i=1

φi(t)∆̂i, (9)

where φi(t) is a cubic spline with support in [ti−1, ti+1]. To ensure
smoothness of the modified interpolation, we set the spline deriva-



Figure 7: The feet of the elephant will not stay firmly on the ground if we

only use barycenter position constraint in Poisson reconstruction (top row).

Position constraints (the red dots) can thus be used to control the placement

of the feet.

tives at ti−1, ti and ti+1 to 0. This simple procedure offers addi-
tional control over the results as Figure 8 demonstrates. As shown
in Figure 9, interpolating multiple key frames with Wiggly Splines
is also straightforward. After converting key frames into modal co-
ordinates, we specify internal nodes for the vibration curve of each
mode through Wiggly Splines, which makes the interpolation curve
“as physical as possible” for that mode. Note that velocity con-
straints could also be incorporated. Thus, our approach provides a
simple computation of nonlinear modes a la Wiggly Splines, instead
of going through linear PCA of large deformation simulations.

Quasi-Statics vs. Dynamics While our method provides an intu-
itive way to design dynamic interpolation between shapes, the user
may want to start from an existing, quasi-static shape interpolation
X(t) (obtained through [Sumner and Popović 2004; Xu et al. 2005;
Kilian et al. 2007], or [Adams et al. 2008] for instance) and add os-
cillations to this prescribed shape interpolation. This is achieved by

computing the transform X̂(t) := T (X(t)) of the input shape se-

quence (we will write its coordinates as: X̂={log R(X)i, S(X)i}).
Now the only changes in our dynamic interpolation procedure are

to substitute X̂(t)= (1−γ)X̂+ γŴz(t) (γ is used to determine

Figure 8: Self-intersections (top row) can be resolved by adjusting a frame

(top, center) to be intersection free (bottom), and inserting this adjusted

shape as a key frame along the interpolation. Self-intersections in nearby

frames will then be avoided, while the vibration effects in the whole inter-

polation are kept nearly intact.

the amplitude of the vibrations) for Eq. (6) and to modify the shape
reconstruction to take the given quasi-static path into account by
solving:

arg min
x

‖Gx−[(exp(γ log(Ri)+(1 − γ) log R(X)i)

(Id+ γSi+(1 − γ)S(X)i)]‖2

subject to
1

n

n∑

i=1

xi = c.

With these minor modifications, the main motion (given as a quasi-
static motion that interpolates xA and xB) is enriched with sec-
ondary deformations (based on our extended modal analysis) that
can be controlled with intuitive parameters.

Other Vibration Modes Although we used the vibration modes
resulting from modal analysis in our exposition, any other pro-
cess can be used as long as a series of “characteristic” displace-
ments {Wi} are produced. While the eigenmodes we use can be
tweaked by changing the Lamé coefficients of the elastic poten-
tial (or even by using spatially-varying material coefficients), we
also tried using thin-shell elastic model [Grinspun et al. 2003] as
shown in Figure 10. After calculating the linear vibration modes
and corresponding frequency of the triangle mesh, we evaluate the
deformation gradient by adding a fourth node for each triangle as
proposed in [Sumner and Popović 2004]. As expected, the modes
visually correspond to whatever model we selected, and the non-
linear extension presented in Section 2.2.2 can be performed as is
independently of what was used to generate the basic eigenmodes.

(a) (b) (c) (d)

Figure 10: We can interpolate between triangle meshes as well, using a

deformation model governed by thin-shell elastic energy. The rest shape

is (a). The key frames in this example are (a) and (d). (b) and (c) are

intermediate frames in the animation sequence obtained by our method.

4 Implementation Details and Performance

4.1 Rotation-Strain Coordinates under Excessive Twists

When the start or end shape is extremely twisted, the log(R) of
adjacent elements computed according to Section 2.1 may have op-
posite signs. During the interpolation, such elements will rotate in
almost opposite directions, leading to salient artifacts. To address
this issue and project such poses to their correct rotation-strain co-
ordinates, we traverse the elements in the mesh with a breadth-first
search starting from a seed tet element. When we find an element
with its unit rotation axis differing greatly from those of its (tra-
versed) neighbors (the dot product of the unit rotation axes <−0.5),
we adjust the rotation angle by adding or subtracting the smallest
times of 2π to solve this problem.

