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Abstract

We present an out-of-core multigrid for solving the Poisson equa-
tion defined over gigantic meshes. This enables gradient-domain
operations on out-of-core meshes with irregular connectivity. Tak-
ing a streaming mesh and boundary constraints as input, our solver
builds a multigrid hierarchy and refines the multigrid solution pro-
gressively by performing all operations as streaming computations.
A set of rules are carefully designed to make neighboring multigrid
nodes perform tasks cooperatively and efficiently. With a sublinear
memory growth with respect to the number of mesh vertices, our
approach handles meshes with 14M vertices using merely 84MB
of memory, while an equivalent in-core multigrid implementation
fails to fit into 2GB memory space.

Keywords: out-of-core multigrid solver, irregular domain, Pois-
son equation, gradient domain mesh editing

1 Introduction

Many problems in computer graphics can be formulated as solu-
tions to a Poisson equation. Among the various techniques de-
veloped to solve the Poisson equation, multigrid solvers utilize
hierarchies to achieve quick convergence for large systems while
maintaining linear memory requirement [Brandt 1977; Briggs et al.
2000]. On regular domains like images, multigrid solvers can be
adopted without much customization. Shi et al. developed a fast
multigrid algorithm for irregular domains (i.e., meshes) [Shi et al.
2006]. Kazhdan and Hoppe presented a streaming multigrid algo-
rithm for gigapixel (i.e., out-of-core) images [Kazhdan and Hoppe
2008]. While these approaches target irregular connectivity and
out-of-core data respectively, neither of them allows both out-of-
core data and irregular connectivity. In this paper, we propose
an out-of-core multigrid approach for solving the Poisson equation
on gigantic meshes with irregular connectivity. Our approach pro-
cesses signals defined over a mesh in a streaming fashion, allowing
gradient-domain operations on out-of-core meshes.

1.1 Related Work

Our work is mostly related to Poisson-based methods, multigrid
solvers and out-of-core algorithms.

Poisson-Based Methods In image processing, Poisson Image
Editing [Pérez et al. 2003] edits the texture, the illumination and
the color of objects in images by solving the Poisson equation. A
variety of tools are introduced to specify the desired gradient field
of images. In geometry processing, surface and volumetric meshes
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are deformed, smoothed, and merged by manipulating the gradient
field and position constraints of meshes in the Poisson equation [Yu
et al. 2004; Sorkine et al. 2004; Zhou et al. 2005]. Surface recon-
struction from oriented points can also be cast as a Poisson problem
[Kazhdan et al. 2006].

In-Core Multigrid Algorithms Since images have a regular do-
main, multigrid solvers can be directly used for image processing
[Pérez et al. 2003]. Such solvers have also been implemented effi-
ciently on the GPU [McCann and Pollard 2008]. However, meshes
differ from images in that they usually have irregular connectivity.

Shi et al. [2006] developed a fast multigrid algorithm for mesh edit-
ing by customizing prolongation and restriction operators. Their
method assumes that the solution vector (the mesh itself) fits in
memory. Our streaming multigrid algorithm follows their multi-
grid operators (on residual equations), but solves very large Poisson
equations on out-of-core meshes.

Georgii and Westermann [2006] presented a multigrid framework
for constructing implicit, yet interactive solvers for the governing
equation of motion of deformable volumetric bodies. They also as-
sume the volumetric model fits in memory. While this framework
solves the more general elliptic PDEs (e.g., the governing equa-
tion), our approach focuses on the Poisson equation. It is possible
to extend our approach to solve sparse elliptic PDEs in the future.

Out-of-Core Multigrid Algorithm for Regular Domains Kazh-
dan and Hoppe developed a streaming multigrid for gradient
domain-operations on out-of-core images [Kazhdan and Hoppe
2008]. While traditional multigrid implementations perform re-
striction, prolongation, and relaxation iterations as separate passes,
their streaming multigrid performs all operations as streaming com-
putations and groups together as many computations as possible.
Specifically, they create a window spanning entire rows of the im-
age and tall enough to account for all data dependencies. As the
window sweeps down the image, streaming operations are per-
formed on the pixels in the window. Since only the pixels in the
window are resident in memory, gigapixel images can be handled.
Extending Kazhdan and Hoppe’s idea to irregular domains, how-
ever, is highly non-trivial, as discussed in Section 1.2.

