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Abstract—We present the first parallel surface reconstruction
algorithm that runs entirely on the GPU. Like existing implicit
surface reconstruction methods, our algorithm first builds an
octree for the given set of oriented points, then computes
an implicit function over the space of the octree, and finally
extracts an isosurface as a water-tight triangle mesh. A key
component of our algorithm is a novel technique for octree
construction on the GPU. This technique builds octrees in
real-time and uses level-order traversals to exploit the fine-
grained parallelism of the GPU. Moreover, the technique
produces octrees that provide fast access to the neighborhood
information of each octree node, which is critical for fast
GPU surface reconstruction. With an octree so constructed,
our GPU algorithm performs Poisson surface reconstruction,
which produces high quality surfaces through a global opti-
mization. Given a set of 500K points, our algorithm runs at
the rate of about five frames per second, which is over two
orders of magnitude faster than previous CPU algorithms. To
demonstrate the potential of our algorithm, we propose a user-
guided surface reconstruction technique which reduces the
topological ambiguity and improves reconstruction results for
imperfect scan data. We also show how to use our algorithm
to perform on-the-fly conversion from dynamic point clouds to
surfaces as well as to reconstruct fluid surfaces for real-time
fluid simulation.

Index Terms—surface reconstruction, octree, programable
graphics unit, marching cubes

I. Introduction

Surface reconstruction from point clouds has been an active

research area in computer graphics. This reconstruction

approach is widely used for fitting 3D scanned data, filling

holes on surfaces, and remeshing existing surfaces. So

far, surface reconstruction has been regarded as an off-

line process. Although there exist a number of algorithms

capable of producing high-quality surfaces, none of these

can achieve interactive performance.

In this paper we present a parallel surface reconstruction

algorithm that runs entirely on the GPU. Following previous

implicit surface reconstruction methods, our algorithm first

builds an octree for the given set of oriented points,

then computes an implicit function over the space of the

octree, and finally extracts an isosurface as a water-tight

triangle mesh using the marching cubes. Unlike previous

methods which all run on CPUs, our algorithm performs

all computation on the GPU and capitalizes on modern

GPUs’ massively parallel architecture. Given a set of 500K

points, our algorithm runs at the rate of about five frames

per second. This is over two orders of magnitude faster than

previous CPU algorithms.

Fig. 1: Our GPU reconstruction algorithm can generate

high quality surfaces with fine details from noisy real-world

scans. The algorithm runs at interactive frame rates. Top

left: Bunny, 350K points, 5.2 fps. Top right: Dragon, 1500K

points, 1.3 fps. Bottom left: Buddha, 640K points, 4 fps.

Bottom right: Armadillo, 500K points, 5 fps.

The basis of our algorithm is a novel technique for fast

octree construction on the GPU. This technique has two

important features. First, it builds octrees in real-time by

exploiting the fine-grained parallelism on the GPU. Unlike

conventional CPU octree builders, which often construct

trees by depth-first traversals, our technique is based on

level-order traversals: all octree nodes at the same tree level

are processed in parallel, one level at a time. Modern GPU

architecture contains multiple physical multi-processors and

requires tens of thousands of threads to make the best use

of these processors [1]. With level-order traversals, our

technique maximizes the parallelism by spawning a new

thread for every node at the same tree level.

The second feature of our technique is that it constructs

octrees that supply the information necessary for GPU

surface reconstruction. In particular, it is critical for the

octree data structure to provide fast access to tree nodes as

well as the neighborhood information of each node (i.e.

links to all neighbors of the node), which are required

by the implicit function computation and marching cubes
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algorithms described in Section IV. While information of

individual nodes is relatively easy to collect, computing

the neighborhood information requires a large number of

searches for every single node. Collecting neighborhood

information for all nodes of the tree is thus extremely

expensive even on the GPU. To address this problem, we

make the observation that a node’s neighbors are deter-

mined by the relative position of the node with respect to its

parent and its parent’s neighbors. Based on this observation,

we build two look up tables (LUT) which record the relative

pointers to a node’s relatives. Unlike direct pointers, relative

pointers are independent of specific instances of octrees and

hence can be precomputed. At runtime, the actual pointers

are quickly generated by querying the LUTs.

Based on octrees built as above, we develop a GPU al-

gorithm for the Poisson surface reconstruction method [2].

We choose the Poisson method because it can reconstruct

high quality surfaces through a global optimization. As part

of our GPU algorithm, we derive an efficient procedure for

evaluating the divergence vector in the Poisson equation

and an adaptive marching cubes procedure for extracting

isosurfaces from an implicit function defined over the

volume spanned by an octree. Both of these procedures

are designed to fully exploit modern GPUs’ fine-grained

parallel architecture and make heavy use of the octree

neighborhood information. Note that GPU algorithms can

also be readily designed for classical implicit reconstruc-

tion methods (e.g. [3]) by using our octree construction

technique and the adaptive marching cubes procedure, as

described in the last paragraph of Section IV-D. Therefore,

our work provides a general approach for designing GPU

algorithms for surface reconstruction.

Our GPU surface reconstruction can be employed im-

mediately in existing applications. As an example, we

propose a user-guided reconstruction algorithm for im-

perfect scan data where many areas of the surface are

either under-sampled or completely missing. Similar to a

recent technique [4], our algorithm allows the user to draw

strokes around poorly-sampled areas to reduce topological

ambiguities. Benefiting from the high performance of GPU

reconstruction, the user can view the reconstructed mesh

immediately after drawing a stroke. In contrast, the algo-

rithm described in [4] requires several minutes to update

the reconstructed mesh, although it is able to update the

implicit function within less than a second.

GPU surface reconstruction also opens up new possibilities.

As an example, we propose an algorithm for generating

surfaces for dynamic point clouds on the fly. The recon-

structed meshes may be directly rendered by the tradi-

tional polygon-based display pipeline. We demonstrate the

application of our algorithm in two well-known modeling

operations, free-form deformation and boolean operations.

With advancements in commodity graphics hardware, real-

time surface reconstruction will be realized in the near

future. In view of this, our technique may be regarded as

a bridging connection between point- and polygon-based

representations. We also show our algorithm can be used to

reconstruct fluid surfaces for real-time particle-based fluid

simulation.

II. Related Work

Surface reconstruction from point clouds has a long history.

Here we only cover references most relevant to our work.

Early reconstruction techniques are based on Delaunay

triangulations or Voronoi diagrams ([5], [6]) and they build

surfaces by connecting the given points. These techniques

assume the data is noise-free and densely sampled. For

noisy data, postprocessing is often required to generate a

smooth surface ([7], [8]). Most other algorithms reconstruct

an approximating surface represented in implicit forms,

including signed distance functions ([3], [9], [10]), radial

basis functions ([11], [12], [13]), moving least square sur-

faces ([14], [15], [16]), and indicator functions [2]. These

algorithms mainly focus on generating high quality meshes

to optimally approximate or interpolate the data points.

