
Pacific Graphics 2009
S. Lee, D. Lischinski, and Y. Yu
(Guest Editors)

Volume 28 (2009), Number 7

Fast, Sub-pixel Antialiased Shadow Maps

Minghao Pan, Rui Wang†, Weifeng Chen, Kun Zhou, Hujun Bao

State Key Lab of CAD&CG, Zhejiang University

(a) Conventional shadow maps (b) Alias-free shadow maps, 49 FPS (c) Our method at 32× antialising, 41 FPS

Figure 1: Shadows comparison with image resolution at 800×600.

Abstract
Solving aliasing artifacts is an essential problem in shadow mapping approaches. Many works have been pro-
posed, however, most of them focused on removing the texel-level aliasing that results from the limited resolution
of shadow maps. Little work has been done to solve the pixel-level shadow aliasing that is produced by the rasteri-
zation on the screen plane. In this paper, we propose a fast, sub-pixel antialiased shadowing algorithm to solve the
pixel aliasing problem. Our work is based on the alias-free shadow maps, which is capable of computing accurate
per-pixel shadow, and only incurs little cost to extend to sub-pixel accuracy. Instead of direct supersampling the
screen space, we take facets to approximate pixels in shadow testing. The shadowed area of one facet is rapidly
evaluated by projecting blocker geometry onto a supersampled 2D occlusion mask with bitmasks fusion. It pro-
vides a sub-pixel occlusion sampling so as to capture fine shadow details and features. Furthermore, we introduce
the silhouette mask map that limits visibility evaluation to pixels only on the silhouette, which greatly reduces the
computation cost. Our algorithm runs entirely on the GPU, achieving real-time performance and is an order of
magnitude faster than the brute-force supersampling method to produce comparable 32× antialiased shadows.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Color, shading, shadow-
ing, and texture

1. Introduction

Shadows are an essential element in computer-generated
scenes. Shadow maps [Wil78], one of the most popular
shadow algorithms, has been widely used due to its sim-
plicity and efficiency. The standard shadow maps algorithm
takes a two-pass process that first rasterizes the scene from
light source to generate a depth map and then rasterizes the
screen-space to take per-pixel shadow test. However, with
simplified shadow computation, these two rasterizations pro-
duce severe aliasing artifacts along shadow boundaries. Re-
spectively, aliasing artifacts can be classified into two levels:

† Corresponding author: Rui Wang, rwang@cad.zju.edu.cn

• Texel-level aliasing. Due to the limited resolution of the
shadow map, the depth values stored in it are merely
rough approximations of the scene. If the map’s resolu-
tion is insufficient, the resulting shadow will have jagged
boundaries as they are occluded by the discretized texels
but not the original geometry. (Figure 1(a))

• Pixel-level aliasing. On the other side, rasterization on
the screen plane also produces aliasing artifacts. As only a
single sample is taken from each pixel for shadow test, the
shadow state of the pixel would either be 0, as shadowed
or 1, as lit. (Figure 1(b)). This kind of aliasing is more
obvious under dynamic lights or the shadow boundary is
almost parallel to the axes.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



Minghao Pan & Rui Wang & Weifeng Chen & Kun Zhou & Hujun Bao / Fast, Sub-pixel Antialiased Shadow Maps

Many algorithms have been proposed to solve the texel-
level aliasing problem. Some of them follow the rasterization
way but increase the texel-pixel match sophistically, such as
the warping methods that transform the shadow map to an-
other space for a better match between the light and cam-
era sampling rates [SD02, WSP04, LGMM07, BLM08] or
partitioning methods that partition the depth map into mul-
tiple parts adapted to local sampling rate [ZSXL06, CG04,
LTYM06, FFB01, GW07, LSO07]. Some other methods by-
pass the hardware rasterization process to avoid the alias-
ing problem. They either use software rendering [AL04] or
require new hardware features [JLBM05]. Recently, along
with the advances in graphic hardware, [SEA08] presented
a GPU-based method of aliasing-free shadow maps, which
guarantees that the visibility is accurately computed per
screen-space pixel.

On the other side, little work has been done to produce
sub-pixel antialiased shadows. The brute-force approach is
to supersample the screen space directly and take shadow
test for each sub-pixel sample. However, for high-quality
shadows, such as 64× or 128× sub-pixel antialiased shad-
ows, mass of samples will lead to poor performance and can-
not run in real-time.

