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Abstract

We present SPAP (Same Program for All Processors), a container-
based programming language for heterogeneous many-core sys-
tems. SPAP abstracts away processor-specific concurrency and per-
formance concerns using containers. Each SPAP container is a
high level primitive with an STL-like interface. The programmer-
visible behavior of the container is consistent with its sequential
counterpart, which enables a programming style similar to tradi-
tional sequential programming and greatly simplifies heterogenous
programming. By providing optimized processor-specific imple-
mentations for each container, the SPAP system is able to make
programs efficiently run on individual processors. Moreover, it is
able to utilize all available processors to achieve increased perfor-
mance by automatically distributing computations among different
processors through an inter-processor parallelization scheme. We
have implemented a SPAP compiler and a runtime for x86 CPUs
and CUDA GPUs. Using SPAP, we demonstrate efficient perfor-
mance for moderately complicated applications like HTML lexing
and JPEG encoding on a variety of platform configurations.

CR Categories: D.3.3 [Programming Languages]: Concurrent
Programming Models—Language Constructs and Features

Keywords: programming model, heterogeneous platforms, pro-
gramable graphics hardware

1 Introduction

Heterogeneous many-core architectures are increasingly used in
client computing systems. Nowaday commodity systems, such as
desktop computers and notebooks, are frequently shipped with one
multi-core CPU (central processing unit) optimized for scalar pro-
cessing and one many-core GPU (graphics processing unit) capa-
ble of general-purpose throughput processing. Application perfor-
mance can be improved by orders of magnitude if such heteroge-
neous processing power is fully exploited by programmers.

An ideal programming language for heterogeneous systems should
be architecture-independent. It should allow a programmer to write
the same program for all processors, and the program should be
able to not only perform efficiently on each individual processor
but also utilize all available processors to achieve maximum per-
formance. Realizing this ideal, however, is challenging due to the
discrepancy among existing multi-core and many-core processing
models. Processors with different processing models or even differ-
ent processor vendors often have contradictory performance models
spanning from instruction level to algorithm level. For example, on
multi-core x86 CPUs it is beneficial to adjust the number of threads
to the number of cores to avoid context switching costs, while on
NVIDIA Geforce GPUs programmers are encouraged to maximize
the number of threads to utilize the hardware latency-hiding sched-
uler. Such contradictory behaviors frequently motivate different al-
gorithm choices on different processors.

Modern GPU programming languages like CUDA [NVIDIA
2009a], OpenCL [Khronos OpenCL Working Group 2008] and
BSGP [Hou et al. 2008] are evolving to support general-purpose
heterogeneous programming. OpenCL is designed to allow pro-
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forall(x in A){

  B.push_back(x);

  if(x==0xFF){
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Figure 1: The SPAP system architecture. The programmer writes a
high level program using SPAP containers. The SPAP runtime au-
tomatically parallelizes the program to a heterogenous architecture
using a variety of parallelization techniques.

grammers to write kernel functions that may be compiled to both
CPU and GPU, and similar efforts have been made for CUDA
[Stratton et al. 2008]. However, in order to achieve efficient per-
formance, programmers still have to write separate kernels for each
processor because different processors may need different algo-
rithms due to the processing model discrepancy. Consider prefix
sum as an example. An optimized implementation for Geforce
GPUs has to create a sufficient amount of threads and use a multi-
pass parallel algorithm whereas on x86 CPUs a sequential sweep is
usually more efficient. For a program to run efficiently on both GPU
and CPU, the programmer has to implement both algorithms de-
spite that either algorithm can run on both processors. Merge [Lin-
derman et al. 2008] is a notable parallel programming framework
for heterogeneous multi-core systems. It handles the processing
model discrepancy using a predicate-based library system. Using
Merge, a programmer can express computations using architecture-
independent, high-level language extensions in the map-reduce pat-
tern. The Merge system automatically selects the best available
function implementations from the library for a given platform con-
figuration. The system, however, still requires the programmer to
provide optimized variants of each function for different processors
to achieve high performance. As far as we know, most existing
programming frameworks require programmers to write different
programs for different processors to effectively utilize all available
processors in a heterogeneous system.

In this paper, we propose SPAP (Same Program for All Proces-
sors), a container-based parallel programming language for het-
erogeneous many-core systems. The language provides a set of
SPAP containers, each of which is a high level primitive with
an STL (Standard Template Library)-like interface. An important
property of SPAP containers is the behavior consistency, i.e., the
programmer-visible behavior of a SPAP container is consistent with
its sequential counterpart. For exmaple, in the program fragment
in Fig. 1, A and B are two SPAP containers analogous to the STL
vector. The programmer-visible behavior of the B.push_back
operation is consistent with a serial STL vector push_back. In
other words, the content of B after the forall loop enclosing SPAP
push_back calls is exactly same as the content of an STL vector
after a serial for loop enclosing STL push_back calls with similar



arguments. Behavior consistency enables a programming style sim-
ilar to traditional sequential programming, and thus greatly simpli-
fies heterogeneous programming. Moreover, just like the wide use
of STL in sequential programming, programmers are able to build
complicated applications using only a few key SPAP containers
such as resizable list, reduction and prefix sum. By providing op-
timized processor-specific implementations for each key container,
the SPAP system is able to make SPAP programs efficiently run on
individual processors. In short, SPAP containers effectively hide
the processing model discrepancy with a combination of behavior
consistency and optimized implementations.