Existing fast surface reconstruction methods are limited to

simple smooth surfaces or height fields. Randrianarivony

and Brunnett [17] proposed a parallel algorithm to ap-

proximate a point set with NURBS surfaces. Borghese

et al. [18] presented a real-time reconstruction algorithm

for height fields. For CAD applications, Weinert et al.

[19] used a parallel multi-population algorithm to find

a CSG representation that best fits data points. None of

these techniques is appropriate for reconstructing complex

surfaces from point clouds.

Recently, Buchart et al. [20] proposed a GPU interpolating

reconstruction method by using local Delaunay triangula-

tion [21]. First, the k-nearest neighbors to each point are

computed on the CPU. Then, for each point on the GPU, its

neighbors are ordered by angles around the point and the

local Delaunay triangulation is computed. For a moderate-

sized data set (e.g. 250K points), their algorithm needs over

10 seconds, which is still far from interactive performance.

In another recent work [22], both the k-nearest neighbors

and local Delaunay triangulation are computed on the

GPU. However, they need to build an octree on the CPU.

Moreover, these Delaunay triangulation based algorithms

can only handle noise-free and uniformly-sampled point

clouds. For noisy data, they may fail to produce a water-

tight surface.

With real-world scan data, some areas of the surface

may be under-sampled or completely missing. Automatic

techniques will fail to faithfully reconstruct the topology

of the surface around these areas. Recently Sharf et al.

[4] introduced a user-assisted reconstruction algorithm to

solve this problem. It asks the user to add local insid-

e/outside constraints at weak regions of unstable topology.

An optimal distance field is then computed by minimizing

a quadric function combining the data points, user con-

straints, and a regularization term. This system allows the
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user to interactively draw scribbles to affect the distance

field at a coarse resolution, but the final surface reconstruc-

tion at finer resolutions takes several minutes, prohibiting

immediate viewing of the reconstructed mesh.

Octree is an important data structure in surface reconstruc-

tion algorithms. It is used for representing the implicit func-

tion ([13], [2]) and for adaptively extracting iso-surfaces

([23], [24]). Creating an octree for point clouds directly

on the GPU, however, is very difficult, mainly because of

memory allocation and pointer creation. Lefohn et al. [25]

described an abstraction and generic template library for

defining complex, random-access graphics processor (GPU)

data structures such as octrees. However, Lefohn et al. did

not describe a method for constructing octrees on the GPU.

Their octrees are constructed on the CPU and then sent to

the GPU. Recently, DeCoro and Tatarchuk [26] proposed

a real-time mesh simplification algorithm based vertex

clustering on the GPU. A probabilistic octree is built on the

GPU to support adaptive clustering. This octree, however,

does not form a complete partitioning of the volume and

only contains node information. Last year, Sun et al. [27]

proposed a method to construct an octree for a volume to

accelerate photon tracing. Their octree is represented as a

dense 3D array of numbers, where the value in each voxel

indicates the hierarchy level of the leaf node covering that

voxel. In other words, only leaf nodes are generated. Our

octrees are significantly more complicated than all these

octrees. Specifically, our octrees provide information about

vertices, edges and faces of octree nodes, as well as the

links to all neighbors of each octree node. This information

is necessary for GPU surface reconstruction.

There has been some concurrent work building spatial hier-

archies on the GPU, e.g. kd-trees [28] and BVHs (bounding

volume hierarchies) [29]. Similar to our algorithm, these

methods adopt breadth-first search construction order to

maximize GPU’s parallelism. The linear BVH construction

algorithm in [29] also uses the Morton codes (i.e. the

shuffled xyz keys) to build the hierarchy. However, none

of them can generate the information about vertices, edges

and faces of tree nodes, as well as the neighbors of each

tree node.

III. GPU Octree Construction

In this section, we describe how to build an octree O
with maximum depth D from a given set of sample points

Q = {qi | i = 1, ...N}. We first explain the design of

the octree data structure. Next we present a procedure for

the parallel construction of an octree with only individual

nodes. Then we introduce an LUT-based technique for ef-

ficiently computing the neighborhood information of every

octree node in parallel. Finally, we discuss how to collect

information of vertices, edges, and faces of octree nodes.

A. Octree Data Structure

The octree data structure consists of four arrays: vertex

array, edge array, face array, and node array. The vertex,

edge, and face arrays record the vertices, edges, and faces

of the octree nodes respectively. These arrays are relatively

simple. In the vertex array, each vertex v records v.nodes,

the pointers to all octree nodes that share vertex v. Follow-

ing v.nodes we can easily reach related elements such as

all edges sharing v. In the edge array, each edge records

the pointers to its two vertices. Similarly in the face array

each face records the pointers to its four edges.

The node array, which records the octree nodes, is more

complex. Each node t in the node array NodeArray needs

236 bytes and contains three pieces of information:

• The shuffled xyz key [23], t.key.

• The sample points contained in t.

• Pointers to related data including its parent, children,

neighbors, and other information as explained below.

Shuffled xyz Key: Since each octree node has eight

children, it is convenient to number a child node using

a 3-bit code ranging from zero to seven. This 3-bit code

encodes the subregion covered by each child. We use the

xyz convention: if the x bit is 1, the child covers an octant

that is “right in x”; otherwise the child covers an octant

that is “left in x”. The y and z bits are similarly set. The

shuffled xyz key of a node at tree depth D is defined as

the bit string

x1y1z1x2y2z2 · · · xDyDzD,

indicating the path from the root to this node in the octree.

Therefore a shuffled xyz key at depth D has 3D bits.

Currently we use 32 bits to represent the key, allowing a

maximum tree depth of 10. The unused bits are set to zero.

Sample Points: Each octree node records the sample points

enclosed by the node. The sample points are stored in a

point array and sorted such that all points in the same node

are contiguous. Therefore, for each node t, we only need

to store the number of points enclosed, t.pnum, and the

index of the first point, t.pidx, in the point array.

Connectivity Pointers: For each node we record the point-

ers to the parent node, 8 child nodes, 27 neighboring nodes

including itself, 8 vertices, 12 edges, and 6 faces. All point-

ers are represented as indices to the corresponding arrays.

For example, t’s parent node is NodeArray[t.parent] and

t’s first neighboring node is NodeArray[t.neighs[0]]. If

the pointed element does not exist, we set the corresponding

pointer to −1. Since each node has 27 neighbors at the same

depth, the array t.neighs is of size 27.

For consistent ordering of the related elements, we order

these elements according to their shuffled xyz keys. For ex-

ample, t’s first child node t.children[0] has the smallest key

among t’s eight children and the last child t.children[7]
has the largest key. The ordering of a node’s vertices,
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Fig. 2: Element ordering for quadtrees. (a) the ordering of

vertices and edges (in blue) in a node; (b) the ordering of

a node’s children as well as the ordering of nodes sharing

a vertex; (c) the ordering of a node’s neighboring nodes.

edges, faces and neighboring nodes are determined by their

relative positions in the node. Fig. 2 illustrates the ordering

of the related elements for quadtrees; the case with octrees

is analogous.

B. Building Node Array

We build the node array using a reverse level-order traversal

of the octree, starting from the finest depth D and moving

towards the root, one depth at a time.