Other Out-of-Core Algorithms As dataset sizes increase, many
external memory techniques have been developed for a wide variety
of computer graphics problems. The reader is referred to the survey
by Silva et al. [2002] for early out-of-core algorithms in computer
graphics. More recent algorithms include surface reconstruction
[Bolitho et al. 2007], Delaunay triangulation [Isenburg et al. 2006],
and I/O-efficient file formats [Isenburg et al. 2005]. Among them,
Streaming Meshes [Isenburg et al. 2005] is mostly related to our
work. Our approach takes a streaming mesh as input, and focuses
on solving the Poisson equation on such an out-of-core mesh.

1.2 Approaches and Challenges

We aim to develop a streaming multigrid solver for out-of-core
meshes with irregular connectivity. Following Kazhdan and
Hoppe’s idea, we sweep a window over the mesh while perform-
ing streaming operations on vertices in the window. To develop
such a streaming multigrid solver for streaming meshes, we need
to address two challenges. First, unlike image hierarchies which
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Figure 1: Our streaming multigrid pipeline, showing three different
streaming passes.

are naturally and implicitly defined (e.g., the indices of neighbors,
parent and child nodes can be directly calculated from the node
index), the hierarchies of meshes are very complicated and must
be built explicitly. Hierarchy construction must also be performed
as streaming operations so that the hierarchy can be built progres-
sively during the window sweep. Second, it is unclear in what order
streaming operations should be performed on hierarchies with ir-
regular connectivity. Mechanisms must be developed to help multi-
grid nodes perform streaming operations correctly and efficiently.

1.3 Contributions

We present an out-of-core multigrid for solving the Poisson equa-
tion on out-of-core surface and volume meshes with irregular con-
nectivity. The solver’s significance lies in two aspects. First, it
proves that a multigrid hierarchy can be created as a streaming pro-
cess (or more precisely, in a single streaming pass). It thus en-
ables gradient-domain operations on out-of-core meshes. Second,
it shows that multigrid operations can be carried out on irregular
meshes as streaming computations without too much overhead – it
serves as a means of trading performance for memory when solving
the Poisson equation, e.g., for users who want to reserve memory
for other applications in the operating system.

Our approach has two technical contributions: (1) we convert the
construction process of multigrid hierarchy into a set of stream-
ing computations (i.e., tasks) to allow progressive execution of the
whole solving process, and (2) we define a set of rules that make
neighboring nodes perform tasks cooperatively and efficiently.

To demonstrate the potential of our solver, we use it to perform
detail-preserving mesh deformation on out-of-core data. An inter-
active user interface is designed to allow easy specification of user
constraints and preview of deformation results on a low-resolution
mesh. Our solver then deforms the out-of-core mesh with small
memory requirement in reasonable time. We analyze our solver
and show that it has a sublinear memory growth with respect to the
mesh size. Note that although the deformation of the low-resolution
mesh is performed interactively, the whole deformation of the out-
of-core mesh is not interactive (nor is it expected to be).

2 Out-of-Core Multigrid Solver

We assume that the mesh on which the Poisson equation is defined
is represented as a streaming mesh. Arbitrarily formatted meshes
can be converted into streaming meshes in a preprocess via spectral
sequencing as described in [Isenburg et al. 2005]. The input to our
streaming multigrid is a vertex stream which contains for each ver-
tex its reference position, its position constraint (if the vertex is a
handle), its number of neighbors and the indices of neighbors that
already appeared in the stream. The output of our streaming multi-
grid solver is a vertex stream in the same vertex order, consisting

(a) (b3)(b2)(b1)

(c)

Figure 2: Streaming mesh (a) and the in-memory working set of
multigrid hierarchy (c). A window sweeps over the streaming mesh
(b1-b3), leading to small in-memory working sets. Different colors
in (b1-b3) and (c) show the in-memory working set at different time
in one streaming pass.

of the deformed position of each vertex – the mesh’s vertex and
triangle layout (i.e., order) is left unchanged.

Our general purpose streaming multigrid allows the user to provide
problem-specific residual equations and customized multigrid op-
erators (i.e., relaxation, restriction and prolongation operators). In
other words, the user may formulate these equations and operators
for his/her very own purpose (e.g., for solving harmonic field over
meshes), and use them in Section 2.2.2 and 2.2.3. We assume that
the operators have a local stencil (i.e., the operators only take neigh-
boring vertices as input.), which is usually the case in solving the
Poisson equation.