In this paper, we propose a fast, sub-pixel antialiased
shadowing algorithm to solve the pixel aliasing problem
(Figure 1(c)). Our work is based on the alias-free shadow
maps and extends it to achieve sub-pixel accuracy. Instead
of direct supersampling the screen space, our algorithm uses
facets in 3D space to approximate pixels. In shadow testing,
blockers potentially shadowing facets are projected onto the
screen plane and the occluded area of each pixel is evaluated
by 2D occlusion masks fusion from a lookup table. Further-
more, by introducing the silhouette mask map, which lim-
its visibility evaluation to pixels only on the silhouette, the
computation cost is greatly reduced. Compared with stan-
dard alias-free shadow maps, our work incurs little cost and
provides a sub-pixel occlusion sampling capable of captur-
ing fine shadow features and details. We demonstrate that
our approach is capable of running in real-time and can be
an order of magnitude faster than the brute-force supersam-
pling method to produce comparable sub-pixel antialiased
shadows.

2. Related work

Ever since shadow maps was proposed, many works have
been proposed to solve the problem of aliasing. However,
most of them only focus on removing the texel-level aliasing.

As insufficient resolution of light view rasterization is the
fundamental reason that produces texel-level aliasing, it is
common to increase the texel-pixel match to solve the alias-
ing problem. The mostly used approaches include warp-
ing and partitioning. [SD02] introduced perspective shadow
maps (PSMs) method that tries to remove perspective alias-
ing by using camera’s perspective transform. PSMs was later

refined by [MT04, WSP04, CG04] using other transforms.
However, these reparameterization methods only deal with
perspective aliasing. In addition, as only a global warp-
ing function is applied, complex scenes with large depth
range may not be well-handled. Logarithmic shadow maps
[LGMM07, BLM08] produces lower aliasing errors but re-
quires modification to the current hardware. Partitioning al-
gorithms divide the shadow map into different parts, each
of which is expected to match the local sampling rate better
in the camera view. [LTYM06] partitioned the shadow map
according to frustum faces and [ZSXL06] did it in a similar
way but along the z-axis of the frustum. Adaptive shadow
maps (ASM) [FFB01] tries to solve the aliasing problem by
providing additional local shadow maps in high aliasing er-
ror regions. It was later improved with a hardware imple-
mentation [LSO07]. Usually, partitioning methods require
multiple rendering passes hence are relatively slow.

[SJW07] employed a history buffer to reuse information
of previous frames, which potentially increased the resolu-
tion of the shadow map. From the observation that aliasing
artifacts only exist along shadow boundary, shadow silhou-
ette maps [SCH03] approximates the silhouette using piece-
wise linear segments. However, this method is well-limited
by the shadow map resolution and may miss small features
due to the fact that each texel contains at most one shadow
edge point. [CD04] also utilizes this property by presenting
a hybrid algorithm that performs shadow-volume computa-
tion at boundary pixels and uses a conventional shadow map
elsewhere, therefore combining the strengths of both algo-
rithms. [BWG03] also extracts silhouette edge to produce
alias-free shadow boundary in their edge-and-point render-
ing technique.

Alias-free shadow maps [AL04] and irregular z-buffer
[JLBM05] completely avoid aliasing in rasterization by pro-
jecting view-pixels to the light view and rasterizing the scene
to these points instead of regular grids. However, such ras-
terization is not supported by current hardware and is inef-
ficient. Along with the advances in hardware, [SEA08] pre-
sented a GPU-based alias-free shadow map method and ex-
tended it to soft shadows. Although it is guaranteed that the
visibility is accurately computed per screen-space pixel, the
technique still suffers from pixel-level aliasing for hard shad-
ows.

To remove pixel-level aliasing, currently the only way
is the supersampling method that rasterizes and shades
much more samples than the standard resolution hence is
rather slow. Multisampling [gls02] accelerates this process
by shading only once for multiple samples in the same pixel.
Therefore, it is not capable of the antialiased shadow compu-
tation, which requires explicit shadow test for each sample.