At Depth D: Listing 1 provides the pseudo code for the

construction of NodeArrayD, the node array at depth D.

This construction consists of six steps. In the first step, the

bounding box of the point set Q is computed. This is done

by carrying out parallel reduction operations [30] on the

coordinates of all sample points. The Reduce primitive

performs a scan on an input array and outputs the result of

a binary associative operator, such as min or max, applied

to all elements of the input array.

In the second step, we compute the 32-bit shuffled xyz keys

at depth D for all sample points in parallel. Given a point

p, its shuffled xyz key is computed in a top-down manner.

The x bit at depth d, 1 ≤ d ≤ D, is computed as:

xd =

{

0, if p.x < Cd.x,

1, otherwise,

where Cd is the centroid of the node that contains p at depth

d− 1. The y and z bits yd and zd are similarly computed.

All unused bits are set to zero. All sample points are then

sorted using their shuffled xyz keys as the sort key. Note

that we also pack the index of each sample point and its

xyz key to a 64-bit code in order to extract the index of

each sample point after sorting.

In the third step, all sample points are sorted using the

sort primitive in [31]. This primitive first performs a split-

based radix sort per block and then a parallel merge sort

of blocks [32]. After sorting, points having the same key

are contiguous in the sorted array. Then the index of each

sample point in the original point array is computed by

extracting the lower 32 bits of the point’s code. The new

point array is then constructed by copying the positions and

normals from the original point array using the extracted

indices.

Listing 1 Build the Node Array at Depth D

1: // Step 1: compute bounding box
2: Compute Q’s the bounding box using Reduce primitive

3: // Step 2: compute shuffled xyz key and sorting code
4: code← new array
5: for each i = 0 to N − 1 in parallel
6: Compute key, qi’s shuffled xyz key at depth D
7: code[i] = key << 32 + i

8: // Step 3: sort all sample points
9: sortCode← new array

10: Sort(sortCode, code)
11: Generate the new point array according to sortCode

12: // Step 4: find the unique nodes
13: mark ← new array
14: uniqueCode← new array
15: for each element i in sortcode in parallel
16: if sortCode[i].key 6= sortCode[i− 1].key then
17: mark[i] = true
18: else
19: mark[i] = false
20: Compact(uniqueCode, mark, sortCode)
21: Create uniqueNode according to uniqueCode

22: // Step 5: augment uniqueNode
23: nodeNums← new array
24: nodeAddress← new array
25: for each element i in uniqueNode in parallel
26: if element i− 1 and i share the same parent then
27: nodeNums[i] = 0
28: else
29: nodeNums[i] = 8
30: Scan(nodeAddress, nodeNums, +)

31: // Step 6: create NodeArrayD

32: Create NodeArrayD

33: for each element i in uniqueNode in parallel
34: t = uniqueNode[i]
35: address = nodeAddress[i] + t.xDyDzD

36: NodeArrayD[address] = t

In the fourth step, a unique node array is generated by

removing duplicate keys in the sorted array, as follows.

First, for each element of the sorted array, the element

is marked as invalid if its key value equals that of its

preceding element in the array. Then, the compact primitive

from [31] is used to generate the unique node array which

does not contain invalid elements. During this process, the

relationship between the point array and the node array can

be easily built. Specifically, for each element of the node

array, we record the number of points contained by this

node and the index of the first point in the point array.

In the fifth step, the unique node array obtained in the last

step is augmented to ensure that each node’s seven siblings

are also included, since each octree node has either eight

or zero children. In lines 25 ∼ 29 of the pseudo code,

each element in the unique node array is checked to see

if it shares the same parent with the preceding element.

This is done by comparing their keys. If the result is yes,

nodeNums[i] is set to zero; otherwise it is set to eight.

Then a parallel prefix sum/scan primitive is performed on

the array nodeNums, and the result is stored in the array
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Listing 2 Compute Neighboring Nodes

1: for each node t at depth d in parallel
2: for each j = 0 to 26 in parallel
3: i← t’s 3-bit xyz key
4: p← NodeArray[t.parent]
5: if p.neighs[LUTparent[i][j]] 6= −1 then
6: h← NodeArray[p.neighs[LUTparent[i][j]]]
7: t.neighs[j] = h.children[LUTchild[i][j]]
8: else
9: t.neighs[j] = −1

nodeAddress. Each element of nodeAddress thus holds

the sum of all its preceding elements in nodeNums. In

other words, nodeAddress contains the starting address of

every unique node in the final node array.

In the final step, the node array NodeArrayD is created.

For each node that is added in the fifth step, only the key

value is computed and the number of points contained is set

to zero. For each node in uniqueNode, we locate its corre-

sponding element in NodeArrayD through nodeAddress
and its 3-bit xDyDzD key, and copy the node’s data to this

element. For each sample point in the point array, we also

save the pointer to the octree node that contains it.

At Other Depths: The node array at depth D−1 can be eas-

ily built from NodeArrayD. Recall that the eight siblings

having the same parent are contiguous in NodeArrayD.

For every eight sibling nodes in NodeArrayD, a parent

node is generated by setting the last three bits of the

keys of these nodes to zero. Again, the resulting parent

nodes are augmented as in the fifth step above to generate

the final array NodeArrayD−1. At this point, each node

in NodeArrayD can get the index of its parent node in

NodeArrayD−1. For each node t in NodeArrayD−1, the

pointers to its children are saved. The number of points

t.pnum is computed as the sum of that of t’s children, and

the index of the first point t.pidx is set to be that of t’s
first child.

The node arrays at other depths can be built the same

way. The node arrays of all depths are then concatenated

to form a single node array, NodeArray. Another array

BaseAddressArray is also created, with each element of

the array recording the index of the first node at each depth

in NodeArray.

C. Computing Neighborhood Information

For each octree node in NodeArray, we wish to find its

neighboring octree nodes at the same depth. This neigh-

borhood information is not only critical for computing the

implicit function and running the marching cubes procedure

as described in Section IV, but also important for building

the vertex, edge, and face arrays.

Each node has up to 26 neighbors at the same depth,

distributed among its sibling nodes and the child nodes

of its parent’s neighbors. A naive approach for computing

the neighbors is to enumerate all these candidate nodes,

s

r

t
pb

LUTparent[4][9] = {

{0, 1, 1, 3, 4, 4, 3, 4, 4},

{1, 1, 2, 4, 4, 5, 4, 4, 5},

{3, 4, 4, 3, 4, 4, 6, 7, 7},

{4, 4, 5, 4, 4, 5, 7, 7, 8} };

LUTchild[4][9] = {

{3, 2, 3, 1, 0, 1, 3, 2, 3},

{2, 3, 2, 0, 1, 0, 2, 3, 2},

{1, 0, 1, 3, 2, 3, 1, 0, 1},

{0, 1, 0, 2, 3, 2, 0, 1, 0} };

(a) LUTs for quadtrees (b) compute node t’s neighbors

Fig. 3: Compute neighboring nodes for quadtrees.

which requires 26× 27× 8 = 5616 searches for each node

(26 neighbors, its parent and 26 neighbors of its parent,

each neighbor having 8 children). Our observation is that a

node’s neighbors are determined by the relative position

of the node with respect to its parent and its parent’s

neighbors. Based on this observation we precompute two

look up tables to significantly speed up this neighborhood

computation. These two LUTs are defined as follows:

• Parent Table: the parent table LUTparent is a 2D

array providing the following information: For an

octree node t whose parent is p, if t’s index (or xyz
key) in p.children is i, then the index of t.neighs[j]’s
parent in p.neighs is LUTparent[i][j].