SPAP also allows programmers to utilize all available processors
of a heterogenous system to get increased performance. This is
achieved by automatically distributing computations among dif-
ferent processors through an inter-processor task parallelization
scheme. Programmers express computation tasks as a number of
work units. The SPAP runtime system dynamically partitions the
work units into subsets and dispatches them based on the availabil-
ity and capacity of processors. The task partitioning and dispatch-
ing are performed iteratively until all work units are processed.

To summarize, this paper discusses the design and implementation
of SPAP, a new programming language for heterogeneous many-
core systems. Specifically, we make the following contributions:

• We propose SPAP, a container-based parallel programming
language that allows the same program to work efficiently on
all processors of a heterogeneous system and fully utilize the
heterogeneous processing power.

• We implement a SPAP system, including a SPAP compiler
and a runtime, for x86 CPUs and CUDA capable GPUs.

• We implement a variety of applications in SPAP, including an
AES cipher, a HTML lexical analyzer and a JPEG encoder.
For the JPEG encoder, heterogeneous processing is observed
to deliver a 7.6× speed up on a quad-core CPU and a GPU
relative to a well-optimized C implementation on a single-
core CPU.

In the rest of the paper, we first describe the programming model
of SPAP using source code examples. In Section 3, we detail the
SPAP language constructs, followed by the description of the SPAP
implementation for x86 CPUs and CUDA GPUs in Section 4. Sec-
tion 5 evaluates our programming language using several examples.
Section 6 reviews related work and Section 7 concludes the paper.

2 Programming Model

In this section we illustrate the programming model of SPAP from
the programmer’s perspective by using source code examples. The
language syntax of SPAP is similar to BSGP [Hou et al. 2008],
which in turn resembles C.

2.1 Containers

Consider a minor subproblem in JPEG encoding. Given a list of
bytes A as input, insert a 0x00 padding byte after each 0xFF byte in
the list to form a new list B.

Listing 1 is the SPAP program for this task. The forall statement
is the fundamental parallel construct in SPAP. A forall loop indi-
cates that each iteration of the loop is completely independent ex-
cept for SPAP container operations. All operations inside forall,
including container operations, are completed once the control flow
is returned to the code following the forall loop.

Listing 1 Padding byte insertion in SPAP

typedef unsigned char byte;

byte<> addPadding(byte<> A){

auto B=new byte<>;

forall(x in A){

B.push_back(x);

if(x==(byte)0xff){

B.push_back((byte)0x00);

}

}

return B;

}

Type byte<> declares a resizable list of bytes. Resizable list is a
fundamental container in SPAP. The push_back operation appends
elements to a list. It guarantees that once the enclosing forall loop
completes, all elements will be appended to the list as if the forall
loop is a sequential for/foreach loop.

Listing 2 x86 padding byte insertion in C++

vector<byte> addPaddingCPU(const vector<byte>& A){

vector<byte> B;

for(int i=0;i<A.size();i++){

byte x=A[i];

B.push_back(x);

if(x==(byte)0xff){

B.push_back((byte)0x00);

}

}

return B;

}

Listing 3 Geforce padding byte insertion in BSGP

dlist(byte) addPaddingGPU(dlist(byte) A){

B=new dlist(byte);

int ntotal;

spawn(A.n){

//use scan to compute final offsets

x=A[thread.rank];

offset=(x==(byte)0xff?2:1);

ntotal=scan(rop_add,offset);

require{

B.resize(ntotal);

}

//write the bytes to the computed offsets

x=A[thread.rank];

B[offset]=x;

if(x==(byte)0xff){B[offset+1]=(byte)0x00;}

}

return B;

}

Listing 2 and Listing 3 are the C++ and BSGP code for the same
task written for x86 CPUs and Geforce GPUs respectively. The
x86 version serially appends the bytes to a standard C++ vector.
Multi-core parallelization is not used due to the parallelization over-
head and bus contention concerns. The Geforce version creates one
thread for each input byte, computes its expected offset in the out-
put list using a collective prefix sum (the scan function) and writes
input/padding bytes to the output list in parallel. This algorithm is
chosen to create sufficiently many threads to achieve maximum pro-
cessor occupancy and thus maximize the effective memory band-
width.

Note the algorithmic difference between Listing 2 and Listing 3.
The programmer has to write and maintain both versions to achieve
portability and efficiency. If OpenCL is used, one may compile ei-
ther of the two algorithms to both processors. However, running
Listing 3 on an x86 CPU would introduce considerable overhead
from the collective scan while running Listing 2 on a Geforce GPU
would result in degenerate performance due to the inability to uti-
lize hardware latency hiding.