We use a V-cycle multigrid algorithm with multi-level streaming
(similar to Kazhdan and Hoppe’s pipeline) to solve the Poisson
equation with multiple streaming passes (see Figure 1). Taking a
single V-cycle as an example, the first pass of the streaming data
builds the multigrid hierarchy and performs restriction in all levels
from fine to coarse. Meanwhile, the updated data for each node (i.e.,
neighborhood, current solution, and residual equation) is streamed
back to disk, one stream for each level. After the residual equation
at the coarsest level is solved by a direct solver (e.g., Intel MKL),
a second pass streams node data back from disk and performs pro-
longation in all levels from coarse to fine. For multiple V-cycles,
the prolongation phase of a first V-cycle and the restriction phase of
a second V-cycle can be handled in one streaming pass. Therefore,
k + 1 streaming passes are sufficient for k V-cycles.

From a mesh point of view, each streaming pass can be thought
of as a window sweeping over the mesh, building the in-memory
working set of the out-of-core multigrid hierarchy, and performing
multigrid operations within. See Figure 2 for a visualization.

V-Cycle Multigrid vs. Full Multigrid We choose V-cycle multi-
grid instead of full multigrid because the latter requires additional
streaming passes, which slows down the performance. For exam-
ple, full multigrid on an l-level hierarchy requires l − 1 streaming
passes before the initial solution reaches the finest level. In con-
strast, our heavily relaxed (i.e., n∼10 in our tests) V-cycle multigrid
usually requires only 3 V-cycles (4 passes) to reach a reasonably ac-
curate solution.
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Figure 3: Streaming operations on a corner of a streaming mesh. (a) Mesh connectivity and streaming order. (b) Hierarchy construction:
numbers show the order in which the nodes are created. Nodes #1, #5 and #7 are lifted as soon as all their 1-ring neighbors have been
created. (c) Restriction: numbers show the order in which the nodes create their residual equations. Node #7 creates its residual equation
as soon as all 2-ring neighbors of its child has created theirs. (d) Prolongation: numbers show the order in which the nodes obtain their
correction vector. Nodes #2, #3, #5 and #7 copy correction vector from their parents asap. Other nodes interpolate correction vector from
the parent of their 1-ring neighbors.

2.1 Multigrid Hierarchy

The multigrid hierarchy we build is a set of fine-to-coarse graphs.
The graph at the finest level is the input mesh itself, including all
vertices and edges. During graph coarsening, our algorithm greed-
ily chooses a maximal independent vertex set as the vertices of the
coarser level graph. This is done by sweeping mesh vertices in
streaming order and lifting any unconstrained vertex that does not
have a lifted 1-ring neighbor. Using this algorithm, approximately
one third of the vertices will be lifted at each level. Edges of the
coarser level graph are built by connecting each pair of lifted nodes
that are 2-ring neighbors at the finer level. Please see Figure 3 for
an illustration and Section 2.2.1 for detailed streaming construction
process.

2.2 Tasks & Rules

The whole multigrid solving process is carried out by several
streaming passes over the data. Each pass goes through different
phases: hierarchy construction, restriction, and prolongation. Each
of these phases is further divided into several tasks, which will be
detailed shortly.

For each task, we define (1) operations that a node should perform,
(2) data dependencies that a node must respect before performing
the operations, and (3) conditions that must be satisfied to com-
plete the task. In order to make neighboring nodes perform tasks
cooperatively and efficiently, nodes must notify each other of their
progress. We further define for each task (4) which nodes to notify
when a node has performed its operations, and (5) which nodes to
notify when a node has just completed a task. We summarize the
above definitions in Table 1. See Figure 3 for a vivid illustration of
how tasks are performed on a typical piece of mesh.

Given the defined conditions, a straightforward implementation
might repeatedly check for nodes that can start performing or have
just completed a task. In our tests we found that such brute-force
checking is very slow. We manage the checking process as a simple
count-and-compare mechanism. Specifically, each task defines its
start condition target (SCT) and complete condition target (CCT),
which describe the number of conditions that must be satisfied be-
fore the task can be started and completed, respectively. Corre-
spondingly, two counters, the start condition counter (SCC) and
the complete condition counter (CCC), keep the number of already-
satisfied conditions. Whenever a node is notified to start a task, it
increases its SCC. A node actually starts a task only if the increased
SCCmatches its SCT. The same applies when a node is notified to
complete a task. See Table 1 for appropriate values of SCT and
CCT for each task.

We call a lifted node child, and its corresponding node in the coarser
level parent. Unless mentioned otherwise, by neighbor we mean 1-
ring neighbor. We call the neighbors that come before a vertex in
streaming mesh the vertex’s preceding neighbors, and the neighbors
that come after a vertex the vertex’s succeeding neighbors. For
clarity, we assume that the multigrid operators have 1-ring stencil.
Rules and counters for multigrid operators with larger stencils can
be derived similarly.