• Child Table: the child table LUTchild is a 2D array

with the following information: For the node t with

parent p and index i in p.children as above, if node t’s
j-th neighbor t.neighs[j], whose parent node is h, the

index of t.neigh[j] in h.children is LUTchild[i][j].

The size of both tables is 8×27. For convenience we regard

a node as a neighbor of itself with index 13 in neighs.

Note that we distinguish two kinds of pointers. The direct

pointers are those represented as indices into one of the

“global” arrays: the node, vertex, edge, and face arrays.

For example, t.parent is a direct pointer. The relative

pointers are those represented as indices into one of the

“local” arrays of a node: t.neighs, t.children, t.vertices,

t.edges, and t.faces. The above two tables both record

only relative pointers, which are independent of specific

instances of octrees and hence can be precomputed.

Listing 2 provides the pseudo code for computing the

neighboring nodes for each node t at depth d in parallel.

First, we fetch t’s parent p and its xyz key, which is

t’s index in p.children. To compute t’s j-th neighbor

t.neighs[j], we get this neighbor’s parent node h by query-

ing LUTparent and then get the neighbor using a second

query to LUTchild. Compared with the naive enumeration

approach, our technique only needs 27 searches and is over

two orders of magnitude faster.

For clarity we use quadtrees to illustrate Listing 2. The two

tables for quadtrees, LUTparent and LUTchild, are of

size 4×9 as shown in Fig. 3(a). As shown in Fig. 3(b), the

quadtree node t’s parent is p, and t’s index in p.children
is 0 (i.e. i = 0). To compute t’s 2-th neighbor (i.e. j =
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2), we first get p’s 1-th neighbor, which is b, according

to LUTparent[0][2] ≡ 1. Since LUTchild[0][2] ≡ 3, b’s

3-th child, which is r, is the neighboring node we want.

Therefore, t.neighs[2] = b.children[3] = r.

To compute t’s 7-th neighbor (i.e. j = 7), we first

get p’s 4-th neighbor, which is p itself, according to

LUTparent[0][7] ≡ 4. Since LUTchild[0][7] ≡ 1, p’s

1-th child, which is s, is the node we want. Therefore,

t.neighs[7] = p.children[1] = s.

When computing a node’s neighbors, its parent’s neighbors

are required. For this reason we perform Listing 2 for all

depths using a (forward) level-order traversal of the octree.

If node t’s j-th neighbor does not exist, t.neighs[j] is set

as −1. For the root node, all its neighbors is −1 except its

13-th neighbor which is the root itself.

D. Vertex, Edge, and Face Arrays

Vertex Array: Each octree node has eight corner vertices.

Simply adding the eight vertices of every node into the

vertex array will introduce many duplications because a

corner may be shared by up to eight nodes. A simple way

to create a duplication-free vertex array is to sort all the

candidate vertices by their keys and then remove duplicate

keys, just as we did for the node array in Section III-B. This

approach, however, is inefficient due to the large number

of nodes. For example, for the Armadillo example shown

in Fig. 1, there are around 670K nodes at depth 8 and the

number of candidate vertices is over 5M. Sorting such a

large array takes over 100ms.

We present a more efficient way to create the vertex

array by making use of node neighbors computed in

Section III-C. Building the vertex array at octree depth d
takes the following steps. First, we find in parallel a unique

owner node for every corner vertex. The owner node of a

corner is defined as the node that has the smallest shuffled

xyz key among all nodes sharing the corner. Observing

that all nodes that share corners with node t must be t’s
neighbors, we can quickly locate the owner of each corner

from t’s neighbors. Second, for each node t in parallel, all

corner vertices whose owner is t itself are collected. The

unique vertex array is then created. During this process,

the vertex pointers t.vertices are saved. For each vertex

v in the vertex array, the node pointers v.nodes are also

appropriately set.

To build the vertex array of all octree nodes, the above

process is performed at each depth independently, and

the resulting vertex arrays are concatenated to form a

single vertex array. Unlike the node array, the vertex array

so obtained still has duplicate vertices between different

depths. However, since this does not affect our subsequent

surface reconstruction, we leave these duplicate vertices as

they are in our current implementation.

Other Arrays: The edge and face arrays can be built in a

similar way. For each edge/face of each node, we first find

its owner node. Then the unique edge/face array is created

by collecting edges/faces from the owner nodes.

IV. GPU Surface Reconstruction

In this section we describe how to reconstruct surfaces

from sample points using the octree constructed in the last

section. The reconstruction roughly consists of two steps.

First, an implicit function ϕ over the volume spanned by

the octree nodes is computed using Poisson surface recon-

struction [2]. Then, an adaptive marching cubes procedure

extracts a watertight mesh as an isosurface of the implicit

function.

Note that, instead of Poisson surface reconstruction, we

may use other methods (e.g. [3] and [13]) for GPU surface

reconstruction. We chose the Poisson approach because it

can reconstruct high quality surfaces through a global op-

timization. In addition, the Poisson approach only requires

solving a well-conditioned sparse linear system, which can

be efficiently done on the GPU.

Specifically, we perform the following steps on the GPU:

1) Build a linear system Lx = b, where L is the

Laplacian matrix and b is the divergence vector;

2) Solve the above linear system using a multigrid

solver,

3) Compute the isovalue as an average of the implicit

function values at sample points,

4) Extract the isosurface using marching cubes.

The mathematical details of Poisson surface reconstruction

(Step 1 and 2) are reviewed in Appendix. In the following,

we describe the GPU procedures for these steps.

A. Computing Laplacian Matrix L

As described in Appendix, the implicit function ϕ is a

weighted linear combination of a set of blending functions

{Fo} with each function Fo corresponding to a node of

the octree. An entry of the Laplacian matrix Lo,o′ =
〈Fo,∆Fo′〉 is the inner product of blending function Fo

and the Laplacian of Fo′ .

The blending function Fo is given by a fixed basis function

F :

Fo(q) = F

(

q − o.c

o.w

)

1

o.w3
, (1)

where o.c and o.w are the center and width of the octree

node o. F is non-zero only inside the cube [−1, 1]3. As

explained in Appendix, F is a separable function of x, y
and z. As a result, the blending function Fo is separable as

well and can be expressed as:

Fo(x, y, z) = fo.x,o.w(x)fo.y,o.w(y)fo.z,o.w(z).