Listing 4 Main loop of a parallel 128-bit AES-CTR cipher

void encrypt(void* pdata,int sz,void* pkey,void* pctr){

//Initialization

int n=(sz>>4);

uint rk[44];

initRoundKey(rk,*(uint4*)pkey);

auto l_FSb=new byte<256>;

auto l_FT0=new uint<256>;

memcpy(&l_FSb[0],FSb,sizeof(FSb));

memcpy(&l_FT0[0],FT0,sizeof(FT0));

uint3 c0=*(uint3*)pctr;

//Partition block 0..n-1 across processors

distribute(p0:p1 in 0:n-1){

int m=p1-p0+1;

auto p=new uint4<>;

int base=p.mount((uint4*)pdata+p0,m);

//p[base] now refers to ((uint4*)pdata)[p0]

forall(i=0:m-1){

uint4 x=make_uint4(c0.x,c0.y,c0.z,

bigEndian((uint)(i+p0)));

aesEncodeBlock(x,rk,l_FSb,l_FT0);

p[base+i]^=x;

}

p.unmount();

}

}

Using SPAP containers, the programmer only needs to write a sin-
gle program as in Listing 1. At run time, the SPAP system de-
tects available processors and substitutes respective optimized im-
plementations for container operations. For x86 processors, the sys-
tem replaces the SPAP push_back with an STL-like push_back
when forall is executed on a single core. If forall is paral-
lelized over multiple cores, the appended elements are redirected to
per-core temporary lists that are merged at the end of forall. For
Geforce GPUs, a temporary work space is allocated before forall,
and push_back is replaced by writes to the work space. At the end
of forall, the offset in the final output for each appended ele-
ment is computed using a parallel prefix sum. Finally, the elements
are moved from the work space to their respective final positions.
Please refer to Appendix A for more details about the Geforce im-
plementation.

2.2 Distributing Computations Among Processors

Now we demonstrate how to distribute computation across het-
erogenous processors using SPAP. Consider a 128-bit AES-CTR
cipher [Federal ; Dworkin 2001]. The cipher splits a plain text into
128-bit blocks. Each block is assigned with a counter. The counters
are AES encrypted using an input key and each text block is XOR
(exclusive-or)-ed with its assigned encrypted counter to yield the
cipher text. Since counters for all blocks are independent, all text
blocks can be encrypted in parallel.

Listing 4 is the main loop of a heterogenous parallel AES-CTR ci-
pher. During initialization, two AES lookup tables are copied to
two SPAP lists for later use. Note that SPAP allows a native pointer
to be obtained from a list using operator[] and operator&. The
distribute statement is then used to partition computations into
subsets and dispatch them to available processors. Each subset is
dispatched to a processor, either a CPU core or a GPU with a ded-
icated CPU core that handles the corresponding GPU driver calls.
Each processor then mounts a SPAP list p to its portion of the in-
put data and uses forall to process p, utilizing in-processor data
parallelism if available.

In the distribute statement, a global parallel task is partitioned
into smaller subsets and dispatched to individual processors. The
global task is abstractly represented as an integer interval a:bwhere
every integer between a and b inclusively represents one work unit.

In Listing 4, one work unit corresponds to one plain text block. The
n text blocks to be processed are represented as the integer inter-
val 0:n-1. Whenever a processor becomes available, a subset is
split from the remaining task and dispatched to the processor. The
subset size is determined by an integer measure of the processor’s
processing capability. For example, consider the case where a pro-
cessor with capability k is available and the currently remaining
portion of the global task is a:b. If b-a>=k, the task is split into
two subsets a:a+k-1 and a+k:b. a:a+k-1 is dispatched to the
processor and the remaining portion of global task is replaced by
a+k:b. If b-a<k, task a:b is directly dispatched to the processor
and the distribute statement exits after all processors have fin-
ished their subtasks. Fig. 2 illustrates an example task splitting and
dispatching process.
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Figure 2: Partition and dispatch a task to available processors.

The capability of each processor should be chosen to be small
enough to allow reasonable load balancing among all processors,
and large enough to avoid introducing significant overhead on the
processor. In SPAP, each processor has a default capability value
optimized for work units consisting of a few tens or hundreds of
arithmetic operations. When the default values are inappropriate,
the programmer may specify alternative values.

2.3 Heterogeneous Processing with Containers

In this subsection, we use a more sophisticated example to demon-
strate how to use SPAP containers in heterogeneous processing.
Listing 5 is the code of a parallel prefix lexing [Hillis and Guy
L. Steele 1986] pass in our parallel HTML lexical analyzer. This
pass handles pointed brackets and quotes. The parallel prefix lex-
ing algorithm computes the state of a lexing finite state machine
at each character of an input string. It converts each character to
a state transition table and computes a parallel prefix sum of the
tables using a table composition operator. Our implementation fur-
ther optimizes this algorithm by only computing the prefix sum at
key characters, i.e., characters that correspond to non-identity state
transitions.

In Listing 5, the work is first distributed to all available processors.
A prefix sum container is constructed via makePrefixSum. The
subsequent forall loops over all characters in the current subset
to detect key characters. For each key character, its state transition
table is added to the prefix sum container. Finally, a serialization
task is created using the serialize construct to merge the results
of all subsets.

The code block enclosed by serialize is converted to a sequen-
tial loop over all subsets and executed at the end of the enclosing
distribute statement. For all subsets, the code block is executed



Listing 5 Parallel prefix lexing in HTML lexical analyzer

auto state=0; //Global initial state

auto allpos=new int<>; //Key charater positions

auto allst=new byte<>; //FSM states at key charaters

distribute(p0:p1 in 0:n-1){

auto posi=new int<>;

auto lexer=makePrefixSum(__portable__(byte a,byte b){

//Table composition operator

return

((b>>(((int)a<<1)&6))&(byte)3)+

((b>>(((int)a>>1)&6))&(byte)3)*(byte)4+

((b>>(((int)a>>3)&6))&(byte)3)*(byte)16+

((b>>(((int)a>>5)&6))&(byte)3)*(byte)64;

},(byte)0xE4);

//Loop over key characters

forall"novector"(j=p0:p1){

auto ch=(int)s[j];