4.2 Initial value for Levenberg-Marquart Optimization

We set the initial value to ω′
i = ωi, α

′
i = αi for the Levenberg-

Marquart routine which is used for the optimization problem in-
troduced in Section 2.3. Although the routine may be trapped in
local minima, in most of the cases, the results turn out satisfactory.
In rare cases, it fails to converge or produces very poor result (with
unreasonably large initial velocity). Simply trying several (less than
5 in our experience) different random initial values around ωi and
αi solves this problem.



0s 0.25s 0.75s 1s

Figure 9: Our rotation-strain formulation allows us to use Wiggly Splines to interpolate between four key frames (given at time 0, 0.25, 0.75 and 1 s.), where

both the first and the last pose are the rest state.

4.3 Initial Velocity Reduction

If the first frame xA is very close to the rest shape and the end frame
xB is highly deformed, a large gain of potential energy needs to
happen during the process. Under such circumstances, large damp-
ing often leads to unnatural behavior because of the necessarily
large initial velocity. To avoid high initial kinetic energy, we can
choose a shape xr between xA and xB as the “rest shape” without
doing any additional offline pre-computations by simply offsetting
the rotation-strain coordinates through x̂r = (1 − β)x̂A + βx̂B .

4.4 Performance

Our approach, along with the various user controls described above,
was implemented on a PC with 2.0GHz Intel Xeon CPU and an
NVidia GeForce 8600GT graphics card. Performance statistics for
the various examples shown in our paper can be found in Table 1.
To maintain interactive performance even for huge meshes, we can
also embed the detailed triangle mesh into a simplified tetrahedron
mesh. To generate such a tetrahedron mesh, we first simplify the tri-
angle mesh (e.g., the gargoyle model is simplified to 2000 vertices),
then offset the vertices of the simplified mesh along the normal to
enclose the input mesh. Finally, we use NETGEN (a tetrahedron
generation software [Schöberl 1997]) to tessellate the enlarged sim-
plified mesh into the tetrahedron mesh. The triangle meshes used
as key frames and outputs can be interpolated from the deformed
tetrahedron mesh. A dense tessellation may be required to capture
high frequency vibration modes (e.g. the dragon’s horn and beard).
We can however deal with 17K tet meshes still interactively, which
proved sufficient for the design of dynamical effects in this paper.

5 Conclusion

We presented a shape interpolation algorithm built on decoupled
vibration modes extrapolated in a rotation-strain space to generate
artifact-free large deformation. A simple mapping between shape
space and modal coordinates enables dynamic morphing between
a pair of shapes, while offering interactive control over the various
parameters of the motion.

Limitations of our method include the sacrifice of physical accuracy
for speed, and the restriction to a spectral motion subspace. For
fast-moving skeleton-driven animation, inertial forces may need to
be taken into account in the form of modal forces. It would also be
interesting to explore the extension of the motion subspace through
modal derivatives [Barbič and James 2005].
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box 440 440 1337 50 1s 6ms 2ms 8ms 70

elephant 9k 1636 5442 50 6s 6ms 6ms 33ms 20

armadillo 17k 1628 5249 100 7s 12ms 12ms 30ms 18

dragon 10k 2678 9237 100 11s 12ms 22ms 55ms 10

gargoyle 10k 2957 11054 100 12s 12ms 24ms 62ms 9

hat 1607 4771 3164 50 7s 6ms 9ms 25ms 23

Table 1: Performance statistics for the models presented in this paper; eigen. indicates the time it took to perform eigenanalysis using Matlab, while opt. gives

timings of the Levenberg-Markart optimization.

Figure 12: Synchronized armadillo diving team: adjusting frequency &

damping parameters and adding key frames lead to various flight styles

along the dive of an armadillo. The left column is the result by smooth,

vibration-free interpolation. The middle one shows moderate dynamical ef-

fects. With one intermediate keyframe (the 3rd model from the top of the

right most column), we add a tuck motion to the dive.

FENG, W.-W., KIM, B.-U., AND YU, Y. 2008. Real-time data
driven deformation using kernel canonical correlation analysis.
In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, ACM, New
York, NY, USA, 1–9.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER,
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