Given the definition of Laplacian ∆Fo′ = ∂2F
o′

∂x2 + ∂2F
o′

∂y2 +
∂2F

o′

∂z2 , the Laplacian matrix entry Lo,o′ can be computed



IEEE TRANSACTIONS ON VISUALIZATION & COMPUTER GRAPHICS 7

Listing 3 Compute Divergence Vector b

1: // Step 1: compute vector field
2: for each node o at depth D in parallel
3: ~vo = 0
4: for j = 0 to 26
5: t← NodeArray[o.neighs[j]]
6: for k = 0 to t.pnum
7: i = t.pidx + k
8: ~vo + = ~niFqi,o.w(o.c)

9: // Step 2: compute divergence for finer depth nodes
10: for d = D to 5
11: for each node o at depth d in parallel
12: bo = 0
13: for j = 0 to 26
14: t← NodeArray[o.neighs[j]]
15: for k = 0 to t.dnum
16: idx = t.didx + k
17: o′ ← NodeArray[idx]
18: bo + = ~vo′~uo,o′

19: // Step 3: compute divergence for coarser depth nodes
20: for d = 4 to 0
21: divg ← new array
22: for node o at depth d
23: for each depth-D node o′ covered by all nodes in

o.neighs in parallel
24: divg[i] = ~vo′~uo,o′

25: bo = Reduce(divg, +)

as:

Lo,o′ =

〈

Fo,
∂2Fo′

∂x2

〉

+

〈

Fo,
∂2Fo′

∂y2

〉

+

〈

Fo,
∂2Fo′

∂z2

〉

=

〈fo.x,o.w, f
′′

o′.x,o′.w〉〈fo.y,o.w, fo′.y,o′.w〉〈fo.z,o.w, fo′.z,o′.w〉+

〈fo.x,o.w, fo′.x,o′.w〉〈fo.y,o.w, f
′′

o′.y,o′.w〉〈fo.z,o.w, fo′.z,o′.w〉+

〈fo.x,o.w, fo′.x,o′.w〉〈fo.y,o.w, fo′.y,o′.w〉〈fo.z,o.w, f
′′

o′.z,o′.w〉.

All the above inner products can be efficiently computed

by looking up two precomputed 2D tables: one for 〈fo, fo′〉
and the other for 〈fo, f

′′
o′〉. These two tables are queried

using the x-bits, y-bits, or z-bits of the shuffled xyz keys of

node o and o′. This reduces the table size significantly. For a

maximal octree depth 9, the table size is (210−1)×(210−1).
The table size may be further reduced because the entries

of the tables are symmetric.

B. Evaluating Divergence Vector b

As described in Appendix, the divergence coefficients bo

can be computed as:

bo =
∑

o′∈OD
~vo′ · ~uo,o′ ,

where ~uo,o′ = 〈Fo(q),∇Fo′〉. OD is the set of all octree

nodes at depth D. The inner product 〈Fo(q),∇Fo′〉 can be

quickly computed using a precomputed look up table for

〈fo, f
′
o′〉 as in the computation of Lo,o′ . As for ~vo′ , it is

computed as

~vo′ =
∑

qi∈Q
αo′,qi

~ni, (2)

where αo,qi
is the weight by which each sampling point qi

distributes the normal ~ni to its eight closest octree nodes

at depth D.

Listing 4 Compute Implicit Function Value ϕq for Point q

1: ϕq = 0
2: nodestack ← new stack
3: nodestack.push(proot)
4: while nodestack is not empty
5: o← NodeArray[nodestack.pop()]
6: ϕq+ = Fo(q)ϕo

7: for i = 0 to 7
8: t← NodeArray[o.children[i]]
9: if q.x− t.x < t.w and q.y− t.y < t.w and q.z− t.z <

t.w then
10: nodestack.push(o.children[i])

Listing 3 provides the pseudo code for computing the

divergence vector b. This computation takes three steps.

In the first step, the vector field ~vo′ is computed for each

octree node o′ according to Eq. (2). Since Eq. (2) essentially

distributes sample point qi’s normal ~ni to its eight nearest

octree nodes at depth D, vector ~vo′ is only affected by the

sample points that are contained in either node o′ or its 26

neighbors. The pointers to the node neighbors as recorded

in Section III-C are used to locate these neighbors.

In the second step, the divergence at every finer depth,

which is defined as any depth greater than four, is computed

in parallel for all nodes, as shown in Step 2 of Listing 3. The

most obvious way to accumulate bo for each octree node

o is to iterate through all nodes o′ at depth D. However,

this costly full iteration is actually not necessary. Since the

basis function F ’s domain of support is the cube [−1, 1]3,

~uo,o′ equals zero for a large number node pairs (o, o′).
Specifically, we can easily prove that, for node o, only

the depth-D nodes whose ancestors are either o or o’s

neighbors have nonzero ~uo,o′ . These nodes can be located

by iterating over o’s neighbors. Note that t.dnum and

t.didx are the number of depth-D nodes covered by t and

the pointer to t’s first depth-D node respectively. These

information can be easily obtained and recorded during tree

construction.

In the third step, the divergence at every coarser depth,

which is defined as any depth no greater than four, is

computed. For nodes at a coarser depth, the approach taken

in the second step is not appropriate because it cannot

exploit the fine-grained parallelism of GPUs. The node

number at coarser depths is much smaller than that at finer

depths, and the divergence of a node at a coarser depth may

be affected by many depth-D nodes. For example, at depth

zero, there is only one root node and all depth-D nodes

contribute to its divergence. To maximize parallelism, we

parallelize the computation over all covered depth-D nodes

for nodes at coarser depths. As shown in Step 3 of Listing 3,

we first compute the divergence contribution for each depth-

D node in parallel and then perform a reduction operation

to sum up all contributions.

C. Multigrid Solver and Implicit Function

The GPU multigrid solver is rather straightforward. For

each depth d from coarse to fine, the linear system L
d
x

d =
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b
d is solved using a conjugate gradient solver for sparse

matrices [33]. L
d contains as many as 27 nonzero entries

in a row. For each row, the values and column indices

of nonzero entries are stored in a fixed-sized array. The

number of the nonzero entries is also recorded.

Note that the divergence coefficients at depth d need to

be updated using solutions at coarser depths according to

Eq. (6) in Appendix. For the blending function Fo of an

arbitrary octree node o, it can be easily shown that only the

blending functions of o’s ancestors and their 26 neighbors

may overlap with Fo. Therefore, we only need to visit these

nodes through the pointers stored in parent and neighs
fields of node o.

To evaluate the implicit function value at an arbitrary point

q in the volume, we need to traverse the octree. Listing 4

shows the pseudo code of a depth-first traversal for this

purpose. A stack is used to store the pointers to all nodes

to be traversed. For this traversal, a stack size of 8D is

enough for octrees with a maximal depth D.

Note that the implicit function value of a sample point

qi can be evaluated in a more efficient way, because we

already know the depth-D node o where qi is located. In

other words, we only need to traverse octree nodes whose

blending function may overlap with that of o. These nodes

include o itself, o’s neighbors, o’s ancestors, and the neigh-

bors of o’s ancestors. Once we get the implicit function

values at all sample points, the isovalue is computed as an

average: ϕ̄ =
∑

i ϕ(qi)/N . A point is deemed to be outside

the surface being reconstructed if its implicit function value

is greater than ϕ̄.