//Detect key chars: quotes / pointed brackets

auto symid=((ch-1)<<2)&(8*3);

int chstd=(0x273E3C22>>symid)&0xFF;

if(ch==chstd){

//Generate transition table

auto tab=(byte)(0x6CE0E5D8>>symid);

posi.push_back(j);

lexer.push_back((byte)tab);

}

}

byte end=lexer.total;

//Merge subset results

serialize{

allpos.push_back(posi);

//Compute final states from current global state

forall(tab in lexer.values){

int st=((int)tab>>(state*2))&3;

allst.push_back((byte)st);

}

//Advance the global state to next subset

state=((int)end>>(state*2))&3;

}

}

in the creation order of the subsets, i.e., they are executed as if the
distribute statement is a sequential loop. This is analogous to
behavior consistency.

The makePrefixSum function creates a prefix sum container from
an associative operator and a zero element. At the end of any
forall loop that encloses push_back calls of the container, it
returns the exclusive prefix sum of all appended elements as its
.values member and the total sum as its .total member.

The string "novector" following the forall keyword is a hint to
control the processor-specific code generation in the SPAP runtime.
"novector" prevents the forall from being vectorized. In this
example, the programmer found that vectorization does not signifi-
cantly improve performance and added this hint to avoid generating
unnecessary code.

2.4 Programming Model Summary

To summarize, SPAP supports two levels of parallelism – in-
processor data parallelism through forall, and inter-processor
task parallelism through distribute. This design is chosen to
combine the strengths of the two levels.

The forall loop with container operations is the most fundamen-
tal programming pattern in SPAP since it allows an intuitive and
optimization-friendly definition of SPAP container behaviors. From
the programmer’s perspective, forall resembles for, a common
construct in sequential programming. Intuitively the behavior of
forall is similar to for. This is used as a principle to guide our
container behavior designs. On the other hand, we only guarantee
container behaviors at forall completion points. Container opera-
tions that would otherwise require synchronization like push_back

may be performed en masse as a postprocess. This allows container
operations to be transparently mapped to optimized multi-pass al-
gorithms on GPUs where the synchronization model is either weak
or has high overhead.

While forall iterations may be directly partitioned across hetero-
geneous processors, such partitioning would be ignorant to data lo-
cality. Potentially expensive copies would have to be introduced
implicitly to guarantee container behaviors. Due to the flexibility
of container behaviors, it is difficult, if not impossible, to avoid or
even predict such copies. Therefore, distribute is introduced to
provide locality-conscious computation partitioning. Within each
subtask generated by distribute, all forall loops are guaran-
teed to run on the same processor. Therefore, intermediate data
produced and consumed within the same individual subtask will
not cause implicit copies. This allows programmers to only reason
about data locality issues when considering the input and output
data of each distribute. Finally, to provide an analogy of be-
havior consistency, the serialize construct is provided to give
programmers a way to merge subtask results with minimum con-
currency reasoning.

Our memory model, i.e., the resizable list, is designed to be memory
space oblivious and closely resembles DSM (Distributed Shared
Memory). Lists may be randomly accessed on any processor with-
out regarding where the data is actually stored. List data is implic-
itly copied if accesses to a list are performed on multiple processors.
Like DSM, this semantic hides the underlying memory space from
programmers.

3 Language Constructs

3.1 Forall

As introduced in Section 2.1, forall is the fundamental paral-
lel construct in SPAP. At run time, the code inside each forall
loop is parallelized and compiled ahead of time to native code on
each available processor architecture. Currently, the following par-
allelization techniques are supported:

• Fine grained data parallel. One thread is created for each loop
iteration. This technique is designed for many-core architec-
tures such as a GPU.

• Coarse grained task parallel. The entire loop range is split into
a global queue of equal-sized chunks. Processor cores fetch
and process chunks from the queue in parallel. This technique
is designed for multi-core CPUs.

• No parallelization. The forall loop is executed as a sequen-
tial loop. This technique is a fallback in case the available
parallelism cannot overcome the parallelization overhead.

• Vectorization. The loop is vectorized using processor-specific
SIMD instructions. Vectorization may be used jointly with
any of the above techniques if the corresponding processor
has vector instructions.

Note that it is possible for multiple parallelization techniques to
be applicable on the same platform. In that case, the SPAP run-
time uses a dynamic self-configuring system to choose a competent
variant after a few timed executions. For details, please refer to Sec-
tion 4.4. Alternatively, the programmer may specify parallelization
preferences using hints.

In a forall loop, external variables may be read but cannot be
written. The runtime copies accessed external variables to the ap-
propriate memory spaces of available processors. Also note that



the iterations of a forall loop are not allowed to synchronize or
communicate with each other.

3.2 Resizable List

Resizable list is the fundamental container in SPAP. It is also the
only guaranteed portable way of accessing memory. A resizable
list supports three operations in forall loops:

• operator[] indexes an element in the list. It may be used
to read/write arbitrary list elements. operator[] follows the
acquire/release consistency with the forall entry/exit as the
acquire/release points.

• push_back appends an element into the list. As introduced
in Section 2.1, when the enclosing forall ends, the elements
are appended to the list as if the forall were a sequential
loop.

• add also appends an element into the list. When the enclosing
forall ends, all elements are appended to the list exactly
once but in undefined order.