Instead of computing accurate per-pixel shadows, some
other approaches take filtering strategies to solve the jagged
boundary aliasing. Early work by [RSC87] known as per-
centage closer filtering filters depth maps to get blurred

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Minghao Pan & Rui Wang & Weifeng Chen & Kun Zhou & Hujun Bao / Fast, Sub-pixel Antialiased Shadow Maps

Scene

Light view 

depth map

Pixel facets

Silhouette 

mask map

Triangle-texel 

pairs

Pixel-texel pairs

Non-silhouette 

pixels

Shadow of non-

silhouette texels

Software 

Rasterization

Silhouette extraction 

and rasterization

Shadow of 

silhouette texels

Visibility 

evaluation

Depth test

Software 

Rasterization

Final shadow

Figure 2: Pipeline of our algorithm. Boxes denote data and ellipses denote algorithms.

np
T

Fscreen

light view

object

F

T

F

T

bitmasks

occlusion mask

(a) (b) (c)

Figure 3: (a) Facet approximation of a pixel. (b) A facet and
a triangle’s projections on the light view. (c) Their projec-
tions on the screen. Gray dots represent occluded samples.

shadow boundaries. Recently, [AMS∗07, AMB∗08] use
other filterable approximated shadow test functions for anti-
aliasing shadow boundary. However, these maps are still in a
discretized representation and may not be able to produce a
satisfying result under low resolution. These methods focus
on producing shadows that are plausible but not accurate.

3. Algorithm

3.1. Overview

In alias-free shadow maps or irregular z-buffer methods, pix-
els are regarded as 3D points to perform shadow test. Conse-
quently, the shadow state of the pixel would either be 0 or 1,
which can miss fine shadow details or features. To achieve
sub-pixel accuracy, it is necessary to record the part of oc-
cluded area within a pixel, which is not easy as the under-
lying geometry covered by a pixel can be very complex. In
our method, we use a 3D element, the facet, to approximate
each pixel. A facet is a small piece of quadrangle on the
tangent plane determined by a pixel’s position and normal
(Figure 3(a)). Under this approximation, for each blocker
that potentially occludes a facet (Figure 3(b)), the occluded
area is computed by projecting the blocker to the tangent
plane and then to the screen plane. On the screen plane, oc-
clusion masks that consists of multiple samples are used to
record the sub-pixel shadows. These multiple samples are
uniformly distributed in pixel’s grid and represented by a
bitmask such that each set bit indicates one sample’s shadow
state. The area a blocker triangle occludes inside each pixel
is the intersection of several half-planes (section 3.4). For
a discrete set of half-planes, the value of bits in the occlu-

(a) (b)
Figure 4: (a) The silhouette mask map marks the silhouette
texels (in red) which intersects at least one silhouette edge.
(b) The summed area table built from the map.

sion mask can be precomputed and stored in a lookup table.
Accordingly, the occlusion mask of a pixel with respect to
a blocker triangle is obtained by combining the bitmasks of
the triangle’s edges via bit operations (Figure 3(c)).

From the fact that aliasing only exists along shadow
boundaries, we do not need to compute sub-pixel antialiased
shadows for pixels not on the shadow boundaries. This leads
to a compact representation, the silhouette mask map, which
marks silhouette texels, texels that potentially has shadow
boundary in it (Figure 4(a)). Pixels not intersecting any sil-
houette texels are either completely shadowed or lit and
can be easily determined via a conventional depth test. This
greatly reduces the computational cost.

Figure 2 shows the main building blocks of our algorithm.
The main framework follows the shadow map that render the
scene from light source and camera view respectively but in-
volves more stages and multiple passes to extract silhouette,
rasterize triangles and facets, and evaluate visibility.

We start by rendering a conventional depth map from
the light source and creating the silhouette mask map (sec-
tion 3.2). Next, the scene is rendered from the camera view
and a facet is created regarding each pixel’s position and
normal. Facets are projected to light view and classified
into non-silhouette and silhouette ones. If a facet is non-
silhouette, shadow of the corresponding pixel can be conser-
vatively computed by the depth test of standard shadow map-
ping. Otherwise, the pixel is identified as a silhouette pixel
and its facet’s projection on the light view will be raster-
ized using a software rasterization algorithm and stored with
intersected texels as pixel-texel pairs (PT-pair) for further

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Minghao Pan & Rui Wang & Weifeng Chen & Kun Zhou & Hujun Bao / Fast, Sub-pixel Antialiased Shadow Maps

processing. To find triangles that potentially occlude these
facets, all triangles are rasterized from the light view and
then stored with intersected texels as triangle-texel pairs (TT-
pair)(section 3.3). The TT-pairs and the PT-pairs are com-
bined to calculate the occlusion ratio of pixels. For each tri-
angle in a TT-pair, it will be projected to the screen plane
and tested with pixels in the corresponding PT-pair. The oc-
clusion mask lookup table makes the shadow test fast and
with sub-pixel antialiasing (section 3.4). Finally, shadow of
non-silhouette and silhouette pixels are combined to get the
final shadowed image.