D. Isosurface Extraction

We use the marching cubes technique [34] on the leaf nodes

of the octree to extract the isosurface. The output is a vertex

array and a triangle array which can be rendered directly.

As shown in Listing 5, the depth-D nodes are processed in

five steps. First, the implicit function values are computed

for all octree vertices in parallel. As in the case with

the sample points, each vertex v’s implicit function value

can be efficiently computed by traversing only the related

nodes, which can be located through the pointers stored in

v.nodes. Second, the number of output vertices is computed

with a single pass over the octree edges and the output

address is computed by performing a scan operation. Third,

each node’s cube category is calculated and the number

and addresses of output triangles are computed. Finally, in

Step 4 and 5 the vertices and triangles are generated and

saved. During this process, for each face of each node, if

one of its four edges has a surface-edge intersection, the

face is deemed to contain surface-edge intersections and we

mark the face. This information is propagated to the node’s

ancestors.

For all leaf nodes at other depths, we first filter out nodes

that do not produce triangles in parallel. For each node, if

Listing 5 Marching Cubes

1: // Step 1: compute implicit function values for octree vertices
2: vvalue← new array
3: for each octree vertex i at depth-D in parallel
4: Compute the implicit function value vvalue[i]
5: vvalue[i] − = ϕ̄

6: // Step 2: compute vertex number and address
7: vexNums← new array
8: vexAddress← new array
9: for each edge i at depth-D in parallel

10: if the values of i’s two vertices have different sign then
11: vexNums[i] = 1
12: else
13: vexNums[i] = 0
14: Scan(vexAddress, vexNums, +)

15: // Step 3: compute triangle number and address
16: triNums← new array
17: triAddress← new array
18: for each node i at depth-D in parallel
19: Compute the cube category based the values of i’s vertices
20: Compute triNums[i] according to the cube category
21: Scan(triAddress, triNums, +)

22: // Step 4: generate vertices
23: Create V ertexBuffer according to vexAddress
24: for each edge i at depth-D in parallel
25: if vexNums[i] == 1 then
26: Compute the surface-edge intersection point q
27: V ertexBuffer[vexAddress[i]] = q

28: // Step 5: generate triangles
29: Create TriangleBuffer according to triAddress
30: for each node i at depth-D in parallel
31: Generate triangles based on the cube category
32: Save triangles to TriangleBuffer[triAddress[i]]

the implicit function values at its eight corners have the

same sign and none of its six faces contain surface-edge

intersections, the node does not need any further processing.

Otherwise, we subdivide the node to depth D. All the

depth-D nodes generated by this subdivision are collected

to build the new node, vertex and edge arrays. Then, we

perform Listing 5 to generate vertices and triangles. This

procedure is carried out iteratively until no new triangles

are produced. Note that in each iteration, we do not need

to handle the nodes subdivided in previous iterations.

Finally, to remove duplicate surface vertices and merge

vertices located closely to each other, we compute the

shuffled xyz key for each vertex and use the keys to

sort all vertices. Vertices having the same key values are

merged by performing a parallel compact operation. The

elements in the triangle array are updated accordingly

and all degenerated triangles are removed. Each triangle’s

normal is also computed.

Discussion: Besides the Poisson method, we can also

design GPU algorithms for other implicit reconstruction

methods. For example, an early technique [3] calculates a

signed distance field and reconstructs a surface by extract-

ing the zero set of the distance field using the marching

cubes. With the octrees we construct, the distance field can
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Model # Points Tree Depth # Triangles Memot Mem Tot Tfunc Tiso Ttotal FPS T
ot
cpu Tcpu

Bunny 353272 8 228653 120MB 290MB 40ms 144ms 6ms 190ms 5.26 8.5s 39s

Buddha 640735 8 242799 160MB 320MB 50ms 167ms 35ms 252ms 3.97 16.1s 38s

Armadillo 512802 8 201340 140MB 288MB 43ms 149ms 5ms 197ms 5.06 12.8s 42s

Elephant 216643 8 142197 200MB 391MB 46ms 209ms 41ms 296ms 3.38 5.5s 34s

Hand 259560 8 184747 125MB 253MB 36ms 143ms 27ms 206ms 4.85 6.4s 26s

Dragon 1565886 9 383985 230MB 460MB 251ms 486ms 23ms 760ms 1.31 39.1s 103s

TABLE I: Running time and memory performance for some examples shown in the paper. # Triangles is the number

of triangles in the reconstructed surface. Memot is the memory consumed by the octree data structure only, and Mem

is the total memory consumed by the whole algorithm. Tot, Tfunc, Tiso and Ttotal are the time for building octree,

implicit function computation (including both linear system building and solving), isosurface extraction and total time

respectively, using our GPU algorithm. FPS is the frame rates of our algorithm. For comparison, T ot
cpu and Tcpu are the

octree building time and total time using the CPU algorithm [2].

be quickly estimated on the GPU: processing each octree

vertex in parallel, we locate its nearest sample point by

traversing the octree using a procedure similar to that shown

in Listing 4 and compute the signed distance between the

vertex and a plane defined by the position and normal of this

sample point. Then our adaptive marching cubes procedure

is applied to extract the zero set surface. As noted in [2],

the quality of surfaces reconstructed this way is not as good

as those produced by the Poisson method.

V. Results and Applications

We have implemented the described surface reconstruction

algorithm on an Intel Xeon 3.7GHz CPU with a GeForce

8800 ULTRA (768MB) graphics card.

Implementation Details: The G80 GPU is a highly parallel

processor working on many threads simultaneously. CUDA

structures GPU programs into parallel thread blocks of up

to 512 parallel threads. We need to specify the number of

thread blocks and threads per block for GPU programs,

i.e. the parallel primitives (e.g. Sort, Compact and

Scan) and the programs marked in parallel. In our current

implementation, we use 256 threads for each block. The

block number is computed by dividing the total number

of parallel processes by the thread number per block. For

example, in Step 2 (line 5) of Listing 1, the block number

is N/256.

The whole octree data and multigrid solver data are stored

in the global memory/texture memory. They are too huge

to be stored in the shared memory, which is mainly used

in GPU primitives such as sort, compact and scan. For

these primitives, we used the implementation provided

in CUDPP [31], which is well optimized in terms of

coalescent memory access. Since most computations in our

algorithm map to these primitives, our algorithm is well

optimized. The LUTs are also stored in the shared memory.

Reconstruction Results: We tested our algorithm on a

variety of real-world scan data. As a preprocess, normals

are computed using Stanford’s Scanalyze system. As shown

in Fig. 1, our GPU algorithm is capable of generating high

quality surfaces with fine details from noisy real-world

scans, just like the CPU algorithm in [2].

In terms of performance, the GPU algorithm is over two

orders of magnitude faster than the CPU algorithm. For

example, for the Stanford Bunny, the GPU algorithm runs

at 5.2 frames per second, whereas the CPU algorithm

takes 39 seconds for a single frame. Note that the CPU

implementation is provided by the authors of [2] and is

well optimized.