2.2.1 Hierarchy Construction

When a node is created, it must build the multigrid hierarchy around
it before any multigrid operations can be performed. This is done
in two steps: first the node discovers all its neighbors (registration),
and then the node decides whether it can be lifted to a coarser level
(lifting).

Note that the hierarchy building process is done only once, during
the very first streaming pass. Later in that pass the connectivity
information is streamed to disk. Successive passes stream the same
information back from disk, so no more hierarchy construction is
needed.

Registration When created, a node only knows its preceding
neighbors and the number of its neighbors. Moreover, its preceding
neighbors are unaware of the node’s existence. In registration, a
node notifies its preceding neighbors of its presence.

A node can start registration as soon as it has been created in
memory (i.e., SCT = 0). To complete registration, a node must
know all its neighbors. For a node at the finest level, the num-
ber of neighbors is directly obtained from the streaming mesh data
(i.e., CCT = |succeeding neighbors|). However, for a node
at a coarse level, determining the number of neighbors is more
complex. First, the 2-ring neighbors of its child should decide
their lift/retain status. Then, the number of neighbors is com-
puted by counting the number of lifted nodes in its child’s 2-
ring neighborhood (i.e., CCT = |child′s 2-ring neighbors| +
|child′s lifted 2-ring neighbors|).

To review, after a node is created in memory it notifies its preceding
neighbors first. Then, if it is in a coarse level, it awaits notification
from all 2-ring neighbors of its child (which means they have all
decided their lift/retain status). Finally, it waits for notification from
all its succeeding neighbors (which means they have been loaded
into memory).

Lifting After a node has discovered all its neighbors, it may de-
cide whether it can be lifted. According to the sweeping algo-



Phase Task
Start Condition Target Complete Condition Target Post-Operation On-Complete

(SCT) (CCT) Notification Notification

Registration 0

in finest level:

proceding neighbors

|succeeding neighbors|
Hierarchy in other levels:

Construction |child′s 2-ring neighbors|+
|child′s lifted 2-ring neighbors|

Lifting |preceding neighbors| |neighbors| succeeding neighbors
neighbors + parents

of 2-ring neighbors

Restriction

Building |child′s 2-ring neighbors|
0 preceding neighbors

Equation +1
Pre-Solve

|neighbors| n neighbors
parent of 2-ring

Relaxation neighbors

Prolongation

Correction lifted: 1
0 preceding neighbors

Interpolation retained: |lifted neighbors|
Post-Solve

|neighbors| n neighbors
child + child’s

Relaxation neighbors

Table 1: A summary of the phases, the tasks, and the rules. The rules define for each task: the number of conditions that must be satisfied
before starting and completing the task, and the nodes that must be notified after the operations in the task have been performed and the task
is completed.

rithm described in Section 2.1, a node waits until all its preced-
ing neighbors have decided their lift/retain status (i.e., SCT =
|preceding neighbors|).

A node is lifted if and only if it is unconstrained and it does not have
a lifted preceding neighbor. Otherwise, it is retained. If a node is
lifted, a new node is created to be its parent and is added into the
coarser level. After a node determines its lift/retain status, it notifies
its succeeding neighbors, so that they may start the lifting task.

A node completes lifting whenever all its 1-ring neighbors have de-
cided their lift/retain status (i.e., CCT = |neighbors|), and notifies
its neighbors so they may complete lifting. This complete condition
implies that the node knows its 2-ring neighbors, its child, and its
parent (if lifted). On completing lifting, a node notifies all parent of
its 2-ring neighbors, so that they may complete registration.

2.2.2 Restriction

After the local structure of the multigrid hierarchy has been built,
restriction formulates the residual equations at all levels from fine
to coarse. Each node first builds the residual equation, then relaxes
the current solution n times. After this phase, a direct solver is used
to solve for the correction vector at the coarsest level.

Building Equation For a node at the finest level, the residual
equation can be built directly (i.e., SCT = 0). For a node at a
coarse level, the residual equation is built according to the restric-
tion operator [Shi et al. 2006]. Note that its child and the child’s
2-ring neighbors must have relaxed their current solutions (i.e.,
SCT = |child′s 2-ring neighbors| + 1).

A node is free to complete Building Equation (i.e., CCT = 0). But
before that, it must notify its preceding neighbors so that they can
start relaxing their current solutions.