3.2. Constructing the silhouette mask map

To find silhouette texels, all silhouette edges must be iden-
tified in the scene. An edge is a silhouette if one of its two
adjacent faces is a front face with respect to the light source
and the other is a back face. Edges with only one adjacent
face are also considered silhouette in the case of meshes with
boundary. The silhouette edges are then rasterized to the sil-
houette mask map.

It is a common case that silhouette edges passing through
a texel are all occluded by other triangles closer to the light
source, resulting in an unnecessary silhouette texel. To re-
move such texels, the depth of the rasterized silhouette edges
are compared with the depth map in each texel. If the depth
value stored in the depth map is smaller, then all silhou-
ette edges in this texel are occluded by triangles closer to
the light source and the texel can be safely marked as non-
silhouette.

3.3. Creating pixel-texel pairs and triangle-texel pairs

Removing non-silhouette pixels. To identify non-silhouette
facets, all facets are projected to the light view. If there are
no silhouette texels in the bounding rectangle of a projected
facet, it is not on the silhouette. To speed up texel traversal,
a summered area table(SAT) is built in a pre-pass from the
silhouette mask map (Figure 4(b)). Only 4 references from
the SAT are required to count the number of silhouette texels
in a rectangle.

Software rasterization. Silhouette facets are rasterized to
create the PT-pairs. As several projected facets may intersect
with the same texel, we have to rasterize them in software to
avoid collision. A three pass rasterization algorithm is em-
ployed here:

In the first pass, Ns, the number of silhouette texels in the
bounding rectangle of a projected facet is counted using the
SAT. The array of Ns is scanned to get the list size needed
for a global list to store all the PT-pairs. Then texels in the
bounding rectangle of each projected facet is traversed and
a PT-pair is created for each silhouette texel and written to
the global list. The write offset of each projected facet in the
global array is exactly the corresponding scanned sum at the
index of that facet.

(a) (b)
Figure 5: A convex primitive and a texel in its bounding rect-
angle only intersect if their projections on any axis perpen-
dicular to one of the primitive’s edges overlap.

In the second pass, all PT-pairs are processed in parallel
to test if the projected facet actually intersects that texel. The
separating axis theorem states that two convex polygons do
not intersect only if their projection onto an axis perpendic-
ular to one of their edges do not overlap. In our case, since
the texel is in the bounding box of the projected facet, the
projections onto axes perpendicular to the texel’s edges are
guaranteed to overlap. Thus, only the projected facet’s edges
are to be considered (Figure 5). Furthermore, projection of
the facet to these axes can be precomputed once for each
facet and used for testing all the texels in its bounding rect-
angle.

In the last pass, the global list is compacted to remove
PT-pairs that fail the intersection test. The list is then sorted
according to the texel index and scanned to get the offset to
each texel’s local list.

The triangles are rasterized analogously except that TT-
pairs are created for texels with a non-empty local PT-pair
list rather than silhouette texels.

3.4. Visibility evaluation

With TT-pairs and PT-pairs created, we parallelize the com-
putation in TT-pairs. For the texel in a TT-pair, pixels in the
corresponding local PT-pair list are traversed and shadow
tests are carried out between the identified triangles and pix-
els. Our shadow test takes a two-step projection. The triangle
is projected to the pixel’s tangent plane (the plane of pixel’s
facet) while the occluded area is determined, then the oc-
cluded area is projected to the screen plane to recover the
view samples it covers.

The occluded area may have different shapes based on the
relative position of the tangent plane, the triangle and the
light source. Nevertheless, this area is always bounded by
the projected edges of the triangle, plus the intersection line
of the triangle and the tangent plane if they intersect. There-
fore, we represent a triangle using three half-planes defined
by its edges. If the triangle and the facet intersects, an extra
half-plane defined by the intersection line is added. The pro-
jection of these half-planes onto the tangent plane are also
half-planes, forming the occluded area. (Figure 6).