As summarized in TABLE I, the GPU algorithm achieves

interactive performance for all examples shown in the pa-

per. Currently, the implicit function computation, especially

the stage of building the linear system, is the bottleneck of

our algorithm. The time for octree construction occupies

a relatively small fraction. Compared with the CPU octree

construction algorithm, our GPU octree builder is also over

two orders of magnitude faster.

Note that the Dragon model in TABLE I contains some

noisy points that distribute far away from the dragon body.

So its bounding box is not fit tightly to the dragon body.

This leads to the result that the number of output triangles

at level 9 is about 460K, comparable to those numbers

reported in [2].

Limitation: The memory consumption of our algorithm is

dominated by the octree depth as is the case with CPU

reconstruction algorithms. As a result, our GPU reconstruc-

tion can only handle octrees with a maximal depth of 9
due to the limited memory of our current graphics card.

On the other hand, since the memory consumption is not

dominated by the input point cloud size, our algorithm can

handle large input point clouds. For example, the algorithm

can handle only 2000K points at octree depth 9. But at

octree depth 8, the algorithm can handle up to 5000K points

(consumes around 600MB memory, runs at around 2 frames

per second). Our ability to handle large input also increases

with the rapid improvements in graphics hardware (e.g.

Quadro FX 5600 released by NVIDIA supports CUDA and

has 1.5GB memory). Nevertheless, with the advent of 3D

scanners, scanned models are likely to contain too many

points to be handled by any GPU and CPU method. There

is a need to develop out-of-core methods on GPUs as well

as on CPUs. This is beyond the scope of this paper and left

to future work.
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(a) (b)

(c) (d)

Fig. 4: User-guided reconstruction of a scanned elephant

model. (a) The input scan. (b) The result from automatic

reconstruction. The head and trunk are mistakenly con-

nected. (c) The improved surface after the user draws the

stroke shown in (b). (d) A tail copied from the Armadillo is

added around the rear end of the elephant. A new elephant

surface with the new tail is immediately reconstructed. See

the companion video for live demos.

A. User-Guided Surface Reconstruction

Using our GPU reconstruction technique, we develop a

user-guided surface reconstruction algorithm for imperfect

scan data. The algorithm allows the user to draw strokes

to reduce topological ambiguities in areas that are under-

sampled or completely missing in the input data. Since our

GPU reconstruction technique is interactive, the user can

view the reconstructed surface immediately after drawing

a stroke. Compared with a previous user-assisted method

[4] which takes several minutes to update the reconstructed

mesh, our approach is more effective and provides better

user experience.

Our basic idea is to first add new oriented sample points to

the original point cloud based on user interaction. Then a

new isosurface is generated for the augmented point cloud.

Suppose Q is the original point set and Q′ is the current

point set after each user interaction. After the user draws

a stroke, our system takes the following steps to generate

the new surface:

1) Compute the depth range of Q’s bounding box under

the current view.

2) Iteratively extrude the stroke along the current view

direction in the depth range, with a user-specified

interval w. For each extruded stroke, a set of points

are uniformly distributed along the stroke, also with

interval w. Denote this point set as S.

3) For points in S, compute their implicit function

values in parallel using the procedure in Listing 4.

4) Remove points from S whose implicit function values

are not less than the current isovalue ϕ̄.

5) Compute normals for all points in S.

Fig. 5: User-guided reconstruction of a scanned hand

model. Left: the automatic reconstruction result. Several

fingers are mistakenly connected. Right: the improved sur-

face after the user draws two rectangles.

6) Add S to the current point set Q′.

7) Perform GPU reconstruction with Q′ as input and

generate the new isosurface.

In Step 2, the interval w is set to be the width of an

octree node at depth D by default. Step 4 removes points

outside of the current reconstructed surface because we only

wish to add new points in inner regions, where topological

ambiguity is found. This scheme works well for all tested

data shown in this paper. Note that unwanted points may

be accidentally introduced in some inner regions. When

this happens, the user can remove those points manually. In

Step 7, the new isovalue is always computed as the average

of the implicit function values of points in the original point

set Q because we want to restrict the influence of newly-

added points to local areas. The new points are only used

to change the local vector field.

Our current system provides two ways to compute the

normals for points in S in Step 5. One is based on normal

interpolation. For each point si ∈ S, we traverse the octree

of Q′ and find all points of Q′ which are enclosed by a

box centered at si. Then si’s normal is computed as an

interpolation of the normals of these points. The interpola-

tion weight of a point q′ is proportional to the reciprocal

of the squared distance between q′ and si. The box size is

a user-specified parameter. If no point is found given the

current box size, the algorithm automatically increases the

box size and traverses the octree again. The other scheme

for computing the normals is relatively simple. The normals

are restricted to be orthogonal to both the current viewing

direction and the tangents of the stroke. We always let the

normals point to the right side of the stroke.

Note that for the first normal computation scheme, the

user’s interaction is not limited to drawing strokes. We also

allow users to draw a rectangle or any closed shape to define

an area where they want to insert new points. This shape is

then extruded along the current view direction in the depth

range to form a volume and a set of points is uniformly

distributed inside the volume. After that, Steps 3 ∼ 7 are

performed to generate a new isosurface.
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Fig. 6: Free form deformation and boolean operations.

Top left: several tentacles are pulled out from an ellip-

soid. Bottom left: a hole and a face mask are created

on the bunny’s surface. Right: an interesting creature is

created from the armadillo using free-form deformation and

boolean operations.

User-Guided Reconstruction Results: We tested our al-

gorithm on a variety of complex objects including the

Buddha (Fig. 1), Elephant (Fig. 4), and Hand (Fig. 5).

For all examples, we were able to generate satisfactory

results after several strokes. See the companion video for

examples of user interaction sessions. While the user-

specified inside/outside constraints in [4] only correct the

local topology, our system also allows the user to specify

the geometry of missing areas of the surface. The user first

copies a set of points from another point cloud and places

the points around the target area. The new isosurface can be

then generated. Note that in this case, we do not remove the

points outside of the surface as in Step 4 above. Fig. 4(d)

shows such an example.

B. On-the-fly Conversion of Dynamic Point

Clouds

Our GPU reconstruction algorithm can also be integrated

into point cloud modeling tools to generate meshes for

dynamic point clouds on the fly. The reconstructed meshes

can be directly rendered using conventional polygon-based

rendering methods.

Free-Form Deformation: We first implemented the free-

form deformation tool described in [35]. The GPU recon-

struction is performed on the deformed point cloud at each

frame to produce a triangular mesh. As shown in Fig. 6 and

the companion video, our system is capable of generating

high quality surfaces at interactive frame rates, even as

dynamic sampling is enabled.