Pre-Solve Relaxation Before the residual equation is restricted
to a coarser level, a node smoothes its current solution n times.
Our relaxation scheme is inspired by Kazhdan and Hoppe’s idea of
temporally blocked relaxation. In our case, a node is allowed to
perform the kth relaxation if and only if all its preceding neighbors
have been relaxed k+1 times and all its succeeding neighbors have
been relaxed k times (i.e., SCT = |neighbors|).

After a node’s SCC matches SCT, it performs relaxation once (say,
the kth relaxation), and notifies its neighbors so they may perform
their next round of pre-solve relaxation. The node’s CCC is in-
creased to track the number of relaxations performed. If the node

Function StreamingPass(Stream s)

// Initialize a ready queue

q.Clear()

// Read through the whole stream

while s.HasNextNode() do

// Fetch the next node and put it into the queue

n = s.ReadNextNode()

CheckNode(n)

// Flush the ready queue

while q.ContainsNodes() do

// Fetch a node and let it perform its task

n = q.PopFront()

n.PerformCurrentTask()

n.NotifyNeighborhood()

// Check each notified node

for each m just notified by n do

CheckNode(m)

Function CheckNode(Node n)

// Check if the node can advance to its next task.

if n.ACC == n.ACT then

n.AdvanceToNextTask()

n.NotifyNeighborhood()

for each m just notified by n do

CheckNode(m)

// Check if the node can start its current task.

if n.SCC == n.SCT then

q.PushBack(n)

Figure 4: Pseudocode of a streaming pass.

has relaxed n times, it has completed pre-solve relaxation (i.e.,
CCT = n). Otherwise, its SCC is reset to 0, so that the node
waits for its 1-ring neighbors to relax once before performing the
(k + 1)th relaxation. Nodes at the coarsest level do not need to
perform pre-solve relaxation.

After a node completes pre-solve relaxation, it must notify all par-
ent of its 2-ring neighbors, so they may build their residual equa-
tions.

2.2.3 Prolongation

After a direct solver solves for the correction vector at the coars-
est level, prolongation corrects current solutions at all levels from
coarse to fine. Each node first corrects the current solution accord-
ing to the correction vectors interpolated from a coarser level, and
then smooths the current solution n times.



Member Type Size (Bytes)

# neighbors unsigned byte 1

neighbors pointer[# neighbors] 4|neighbors|
# preceding neighbors unsigned byte 1

mask for lifted neighbors unsigned int 4

child pointer 4

parent pointer 4

vl
i double[3] 24

wl
ji double[# neighbors] 8|neighbors|

gl
ji double[# neighbors][3] 24|neighbors|

αl
i double 8

ξl
i double[3] 24

current task unsigned byte 1

SCT, SCC, CCT, CCC unsigned byte[4] 4

smooth count unsigned byte 1

Total 74 + 36|neighbors|

Table 2: A node’s data structure.

Correction Interpolation The correction vector at the coarsest
level is solved using a linear system solver, so it does not require
any interpolation. In other levels, lifted and retained nodes inter-
polate correction from a coarser level using different prolongation
operators [Shi et al. 2006].

A lifted node directly copies the correction vector from its parent as
soon as its parent has done relaxation n times (SCT = 1). On the
other hand, a retained node interpolates the correction vector from
the parent of its lifted neighbors (SCT = |lifted neighbors|).

After a node obtains its correction vector, it corrects its current so-
lution and completes the task (i.e., CCT = 0). Before relaxing its
current solution, the node notifies its preceding neighbors so that
preceding neighbors can start relaxing their current solutions.

Post-Solve Relaxation Post-solve relaxation is nearly the same
as pre-solve relaxation. The only difference is the nodes that must
be notified after relaxation completes. A node in the finest level
notifies no one. A node in a coarse level notifies its child and the
child’s neighbors, so they may start prolongation.

We outline the workflow of a streaming pass in Figure 4. A ready
queue is created to hold all the nodes that can start performing their
current tasks. Nodes are streamed from disk and are checked if they
are ready. Meanwhile, the ready queue is flushed by repeatedly
taking out a node, letting the node perform its task, and putting in
any node that becomes ready. When the ready queue is emptied,
either successive node data needs to be streamed from disk, or, in
the case that the streaming data comes to the end, a whole streaming
pass completes.