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Minghao Pan & Rui Wang & Weifeng Chen & Kun Zhou & Hujun Bao / Fast, Sub-pixel Antialiased Shadow Maps

0
p

1
p

2
p

A

B

C

'
A

'
B

'
C

l

0
H

1
H

(a) (b)

Figure 6: (a) A blocker is represented as a set of half-
planes (blue arrows). Projections of these half-planes on
the tangent plane (purple arrows) bound the occluded area.
(b) Projection of a half-plane H0 is still a half-plane H1
whose boundary is determined by projecting two points on
the boundary of H0. To determine which side of the bound-
ary is H1, an arbitrary point in H0 is selected. If the point
lies between the projection center and the light source (B in
figure) or is on the other side of the tangent plane (A in fig-
ure), then its projection is in H1, otherwise (above line l as
in figure, e.g. C), it is not in H1.

Next, the occluded area is projected to the camera view
similarly to obtain a group of half-planes on the screen plane.
Similar to [ED07], we precompute a lookup table which
takes a half-plane as input and returns a bit pattern corre-
sponding to the covered view samples. We bitwise AND the
patterns of all half-planes and then bitwise OR the result to
the pixel’s occlusion mask to be accumulated with occlusion
from other triangles.

Validity mask. As the facet determined by the pixel cen-
ter is used to approximate the geometry within the entire
pixel, sometimes shadow will be over- or under-estimated.
This happens when the facet intersects nearby triangles and
causes light leaking or incorrect self-shadow (Figure 7(a)).
To compensate for such incorrect estimation, another bit-
mask, named validity mask, which has the same bit depth as
occlusion mask, is linked with each pixel. Each bit of valid-
ity mask corresponds to the validity of one view sample and
denotes whether the sample should be counted in occlusion
ratio calculation.

For each triangle intersecting a facet, the intersection line
is calculated and projected to the view plane. Unlike half-
planes, the line does not have explicit information indicating
which of its two sides should be marked as invalid. However,
with the fact that pixels are only rasterized if a triangle cov-
ers its center, it is guaranteed that a view sample at the pixel
center should always be valid. Therefore, if the returned bit-
mask from the lookup table marks the pixel center as invalid,
the bitmask is negated using bitwise NOT before being bit-
wise ANDed to the pixel’s validity mask. This method re-
quires a sample to be placed at the center of a pixel in all
sample configurations.

The validity mask calculation can be easily integrated into
the visibility evaluation function. The intersection line of tri-

(a)

0
F

1
F

2
F

3
F

0
p

1
p

2
p

occlusion mask
validity mask

occlusion mask
validity mask

occlusion mask
validity mask

(b)

Figure 7: (a). Light leaking and incorrect self-shadow prob-
lem. (b) We introduce validity mask to eliminate invalid sam-
ples.

angle and facet is already computed during occluded area
calculation, therefore the only additional operation required
is bitwise NOT and AND of the validity mask. Occlusion ra-
tio calculation function should also be modified. Instead of
counting the number of 1 bits in occlusion mask and dividing
it with the total number of view samples in one pixel, occlu-
sion mask is first bitwise ANDed with the validity mask and
occlusion ratio is computed by dividing the number of 1 bits
in the ANDed result with the number of 1 bits in the validity
mask.

By using the validity mask, sample rate in some pixels are
reduced as some view samples do not contribute to the oc-
clusion ratio. It is worth mentioning that at convex locations
(e.g. p2 in Figure 7), we do not mask the samples in the pink
area since the intersecting face (F2 in figure) is farther from
the light source than the facet. This makes our method retain
full sample rate for convex objects.

4. Implementation

We built an implementation of our algorithm on the GPU
using CUDA and shaders.

First, a conventional depth map is rendered from the light
view. Next, silhouette edges are identified using CUDA and
then rasterized to obtain the silhouette mask map. For each
silhouette edge, we conservatively draw a line with width
of 2 and two points with size of 3 at the edge’s endpoints.
In the fragment shader, an intersection test is used to check
whether the edge intersects the fragment. It also compares
the fragment’s depth with the value stored in the depth map
to eliminate hidden silhouette. A SAT is then built from the
silhouette mask map [MSO07].

Next, the scene from the camera view is rasterized to get
the position and normal of each pixel for constructing the
facets. To prevent normal interpolation which causes incor-
rect facet orientation, face normals are used instead of vertex
normals.