Boolean Operations: Suppose Q1 and Q2 are two point

clouds. First, two implicit functions (ϕ1 and ϕ2) are

computed for Q1 and Q2 respectively and two isosur-

faces M1 and M2 are extracted. Second, for each point

qi
2
∈ Q2 in parallel, the implicit function value ϕ1(q

i
2
) is

Fig. 7: Real-time fluid surface reconstruction. Left: parti-

cles. Right: the reconstructed surface.

computed using the pseudo code in Listing 4. Similarly,

for each point qi
1
∈ Q1, ϕ2(q

i
1
) is computed. Third, the

inside/outside classification is done by comparing each

ϕ1(q
i
2
) with ϕ̄1, and each ϕ2(q

i
1
) with ϕ̄2. Fourth, based

on the inside/outside classification, a new point cloud Q is

produced by collecting points from Q1 and Q2 according

to the definition of the specific Boolean operation being

performed. Finally, GPU reconstruction is performed on Q
to generate a surface for the Boolean operation.

Fig. 6 shows some results generated using our algorithm.

Please refer to the companion video for interactive demos.

Note that these point cloud editing examples are simply

used to demonstrate on-the-fly conversion of dynamic point

clouds to polygonal models, a new capability enabled by

our GPU surface reconstruction. The point cloud editing

operations are performed with existing techniques, not new

techniques.

C. Real-time Fluid Surface Reconstruction

Particle-based fluid simulation techniques have been able

to achieve real-time performance and are widely used in

interactive applications [36]. The simulation output is a set

of 3D particles. Although point splatting can be used to

render the fluid surface, it is still necessary to extract an

isosurface to get high quality rendering effects as noted in

[36]. Our GPU reconstruction can be used to reconstruct

fluid surfaces in real time.

We implemented a fluid surface reconstruction algorithm in

the particle demo provided in NVIDIA CUDA SDK. Taking

the particle positions as input, the algorithm first builds an

octree which is used to quickly find the nearby particles for

each particle. Then, the implicit function over the space of

the octree is computed using the method proposed by Zhu

and Bridson [37]. Finally the isosurface is extracted as in

Section 5 and directly rendered. Note that the algorithm

in [37] needs a range search process to find the nearby

particles for each particle. This can be efficiently performed

using a procedure similar to Listing 4.

Fig. 7 shows a static frame of the simulation result. For 32K

particles, the simulation procedure alone runs at around

240 fps. With our fluid surface reconstruction at octree

depth 6, the whole program runs at about 50 fps. The

reconstructed surface is directly shaded on the GPU. The
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program also allows users to interact with the fluid. Please

see the companion video for interactive demos.

VI. Conclusion and Future Work

We have presented a parallel surface reconstruction al-

gorithm that runs entirely on the GPU. For moderate-

sized scan data, this GPU algorithm generates high quality

surfaces with fine details at interactive frame rates, which

is over two orders of magnitude faster than CPU algo-

rithms. We believe that our contribution is not limited to a

GPU implementation of the Poisson reconstruction method,

but a general approach for designing GPU algorithms

for highly parallel surface reconstruction. As described

in Section IV-D, GPU algorithms for other reconstruction

techniques such as the classic technique in [3] can be easily

designed following our approach. It is also important to

note that since octrees are ubiquitous in computer graphics,

our GPU octree construction technique, which is a core

component of our approach, can have impact in many

applications beyond surface reconstruction. One example

is octree texture painting [38].

Our GPU reconstruction algorithm not only enhances ex-

isting applications but also opens up new possibilities.

To demonstrate its potential, we integrate the algorithm

into a user-guided reconstruction system for imperfect scan

data and thus enable interactive reconstruction according to

user input. We also show how to employ the algorithm

in point cloud modeling tools for generating polygonal

surfaces from dynamic point clouds on the fly as well as

to reconstruct fluid surfaces in real time.

For future work, we are interested in exploring the scenario

with unreliable normals given at the sample points. In

this case, a possible approach is to use the inside/outside

constraints [4] instead of normal constraints in implicit

function optimization. We are also interested in enhancing

our user-guided surface reconstruction by developing an

automatic method for detecting problematic regions as in

[4]. Such a method will save the user the trouble of having

to locate these topologically unstable regions.
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Appendix

Given an input point cloud Q with each sample point qi

having a normal vector ~ni, the Poisson surface reconstruc-

tion technique [2] computes an implicit function ϕ whose

gradient best approximates a vector field ~V defined by the

samples, i.e., minϕ ‖∇ϕ− ~V ‖. This minimization problem

can be restated as solving the following Poisson equation:

∆ϕ = ∇ · ~V ,

i.e., compute a scalar function ϕ whose Laplacian (di-

vergence of gradient) equals the divergence of ~V . The

algorithm first defines a set of blending functions based on

octree O. For every node o ∈ O, a blending function Fo is

defined by centering and stretching a fixed basis function

F :

Fo(q) ≡ Fo.c,o.w(q) = F

(

q − o.c

o.w

)

1

o.w3
, (3)

where o.c and o.w are the center and width of node o.

The vector field ~V is then defined as:

~V (q) ≡
∑

qi∈Q

∑

o∈OD

αo,qi
Fo(q)~ni =

∑

o∈OD

~voFo(q), (4)

where OD are the octree nodes at depth D, αo,qi
is the

trilinear interpolation weight. Each sample point qi only

distributes its normal to its eight closest octree nodes at

depth D. This works well for all scan data we tested,

although it is preferable to also “splat” the samples into

nodes at other depths for non-uniformly distributed point

samples.

The implicit function ϕ is also expressed in the function

space spanned by {Fo}:

ϕ(q) =
∑

o∈O

ϕoFo(q). (5)

The Poisson equation thus reduces to a sparse linear system:

Lx = b, (6)

where x = {ϕo} and b = {bo} are |O|-dimensional

vectors. The Laplacian matrix entries are the inner products

Lo,o′ = 〈Fo,∆Fo′〉, and the divergence coefficients are

bo =
∑

o′∈OD

〈Fo,∇ · (~vo′Fo′)〉 =
∑

o′∈OD

〈Fo, (~vo′ · ∇Fo′)〉

=
∑

o′∈OD

∫

Fo(q)(~vo′ · ∇Fo′(q))dq =
∑

o′∈OD

~vo′ · ~uo,o′ ,

where ~uo,o′ =
∫

Fo(q)∇Fo′(q)dq.

The linear system can be transformed into successive linear

systems

L
d
x

d = b
d, (7)

one per octree depth d. Since L
d is symmetric and positive

definite, each linear system can be solved using a conjugate

gradient solver. The divergence at finer depths is updated

as:

bd
o ← bd

o −
∑

d′<d

∑

o′∈Od′

Lo,o′ϕo′ , (8)

where Od is the set of octree nodes at depth d.

The basis function F used in [2] is the n-th convolution of

a box filter with itself:

F (x, y, z) ≡ (B(x)B(y)B(z))∗n
, B(t) =

{

1, if |t| < 0.5;
0, otherwise.

(9)

Kazhdan et al. used n = 3 in their implementation. In our

implementation we choose n = 2 instead. This reduces

the support of F to the domain [−1, 1]3 without noticeable

degradation of the reconstructed surfaces. Note that F is a

separable function and can be expressed as:

F (x, y, z) = f(x)f(y)f(z), (10)

where f is the n-th convolution of B with itself.