3 Application: Out-of-Core Detail-Preserving

Mesh Deformation

In this section, we demonstrate our streaming multigrid technique
by implementing a detail-preserving mesh deformation algorithm
for out-of-core data. We follow the formulation of mesh deforma-
tion, residual equations and multigrid operators described in [Shi
et al. 2006]. Please refer to Appendix for the detailed formulation
and equations.

Interactive User Interface Although the whole deformation is
not interactive, we still provide the user with interactive feedback
by deforming a coarse mesh for preview purpose. The coarse mesh
is an approximation of the out-of-core mesh. Specifically, the out-
of-core mesh is first down-sampled to a mesh with 5M vertices by
remeshing (e.g., Poisson Surface Reconstruction [Kazhdan et al.

2006]). The resulting mesh is further simplified into a mesh with
10K vertices via mesh simplification (e.g., QSlim [Garland and
Heckbert 1997]).

The user directly manipulates the coarse mesh, and an in-core
multigrid algorithm [Shi et al. 2006] solves for the deformed coarse
mesh interactively. Once the user is satisfied with the deformation
preview, the user-specified deformation constraint on each coarse
mesh vertex is automatically projected onto the nearest out-of-core
mesh vertex, and the streaming multigrid solver is launched to solve
for the final out-of-core deformation result.

3.1 Implementation Details

Memory Management Our implementation manages memory
usage itself to avoid system overhead when frequently allocating
and releasing small pieces of memory for each node. Specifically,
a memory pool is pre-allocated for the efficient creation of nodes in
all hierarchy levels. Note that nodes do not have to be released –
the memory pool just marks the corresponding memory block free.
The size of the memory pool can either be user-defined (when the
user can afford a block of memory that is large enough), or au-
tomatically increased as needed (if the user wants to use as little
memory as possible). In the latter case, performance is affected
slightly when the memory pool size is increased due to the system
memory allocation.

Data Structure of A Node A node contains all information nec-
essary for its computation, including information about its neigh-
bors, its numeric variables and its task (see Table 2). The data
members are compactly stored, and minimal data types (i.e., byte)
are used wherever possible. Notice that the pointers to 1-ring neigh-
bors are only stored once in the array ‘neighbors’, with preceding
neighbors stored at the beginning followed by succeeding neigh-
bors. The first succeeding neighbor can be found by the member
‘# preceding neighbors’, which contains the number of preceding
neighbors. The member ‘mask for lifted neighbors’ is a bit-wise
mask indicating all lifted neighbors.

3.2 Performance and Scalability Analysis

To analyze the performance and scalability of our solver, we com-
pare to an in-core multigrid implementation which keep everything
in memory and perform multigrid operations as separate passes.
See Table 3 for timing and memory statistics.

Performance Our streaming multigrid algorithm is roughly two
to three times slower than the in-core algorithm. The performance
drop mainly comes from the overhead of streaming tasks like no-
tifications and neighborhood checks in order to start or complete
tasks. For both the hierarchy construction and multigrid operations
(e.g., relaxation, prolongation and restriction), the overhead takes
as much time as the numerical computations. This is the price for
handling out-of-core data. Note that doing pre-fetching and lazy-
write-backs could keep the I/O non-blocking, thus could further re-
duce the running time of our method (allowing the implementation
to hide I/O behind computation so that the running time is just the
sum of hierarchy construction and multigrid operation times).

Unlike Kazhdan and Hoppe’s algorithm [2008], which is I/O-
bound, our streaming multigrid algorithm is CPU-bound. There
are two reasons. First, more CPU instructions are performed in
our algorithm (i.e., building hierarchy and the overhead mentioned
above) relative to the amount of I/O. Second, although input stream-
ing meshes have spatially coherent vertex layout, the irregular con-
nectivity of meshes leads to disordered memory access patterns,
causing more cache misses than images. Specifically, the 1-ring



Model # Vert. / # Levels Solver I/O Time H.C. Time M.O. Time Total Time Peak # Nodes Memory