The three operations are mutually exclusive in forall loops. For
each list in each forall, only one of the three operations can be
used. Outside forall loops, the three operations are also supported
except they are no longer mutually exclusive and add is equivalent
to push_back. Common container operations like new, delete,
resize and reserve are also supported. None of the list opera-
tions are thread-safe outside forall loops, and a per-list lock is
provided as two methods lock and unlock.

The resizable list implementation is provided by the SPAP runtime.
For details, please refer to Section 4.3.

3.3 Distribute

The distribute construct splits a task into subsets and dispatches
them to individual processors. Within distribute, forall loops
appear to be atomic. forall writing the same list in different
subsets are implicitly serialized using locks. List accesses outside
forall loops are not atomic. The programmer is responsible for
serializing them using lock and unlock methods of the lists.

We also provide atomic sections in distribute to help program-
mers to deal with concurrency related problems. Atomic sections
are code blocks enclosed in atomic{} and are executed atomically.
Currently we implement atomic sections using a system-wide lock.

3.4 Miscellaneous

Native Code Interface Our language allows SPAP code and na-
tive code to be mixed in the same file. As illustrated in the code
examples, forall loops are directly inserted into native code and
SPAP resizable lists are manipulated as native objects. We also pro-
vide a function annotation, __portable__, to distinguish SPAP
functions from native functions. __portable__ functions may be
called from both SPAP code and native code, but cannot call na-
tive functions except in processor-specific sections (described later
in this section). For CUDA/BSGP compatibility, we also provide
a __device__ annotation to indicate SPAP functions that can only
be called from SPAP code.

We also provide two methods, mount and map, to allow data ex-
change between SPAP resizable lists and native pointers. mount
binds a list to a native pointer and map obtains a native pointer to a
range of list elements. Native pointers may also be obtained from
lists by using operator& with operator[]. For a code example
of mount, please refer to Listing 4. Note that mount may fail if

the input pointer does not satisfy the alignment requirement of the
list implementation. In that case, a.mount(...) returns a base
subscript base so that a[base] refers to the element at the input
pointer.

Processor-Specific Section An if(targeting("xxx"))

statement is provided to test the targeting platform and insert
a section of platform-specific code. It is useful for low level
optimization on specific processors.

Listing 6 Portable optimized function for float to 8-bit integer con-
version
__portable__ int fast8bit(float f){

if(targeting("CUDA")){

//CUDA GPUs have a dedicated instruction

return __float2int_rn(f);

}else if(targeting("x86")){

//On x86, exploiting IEEE754 format is faster

return __float_as_int(f+8388736.f)^0x4b000080;

}else{

//Revert to portable code on other processors

return (int)floor(f+0.5f);

}

}

Listing 6 is an optimized function to convert a floating point num-
ber to its nearest integer. By utilizing the if(targeting("xxx"))
statement, the function compiles to respective optimized imple-
mentations on CUDA enabled GPUs (like GeForce) and x86 CPUs
while it reverts to a portable version on other processors.

Hinting Optional hints may be supplied at forall statements for
manual parallelization control. Hints are written as a string literal
following the forall keyword as illustrated in Listing 5.

Standard Containers The runtime provides a library of stan-
dard SPAP containers for which an efficient portable implementa-
tion is difficult or impossible. The following is a list of the standard
containers supported in our current SPAP system:

• CPersistentVariable<typename T> defines a variable
of type T that is persistent across iterations in the en-
closing forall loop when the loop is executed sequen-
tially. If the forall loop is not executed sequentially,
CPersistentVariable behaves as an ordinary variable
which is reset to a programmer-specified initial value at the
beginning of each iteration.

• makeTotal(op, z) creates a reduction container for a com-
mutative associative operator op whose zero element is z.

• makePrefixSum(op, z) creates a prefix sum container for
an associative operator op whose zero element is z.

• CHistogram<int N> creates a histogram container that
computes a histogram for integers between 0 and N − 1 in-
clusively.

We plan to add containers for sorting, irregular reduction and disk
I/O in the near future.

4 Implementation

4.1 General Pipeline

Fig. 3 illustrates the pipeline of our SPAP system. Currently the
system consists of a bytecode compiler, a parallelizing runtime
compiler and a runtime library. forall loops are first compiled
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Figure 3: The SPAP system pipeline.

to bytecode fragments. At run time, the bytecode fragments are
parallelized and compiled to available processors by the runtime
compiler.

In order to support processor-specific sections, all operations, in-
cluding arithmetic operations of basic types, are represented using
function calls in our bytecode. For each function, a unique string
is stored in the bytecode to store its name, parameter list and pro-
cessor type. The runtime compiler uses this information to convert
function calls in the bytecode to its IR (Intermediate Representa-
tion) instructions or calls to runtime library functions.

4.2 Standard Containers

The standard containers are implemented using a combi-
nation of code reordering constructs, processor-specific sec-
tions and hard-coded compiler-based translations. List and
CPersistentVariable work as a basis for implementing other
containers. Their operations directly map to bytecode operations
and are translated by the runtime compiler. For higher level con-
tainers, we borrow and generalize the BSGP require [Hou et al.
2008] construct to provide a way to interact with the runtime com-
piler from high level source code. The runtime compiler defines a
number of significant code locations for parallelization techniques.
In container implementations, require is used to insert platform-
specific code into these significant locations on a per-container ba-
sis. Each require statement takes a string for the location name
and a block of code to be inserted. For example, one may write
require("x86.init"){a=new int<>;} to create a list a dur-
ing the initialization of the x86 version. Using require, lists,
CPersistentVariable and processor-specific sections, we are
able to implement all other containers with moderate difficulty.