Non-silhouette facets are identified and removed in the
way described in section 3.3. The rest facets are then raster-
ized using the software rasterization algorithm implemented

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Minghao Pan & Rui Wang & Weifeng Chen & Kun Zhou & Hujun Bao / Fast, Sub-pixel Antialiased Shadow Maps

Scene Figure Triangles
Silhouette Silhouette Visibility

Sample rate
Create silhouette Create PT-pairs Shadow

FPS
texels pixels evaluations mask map and TT-pairs calculation

Windmill Fig. 1(c) 40712 9365 36113 1295363 32 2.3ms 6.5ms 13.2ms 41
Bunny Fig. 8(a) 69473 3254 18523 609901 32 2.1ms 6.3ms 6.8ms 61
Pterosaur Fig. 10(a) 10000 1828 12991 329740 32 1.6ms 4.7ms 4.3ms 80
Cage Fig. 11(d) 59780 37646 53576 2915995 128 4.2ms 10.0ms 18.9ms 28
Bicycle Fig. 12(a) 30922 4277 40954 2996154 32 2.1ms 6.6ms 15.3ms 47
Horse Fig. 12(b) 77500 4317 26202 2138740 32 2.3ms 6.5ms 17.3ms 32
Plant Fig. 12(c) 20926 15263 59692 1446287 32 2.1ms 6.2ms 10.8ms 50

Table 1: Statistics of the test scenes.

in CUDA to create the PT-pair lists. The algorithm primitives
used, including scan, sort and compact, are implemented ac-
cording to [SHZO07]. Triangles are also rasterized similarly
to create the TT-pairs for texels with a non-empty local PT-
pair list.

All TT-pairs are processed in parallel. For each TT-pair,
we traverse all pixels in the PT-pair list of that texel. Visi-
bility is evaluated for each pixel against the triangle as de-
scribed in section 3.4. Occlusion mask and visibility mask of
that pixel is updated using the atomic instructions in CUDA.

PT-lists of different texels may have distinct lengths.
When TT-pairs are processed in parallel for visibility evalu-
ation, each of them can traverse a different number of pixels,
which may result in bad multi-thread load balance. To solve
this problem, TT-pairs are sorted according to the length of
PT-pair list of that texel beforehand so that nearby pairs (par-
ticularly pairs for the same warp of CUDA threads) traverse
a similar number of pixels.

Finally, occlusion ratio of each pixel is calculated based
on the occlusion mask and visibility mask. These values are
applied to the scene image with standard shading.

5. Results and discussion

We tested our algorithm with several scenes. The tests are
run on a PC with 3.0G Hz CPU, 2.0G host memory and an
NVIDIA GTX280 video card with 1.0G video memory.

Table 1 lists the statistics and performance of the test
scenes. All the scenes are rendered with an image size of
800×600. Depth maps and shadow silhouette mask maps
have 512×512 resolution.

The fourth and fifth columns of the table list the num-
ber of silhouette texels and silhouette pixels in each scene
respectively. The sixth column is the number of visibility
evaluations, i.e. the total number of occlusion tests between
triangles and pixels. The next three columns list time spent
every frame for each stage of the algorithm, corresponding
to section 3.2, 3.3 and 3.4 respectively.

5.1. Discussion

Quality. Our algorithm evaluates shadow on the facet of
each pixel instead of the complex underlying geometry,
therefore may introduce error along the shadow boundary.

(a) (b)

Figure 8: (a) Shadows on the bunny model at 32× sam-
ple rate. (b) Zoomed in views (left column), reference image
from a ray-tracer (middle column), 10× error image (right
column).

Figure 8 compares our result with a ray-traced ground truth
image both at 32× sample rate. The difference between the
two images is visually small (Figure 8(b)). For shadow cast
on a plane, our facet approximation is accurate and produces
the same result as the reference image. However, if a pixel
covers the geometry with varying depths, errors will be pro-
duced. This is a limitation of our algorithm and is due to the
fact that we only rasterize the scene at standard resolution
therefore the geometric variation within a pixel is missed.
Nevertheless, this error is limited to the sub-pixel level and
does not cause noticeable artifacts.

The validity mask we introduced may reduce sample rate
in concave locations as stated in section 3.4. Figure 9 shows
shadow cast on a bumpy receiver. The receiver is generated
from a height field and is densely tesselated that the projec-
tion area of most triangles are less than one pixel and even
triangles nearest to the camera cover no more than 4×4 pix-
els. The scene is rendered at 32× sample rate and the average
number of valid samples per pixel on the shadow boundary is
18.5. However, in the extreme case that the scene is a highly
tesselated concave object, our method will fall back to point
sampling.