Bunny 35,947 / 4
Streaming 1.08s 1.00s 3.48s 5.56s 15.2K 13MB

In-Core 0.65s 1.58s 2.23s 23MB

Elephant 42,321 / 4
Streaming 1.28s 1.15s 4.03s 6.45s 14.6K 14MB

In-Core 0.74s 1.83s 2.56s 27MB

Armadillo 172,974 / 5
Streaming 5.26s 2.59s 16.67s 24.52s 33.2K 20MB

In-Core 1.13s 8.02s 9.14s 82MB

Dragon 437,645 / 6
Streaming 13.33s 6.42s 40.59s 60.35s 53.6K 25MB

In-Core 3.07s 20.19s 23.26s 191MB

Lucy 936,440 / 7
Streaming 28.57s 11.76s 86.04s 126.37s 66.4K 27MB

In-Core 4.68s 42.61s 47.29s 397MB

Lucy 14,027,872 / 9
Streaming 428.08s 153.71s 1306.90s 1888.69s 257.0K 84MB

In-Core N/A† N/A† N/A† >2GB

XYZ RGB
14,438,400 / 9

Streaming 440.60s 156.50s 1355.39s 1952.50s 239.7K 79MB

Dragon In-Core N/A† N/A† N/A† >2GB

Table 3: Timing and memory statistics of our streaming multigrid and an in-core multigrid, including the time spent for disk I/O, hierarchy
construction (H.C.) and multigrid operations (M.O.), and the memory used. All timings were measured on a 2.0GHz Intel Xeon workstation
with 2GB RAM. †Obtaining statistics on large meshes was impractical because the in-core multigrid requires more than 2GB memory.

neighborhood of a pixel forms a constant number (three) of con-
tinuous blocks in memory. However, 1-ring neighborhood a vertex
may form variable numbers of continuous blocks in memory, caus-
ing more cache misses. We do not have an accurate analysis of
the optimal patch size. For a more detailed discussion, the reader is
referred to [Sander et al. 2007], which deals with a similar problem.

Scalability With our compact per-node data storage, large
meshes with tens of millions of vertices can be deformed with a
memory cost affordable by common PCs. For example, deforming
the Lucy model (14,027,872 vertices) requires only 84MB of mem-
ory. As shown in Table 3, the memory requirement of our approach

grows sublinearly (e.g., O(N
1
2 )) for surface mesh with respect to

the number of mesh vertices. This is easy to understand by imagin-
ing a sphere - the perimeter of a sphere (the size of the in-memory
working set) is linear with respect to the radius, while the area (the
total number of vertices) is quadratic. For volumetric meshes, al-
though not as efficient as for surface meshes, the memory growth

of our approach still stays sublinear (e.g., O(N
2
3 )).

Limitations Since we assume that the multigrid operators have
local stencils, our approach obviously cannot solve dense equa-
tions. Even for multigrid operators with k-ring stencils (k > 1),
calculation time will increase quadratically. Additionally, unlike
algorithms that use a fixed-size memory buffer, the memory re-
quirement of our approach grows as the number of mesh vertices
increases. It is possible that an extremely large mesh could require
more than 2GB of memory in order to be handled, which makes
our approach inapplicable. Fortunately, based on our statistics we
estimate that such a surface mesh will contain about 500T vertices,
far beyond the size of out-of-core data available today.

4 Conclusions

We have presented an out-of-core multigrid for solving the Poisson
equation defined over streaming meshes. This enables gradient-
domain operations on out-of-core meshes with irregular connectiv-
ity. Our key contribution is the streaming multigrid solver for arbi-
trary meshes, which accepts user-defined problem-specific residual
equations and multigrid operators. To make the whole streaming
process possible, all operations (including hierarchy construction)
are converted into streaming computations. A set of rules have been
designed to make neighboring nodes perform different streaming
computations cooperatively and efficiently. To this end, our ap-
proach builds a multigrid hierarchy and refines the multigrid solu-

tion progressively, with a sublinear memory growth with respect to
the number of mesh vertices. We have demonstrated the potential
of our approach by performing detail-preserving mesh deformation
for out-of-core data.

Discussion We assume that arbitrarily formatted meshes are first
converted into streaming meshes in a preprocess via spectral se-
quencing as described in [Isenburg et al. 2005]. We choose spectral
sequencing for its smallest front width, because the goal of our pa-
per is to provide a means of trading performance for memory – to
handle meshes as large as possible in limited memory space with
reasonable performance overhead. Other streaming orders (i.e.,
breath-first) can be used but might require more (approximately
1.5x) memory space despite possible (approximately 2x) perfor-
mance improvement. While the number of cores, and thus the com-
putational power of today’s CPUs, is increasing at a rate governed
by the Moore’s Law, the memory size is increasing at a much lower
rate. Therefore, minimizing memory consumption is at least as im-
portant as maximizing performance in algorithm design.