4.3 Resizable List

An important challenge in implementing the resizable list system is
to allow a list to be randomly accessed from both CPUs and GPUs.
In CUDA, the simplest way to achieve this is to use its "mapped
host memory", i.e., mapping CPU memory into GPU address space.
However, this approach has three problems:

• Expensive PCI-Express bus data transfers are incurred every

time the memory is accessed from GPU. CUDA does not pro-
vide any built-in caching mechanism.

• Mapped host memory is page locked and cannot be swapped
out by the CPU-side OS. It makes the entire system slow and
unstable when allocated in large quantities.

• Not all CUDA enabled GPUs support mapped host memory.

To avoid these issues, we implement lists using VM (virtual mem-
ory) based techniques analogous to software distributed shared
memory [Roy and Chaudhary 1998]. A replica of each list is main-
tained on both CPU and GPU. Consistency between the replicas
is maintained by invalidating pages written on the other proces-
sor. When invalidated pages are accessed, the actual content is
copied from the replica on the other processor in a page fault han-
dler. Since currently CUDA GPUs do not have programmable VM
subsystems, special care needs to be taken to avoid GPU-side VM
operations. We avoid invalidating GPU pages by eagerly synchro-
nizing CPU updates to GPU. Pages modified by GPU are detected
using compile-time access pattern analysis. Currently, the access
pattern analysis only recognizes "coalesced" access patterns, i.e.,
writes with subscripts in the form of the forall loop variable plus
a loop invariant value. When there are unrecognized access pat-
terns, the entire CPU replica is invalidated.

4.4 Parallelization and Variant Selection

Parallelization of the distribute level is handled entirely by the
compiler frontend. The code block enclosed in each distribute
is converted to a function object and the distribute is converted
to a call that invokes a heterogeneous scheduler with the function
object as a parameter. Parallelization of the forall level is done
by the runtime as described in Section 4.1. Currently for each
forall a maximum of three versions may be generated - sequential
x86, vectorized x86 and data parallel CUDA. forall loops outside
distribute may also be parallelized across multiple CPU cores.
Such multi-core parallelization is done by splitting the forall loop
range and invoking the sequential or vectorized x86 version on the
subranges on individual cores in parallel.

When multiple parallelization approaches are applicable for a given
forall, the runtime system has to make decisions and choose
a competent approach. In addition, for forall loops outside
distribute, the subrange size into which the multi-core approach
splits the loop range needs to be tuned. We developed a dynamic
self-configuring system to make these decisions and tune the sub-
range size. Currently the system makes three decisions in the fol-
lowing order: CPU versus GPU, sequential versus vectorized, and
single-core versus multi-core. Note that if the first decision is the
GPU parallelization approach, there is no need to make the other
two decisions. The single-core versus multi-core decision is made
after the more efficient per core approach is found during the se-
quential versus vectorized decision. The decision results are per-
manent. Once a decision is made, its result is saved to disk. After
all decisions are made, no more experiments need to be done and
the chosen technique is used in all subsequent executions.

Sequential versus vectorized and single-core versus multi-core de-
cisions are made via pairwise comparisons. During the first few ex-
ecutions of each forall, the system executes two timed test runs
of two equal-sized subranges of the forall loop range using two
candidate parallelization techniques. After doing a fixed number of
comparisons, the candidate that wins in more tests is chosen as the
final technique. The remaining portion of the loop range is executed
using this final technique. A number of optimizations are made to
improve the stability and minimize the overhead of the decision
making process. Please refer to Appendix B for more details.



The subrange size for parallelizing multi-core forall is iteratively
tuned to make the processing time for each subrange above an em-
pirical threshold T0. At the end of each forall, the subrange size

s is updated to s′ = max
{

s,
T0

T
n
}

, where T is the forall execution

time and n is the number of iterations. T0 is empirically chosen to
be large enough to prevent the multi-core scheduler from introduc-
ing significant overhead while small enough to yield satisfactory
load balance.

The CPU versus GPU decision is more complicated than purely
CPU-side decisions as it depends on the problem scale. GPU may
be more efficient than CPU when there are a sufficiently large num-
ber of iterations in the forall loop, while CPU is always more
efficient when the processing cost of the entire forall is less than
the GPU kernel launch overhead. Our solution is to find a proper
threshold – the GPU approach is used when the iteration count is
above the threshold and the CPU approach is used otherwise. The
threshold is determined using a binary search like method based on
timing comparisons of CPU and GPU approaches. For more details
about the threshold tuning, please refer to Appendix C. Note that
the CPU versus GPU decision only needs to be made for forall
loops outside distribute. In distribute, the CPU versus GPU
decision is solely made according to the type of the available pro-
cessor to avoid violating data locality assumptions.

5 Experimental Evaluation

In this section we use several examples to evaluate the performance
of our SPAP system on x86 CPUs and CUDA GPUs. As mentioned,
an important advantage of SPAP is that it greatly simplifies hetero-
geneous programming by providing portable high level containers.
This assessment is necessarily subjective and the best way to verify
it is to examine SPAP source code and compare the programming
style with alternative programming environments. For this reason,
we provide the SPAP source code of our JPEG encoder in Appendix
D in addition to the code samples in Section 2.