Scalability. Supersampling requires every sample to un-
dergo a shadow test, thus the computation time grows almost
linearly to the sample rate. On the contrary, our algorithm
evaluates visibility only once for each pixel therefore has
a significantly better scalability. For example, to accommo-
date twice the number of samples, our algorithm only need
to double the bit depth of the masks, resulting in twice the
size of the precomputed lookup table which is very small,

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Minghao Pan & Rui Wang & Weifeng Chen & Kun Zhou & Hujun Bao / Fast, Sub-pixel Antialiased Shadow Maps

(a) No texture (b) With Texture

Figure 9: Shadow cast on a bumpy receiver.

(a)

0

50

100

150

200

250

300

350

400

0 16 32 48 64 80 96 112 128

ti
m

e
 (

m
s)

sub-pixel samples

Alias-free shadow maps + supersampling
Ours

(b)

Figure 10: Performance comparison between our method
and alias-free shadow map + supersampling on the
pterosaur scene at different sample rates. Performance of
supersampling at 128× is not listed because it requires a
framebuffer larger than the limit of hardware.

and twice the number of bitwise operations which are rather
fast. For comparison we implemented the GPU-based alias-
free shadow maps according to [SEA08] and added super-
sampling functionality. Figure 10 compares its performance
with ours under different sample rates.

Figure 11 compares shadows of the cage scene under dif-
ferent sample rates. Shadows of the cage lines are missed
even at 8× samples. The 32× image captures almost all
these features. Due to the good scalability of our algorithm,
an 128× sample rate is able to be rendered in real-time and
delivers smoother shadows.

Since the sub-pixel shadow calculation only affects the
silhouette, our algorithm grows linearly to the number of tri-
angles on the silhouette rather than the total number of tri-
angles in the scene. In some extreme cases, such as scenes
with a large number of silhouettes, the silhouette mask map
may not improve any performance but rather require some
extra time to build it. However, this overhead is quite small
compared to the total time.

Custom sample configuration and filters. Currently, a
grid configuration for sample positions is used in all the
scenes. Nevertheless, as the only assumption our method
makes is placing one sample at the center of a pixel, it is
compatible with other patterns like rotated grid. For a new
sample pattern, only the lookup table needs to be recom-
puted to reflect the change of sample positions and the ren-
dering pipeline is kept unchanged. However, patterns with
dynamic positions like Poisson disc or jittered grid are not

supported as the lookup table could not be computed on-the-
fly.

Besides box filter, which averages all samples in each
pixel, it is also interesting to use other filters like Gaussian.
This requires modifying the function that calculates occlu-
sion ratio so that instead of counting the number of 1 bits,
a weighted sum is computed. Although this may deliver a
better quality, it will be much slower especially when the
support of the filter is large, in which case masks of nearby
pixels must be accessed. Therefore, we are leaving it as fu-
ture work.

6. Conclusion

In this paper, we have presented a versatile solution that
enables sub-pixel shadow antialiasing. Our algorithm
outperforms supersampling by an order of magnitude
while keeping similar shadow quality. The algorithm can
be completely implemented in latest graphics hardware,
yielding real-time performance. We have demonstrated that
our approach is robust and efficient for a variety of complex
scenes and is capable of capturing fine shadow features
and details that can not be sampled by alias-free shadow
maps. An interesting future work would be extending this
framework to shading antialiasing.

Acknowledgements

This project is supported by the 973 program of China
(No. 2009CB320803).

References
[AL04] AILA T., LAINE S.: Alias-free shadow maps. In Pro-

ceedings of the Eurographics Symposium on Rendering (2004),
pp. 161–166.

[AMB∗08] ANNEN T., MERTENS T., BEKAERT P., SEIDEL H.-
P., KAUTZ J.: Exponential shadow maps. In Proceedings of
Graphics Interface (May 2008).

[AMS∗07] ANNEN T., MERTENS T., SEIDEL H.-P., FLERACK-
ERS E., KAUTZ J.: Convolution shadow maps. In Rendering
Techniques 2007: Eurographics Symposium on Rendering (June
2007).

[BLM08] BRANDON LLOYD NAGA GOVINDARAJU C. Q.
S. M., MANOCHA D.: Logarithmic perspective shadow maps.
ACM Transactions on Graphics 27, 4 (Oct. 2008).

[BWG03] BALA K., WALTER B., GREENBERG D. P.: Combin-
ing edges and points for interactive high-quality rendering. ACM
Trans. Graph. 22, 3 (2003), 631–640.

[CD04] CHAN E., DURAND F.: An efficient hybrid shadow ren-
dering algorithm. In Proceedings of the Eurographics Symposium
on Rendering (2004), Eurographics Association, pp. 185–195.