Future Work It would be interesting to extend our approach to
solving sparse elliptic PDEs (e.g., the governing equations for
physically-based simulation of elastic deformable models, which
are usually large in order to simulate physical effects in fine details).
If deformable models are adaptively simulated, mesh topology and
multigrid hierarchy change between frames. It will be a challenge
to properly transfer data (defined on a time-varying domain) be-
tween frames via streaming I/O. It is also interesting to investigate
the parallelization of our approach to exploit the processing power
of many-core CPUs and GPUs. One challenge might be that there
is not enough parallelism in the streaming operations. For exam-
ple, the relaxation operation of all nodes are executed sequentially
in our approach. A possible solution is to perform relaxation by
patch, one thread for each patch, with nodes on patch boundaries
relaxed at the end.
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Figure 5: Lucy, with her pets around looking at the torch in her hand. (The Lucy model is down-sampled for rendering purpose.)
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Appendix: Formulation of Mesh Deformation

and Multigrid Operators

Our formulation of mesh deformation follows the two-step method
described in [Shi et al. 2006]. The first step computes the harmonic
field [Zayer et al. 2005] of the user-specified rotations and scal-
ings and modifies the Laplacian coordinates of the mesh vertices
accordingly. The second step solves the deformed mesh according
to the modified Laplacian coordinates and user-specified position
constraints. Both steps are formulated as solutions of a Poisson
equation. Specifically, the per-vertex signal x̄i (i.e., rotation, scal-
ing, and vertex position) is governed by

∑

j∈N(i)\C(i)

wji(x̄i − x̄j − dji)+
∑

j∈C(i)

wji(x̄i − cj − dji) = 0

(1)
where N(i) is vertex i’s 1-ring neighborhood, C(i) is vertex i’s
constrained 1-ring neighbors, dji is the expected difference be-
tween vertex i and j, and ci is a boundary condition.

When an initial solution xi is present, a residual equation can be
derived by replacing x̄i with the initial solution plus a correction
x̄i = xi + ∆i,

∑

j∈N(i)\C(i)

wji(∆i − ∆j − gji) + αi∆i = ξi (2)

where gji = dji − (xi − xj) is the error in the current solution,
αi =

∑

j∈C(i) wji, and ξi =
∑

j∈C(i) wji(dji − (xi − cj)) is a

boundary condition. The following are the relaxation, prolongation
and restriction operators derived from the residual equation.

The relaxation operator simply smoothes the current solution of
a vertex according to its 1-ring neighbors

xi =

∑

j∈N(i)\C(i) wji(xj + dji) +
∑

j∈C(i) wji(cj + dji)
∑

j∈N(i) wji

. (3)

The prolongation operator interpolates the correction ∆l
i from

level l + 1. For a lifted node, the correction is copied directly from
its corresponding node in level l + 1

∆l
i = ∆l+1

i . (4)

For a retained node, the correction is smoothly interpolated from its
lifted 1-ring neighbors

∆l
i =

∑

j∈Rl(i) wl
ji(∆

l+1
j + gl

ji) + ξl
i

∑

j∈Rl(i) wl
ji + αl

i

(5)

where Rl(i) is vertex i’s lifted 1-ring neighbors in level l.

The restriction operator builds the residual equation in level l+
1 according to level l. We want the solution of the newly built
residual equation in level l + 1 to satisfy the residual equation in
level l as much as possible. Therefore, we take the residual equation
in level l and substitute all unknowns in level l into unknowns in
level l +1 using the aforementioned prolongation operators Eq. (4)
and Eq. (5)

∑

j∈Kl(i)

w
l
ji



∆
l+1
i −

∑

k∈Rl(j)
wl

kj(∆
l+1
k

+ g
l
kj) + ξl

j
∑

k∈Rl(j)
wl

kj
+ αl

j

− g
l
ji



+

α
l
i∆

l+1
i − ξ

l
i = 0

(6)

where Kl(i) is vertex i’s retained 1-ring neighbors in level l. Re-
arranging the above equation into the format of Eq. (2) yields the
following restriction operators

w
l+1
ki =

∑

j∈Kl(i)
⋂

Kl(k)

wl
kjw

l
ji

Zl
j

, (7)

g
l+1
ki =

1

wl+1
ki

∑

j∈Kl(i)
⋂

Kl(k)

wl
kjw

l
ji(g

l
kj + gl

ji)

Zl
j

, (8)

α
l+1
i = α

l
i +

∑

j∈Kl(i)

wl
jiα

l
j

Zl
j

, (9)

ξ
l+1
i = ξ

l
i +

∑

j∈Kl(i)

wl
ji(ξ

l
j + αl

jg
l
ji)

Zl
j

. (10)

where Zl
i =

∑

s∈Rl(i) wl
si + αl

i.