Machine CPU GPU
1 Intel Xeon 3.73GHz ×2 8600GT (32 ALUs)
2 Intel Xeon 3.73GHz ×2 9800GT (112 ALUs)
3 AMD Phenom 2.60GHz ×4 GTX280 (240 ALUs)

Table 1: Test machines used in this paper.

Our evaluation focuses on two points - the overall potential of het-
erogeneous processing using SPAP and the quality of processor-
specific code generated from behavior consistent containers. We
implemented three examples from different application fields and
tested them on a variety of architectures. Table 1 lists our test ma-
chines. The tested GPUs span all three existing generations of the
NVIDIA GeForce brand. The three examples we implemented are:

• AES encrypts a file using the AES-CTR algorithm [Federal ;
Dworkin 2001]. It is a simple, embarrassingly parallel work-
load that evaluates an arithmetic intensive function indepen-
dently on many input blocks.

• HTML generates the list of tags and data contents from a
HTML file. It is a moderately complicated workload that
involves a few behavior consistent container operations like
prefix sum and push_back.

• JPEG is a JPEG image encoder. It is a realistic application and
involves a few processing steps with different parallelization
characteristics.

Table 2 lists the raw performance data for all examples on all test
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Figure 4: Speedup factors comparing to baseline. For the JPEG
example, Intel IPP speedup is also provided as a reference.

machines. Note that for each example, we only need to write one
SPAP program. For each machine, three versions of each example
are tested by using hints to restrict the program to run on three con-
figurations, one on CPU only, one on GPU only and one on both
CPU and GPU. For each example, we also run a CPU baseline im-
plementation to provide reference performance data. For AES and
JPEG, the implementations in Crypto++ and libjpeg are used as
baseline implementations. For HTML, we used the CPU restricted
version of our SPAP program as the baseline since there are no
publicly available implementations. Timings of the JPEG example
include the time taken to write the output file due to the difficulty
of separating output code from the processing code in libjpeg. I/O
time is excluded in other examples. Fig. 4 shows the speedup rela-
tive to baseline implementations, and ideal heterogeneous speedups
are shown as the "ideal" bars. The ideal heterogeneous speedup is
computed by combining the CPU and GPU processing time assum-
ing an ideally balanced workload, i.e., the harmonic mean of the
CPU and GPU processing time.

The potential of heterogeneous processing has been clearly demon-



Machine 1 Machine 2 Machine 3
Baseline Input size Base CPU GPU Both Base CPU GPU Both Base CPU GPU Both

AES Crypto++ 121MiB 679 476 825 424 679 476 520 315 563 312 269 197
HTML SPAP CPU 17MiB 190 190 301 176 190 190 141 128 105 105 44 52

JPEG libjpeg 121MiB 2920 1810 1285 1018 2920 1810 815 727 2532 905 336 334

Table 2: Raw performance measurement. All data represent processing time in milliseconds.
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Figure 5: The percentage of work units assigned to CPU and GPU.

strated. The heterogeneous version consistently achieves a notable
speedup against the baseline. The results on Machine 1 show that
heterogeneous programming allows the overall performance to ben-
efit from the addition of a GPU even when a pure GPU version
does not bring any acceleration. As a result, heterogeneous pro-
gramming allows performance to be improved transparently by in-
stalling or upgrading GPUs, without risking potential performance
degradations that pure GPU approaches may suffer from when the
installed GPU is slower than CPU. On the other hand, our hetero-
geneous processing speedup still has not reached the ideal level.
The heterogeneous version may even be slower than a pure GPU
program when the GPU processing time is too short (e.g., HTML
on Machine 3). This problem may be caused by an overhead in-
troduced at both the CPU side and the GPU side when the CUDA
CPU-GPU data transfer and memory intensive CPU processing are
performed simultaneously. We suspect this is caused by the CPU-
side bus contention between the CPU tasks and the internal code
in the CUDA driver. For heterogeneous processing to be benefi-
cial, the performance gain of CPU processing has to outweigh such
overhead. Currently we are unable to work around this problem.
Nevertheless, Fig. 4 shows that heterogeneous processing on CPU
and GPU is able to outperform CPU (or GPU) alone in a majority
of situations.

Fig. 5 lists the percentage of work units executed on CPU and GPU
for all example-machine combinations. In general, more computa-
tions are distributed to GPU as the GPU becomes faster. GPU is
capable of processing more work units in the floating point inten-
sive JPEG example than the integer intensive AES and HTML ex-
amples. This result shows that the computation partitioning routine
in our distribute construct adapts to different platform configu-
rations reasonably well.

Fig. 6 compares the execution time of different algorithms of the
padding byte insertion problem described in Section 2.1 on differ-
ent processors. The serial algorithm in Listing 2 and the prefix
sum based algorithm in Listing 3 are implemented on both CPU
and GPU, and are compared with the corresponding CPU/GPU re-
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Figure 6: push_back performance comparison between three im-
plementations of the padding byte insertion problem in Section 2.1.

stricted versions of the SPAP program in Listing 1. The test ma-
chine used is Machine 3. The CPU implementation of the the prefix
sum algorithm incurs approximately a 160% overhead. The GPU
implementation of the serial algorithm results in degenerate perfor-
mance as GPU is not optimized for scalar processing. The SPAP
system is able to hide such processing model discrepancy and al-
lows Listing 1 to achieve satisfactory performance on both proces-
sors. Note that the SPAP program is slightly less efficient than the
prefix sum algorithm (Listing 3) on GPU. This is because our con-
tainer interface design does not allow recomputing the appended
elements like in Listing 3 and the elements have to be temporar-
ily written to memory. Nevertheless, we are still able to achieve
satisfactory performance.