[CG04] CHONG H., GORTLER S. J.: A lixel for every pixel.
In Proceedings of the Eurographics Symposium on Rendering
(2004).

[ED07] EISEMANN E., DÉCORET X.: Visibility sampling on gpu
and applications. Computer Graphics Forum (Proceedings of Eu-
rographics 2007) 26, 3 (2007).

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Minghao Pan & Rui Wang & Weifeng Chen & Kun Zhou & Hujun Bao / Fast, Sub-pixel Antialiased Shadow Maps

(a) (b) (c) (d)

Figure 11: Shadow of the cage scene at different sample rates. (a) 1×, (b) 8×, (c) 32×, (d) 128×.

(a) (b) (c)

Figure 12: Shadows on the (a) bicycle, (b) horse and (c) plant.

[FFB01] FERNANDO R., FERNANDEZ S., BALA K.: Adaptive
shadow maps. In Proceedings of SIGGRAPH ’01 (2001), ACM
SIGGRAPH, pp. 387–390.

[gls02] Gl_arb_multisample, 2002. http://www.opengl.org/
registry/specs/ARB/multisample.txt.

[GW07] GIEGL M., WIMMER M.: Queried virtual shadow maps.
In Proceedings of ACM SIGGRAPH 2007 Symposium on Inter-
active 3D Graphics and Games (Apr. 2007), pp. 65–72.

[JLBM05] JOHNSON G. S., LEE J., BURNS C. A., MARK
W. R.: The irregular z-buffer: Hardware acceleration for irregu-
lar data structures. ACM Trans. Graph. 24, 4 (2005), 1462–1482.

[LGMM07] LLOYD D. B., GOVINDARAJU N. K., MOLNAR
S. E., MANOCHA D.: Practical logarithmic rasterization for low-
error shadow maps. In GH ’07: Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hard-
ware (2007), pp. 17–24.

[LSO07] LEFOHN A. E., SENGUPTA S., OWENS J. D.:
Resolution-matched shadow maps. ACM Transactions on Graph-
ics 26, 4 (Oct. 2007), 20:1–20:17.

[LTYM06] LLOYD B., TUFT D., YOON S., MANOCHA D.:
Warping and partitioning for low error shadow maps. In Proceed-
ings of the Eurographics Symposium on Rendering 2006 (2006),
Eurographics Association, pp. 215–226.

[MSO07] MARK H., SHUBHABRATA S., OWENS J. D.: Parallel
prefix sum (scan) with cuda. GPU Gems 3 (2007).

[MT04] MARTIN T., TAN T.: Anti-aliasing and continuity with
trapezoidal shadow maps. In Proceedings of the 2nd EG Sympo-
sium on Rendering (2004).

[RSC87] REEVES W. T., SALESIN D., COOK R. L.: Rendering
antialiased shadows with depth maps. Computer Graphics Pro-
ceedings of SIGGRAPH ’87 (1987), 283–291.

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.: Shadow
silhouette maps. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2003) (2003).

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective shadow
maps. In Proceedings of ACM SIGGRAPH (July 2002), ACM
SIGGRAPH, pp. 557 – 562.

[SEA08] SINTORN E., EISEMANN E., ASSARSSON U.: Sample
based visibility for soft shadows using alias-free shadow maps.
Computer Graphics Forum (Proceedings of the Eurographics
Symposium on Rendering 2008) 27, 4 (2008), 1285–1292.

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS
J. D.: Scan primitives for gpu computing. In Graphics Hard-
ware 2007 (Aug. 2007), ACM, pp. 97–106.

[SJW07] SCHERZER D., JESCHKE S., WIMMER M.: Pixel-
correct shadow maps with temporal reprojection and shadow test
confidence. In Rendering Techniques 2007 (Proceedings Euro-
graphics Symposium on Rendering) (June 2007), pp. 45–50.

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. Computer Graphics (SIGGRAPH ’78 Proceedings) 12, 3
(Aug. 1978), 270–274.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER W.:
Light space perspective shadow maps. In Rendering Tech-
niques 2004 (Proceedings Eurographics Symposium on Render-
ing) (June 2004).

[ZSXL06] ZHANG F., SUN H., XU L., LUN L. K.: Parallel-
split shadow maps for large-scale virtual environments. In VRCIA
’06: Proceedings of the 2006 ACM international conference on
Virtual reality continuum and its applications (2006).

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

http://www.opengl.org/registry/specs/ARB/multisample.txt