We also evaluate the quality of code generated from SPAP contain-
ers by comparing application performance with highly-optimized
processor-specific implementations. The JPEG example is selected
as the basis of this comparison. First, we compare our CPU ver-
sion of JPEG with the IPP (Intel Performance Primitives) library, a
highly-optimized library supplied by Intel. We modified the timing
code in the ijg_timing.c example in IPP 6.1 to print the JPEG en-
coding time in milliseconds. For the test image we used, IPP takes
1280ms on Machine 1/2 and 1228ms on Machine 3. Our CPU ver-
sion performs competitively by taking 1810ms on Machine 1/2 and
905ms on Machine 3 respectively. On the GPU side, our GPU ver-
sion achieves a 3.6× speed up over the libjpeg baseline on a GPU
with 112 ALUs. This is competitive against the latest published re-
sults [Mou and Xing 2008; Wu et al. 2009] we are aware of, which
reported 3.4× and 2.9× speed ups respectively on a GPU with 128
ALUs.

6 Related Work

Our SPAP language combines many elements from existing works.
The forall semantic and DSM-like list are influenced by Chapel
[Callahan et al. 2004] and ZPL [Chamberlain et al. 2000]. The
distribute construct resembles the mappar construct in Sequoia
[Fatahalian et al. 2006]. The idea of simultaneously processing on



both CPU and GPU is inspired by Merge [Linderman et al. 2008],
Harmony [Diamos and Yalamanchili 2008] and OpenCL [Khronos
OpenCL Working Group 2008]. The resizable list operations are
influenced by Direct3D buffers [Blythe 2006] and BSGP collective
operations [Hou et al. 2008]. An important difference between our
work and these previous works is the concept of behavior consis-
tency. In SPAP, high-level behavior consistent containers are pro-
vided to hide concurrency and performance model discrepancies.
This allows many problems to be implemented as unified programs
that are able to work efficiently on heterogenous processors.

The Merge framework [Linderman et al. 2008] is also able to hide
processing model discrepancy by providing a library of function
variants. Although some SPAP container operations may be em-
ulated using functions on certain architectures, it is very difficult,
if not impossible, to completely implement SPAP containers us-
ing a function library. For example, on data parallel architectures
like Geforce, many key container operations (e.g., push_back)
have to be implemented using multi-pass algorithms which con-
tain many separated steps. A few specific steps (e.g., temporary
space management) have to be interleaved with the system-defined
parallelization code that does not correspond to any container oper-
ation calls. The multi-pass algorithms cannot be mapped to simple
functions which can only abstract processing at container operation
calls.

Compared to concurrent containers [Intel ], the SPAP container
semantic is stronger with respect to programmer-visible behavior
and weaker with respect to concurrency. SPAP containers guaran-
tee consistent programmer-visible behaviors with their sequential
counterparts, but such a guarantee only applies at forall bound-
aries. In contrast, concurrent containers only guarantee thread-safe
behaviors while its guarantee holds everywhere in a program. Nei-
ther the SPAP container nor the concurrent container may replace
each other.

Our container semantics resemble the reducer [Frigo et al. 2009] in
Cilk++. The key difference is that SPAP containers are designed
to fully utilize heterogeneous platforms whereas Cilk++ reducers
are designed for a work stealing environment for multi-core CPUs.
SPAP containers allow efficient implementation on data parallel
GPUs where a work stealing environment is impractical to imple-
ment and/or significantly less efficient than hardware schedulers. In
particular, we have demonstrated efficient SPAP container imple-
mentations on Geforce GPUs which do not support general func-
tion call stacks, a fundamental ingredient required by the reducer
semantics definition.

Shared memory for heterogeneous processors has also been pro-
posed in [Saha et al. 2009]. Our list system differs from their work
in that our system may be implemented on existing more restrictive
architectures like Geforce at the cost of not supporting pointers.

7 Conclusion

We have presented SPAP, a new container-based programming lan-
guage for heterogenous many-core systems. SPAP abstracts away
processing model specific concerns using high-level behavior con-
sistent containers. It allows programmers to write unified programs
that are able to run efficiently on heterogeneous processors.

The SPAP system is still in the early stage of development. In
the future, we plan to add more containers to the standard library.
To add a new container, we need to provide optimized implemen-
tations for all known processing models and parallelization tech-
niques. This is a necessary tradeoff as our system abstracts proces-
sor/parallelization specific concerns in the container layer. Second,
we want to exploit more general functionalities of upcoming GPU

architectures like Larrabee [Seiler et al. 2008] and Fermi [NVIDIA
2009b] to broaden the range of SPAP container functionalities. It
is also interesting to generalize the behavior consistency to more
high-level parallel constructs like parallel recursion and nested par-
allelism in addition to our current parallel loops. Finally, we plan to
port SPAP to more architectures like AMD Radeon and CPU/GPU
clusters.
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Appendix A: CUDA push_back Implementa-

tion

Our CUDA push_back implementation uses a multi-pass algo-
rithm. The largest available continuous block of GPU memory is
reserved as a global temporary list before the enclosing forall
statement. During the forall loop, each thread independently
writes appended elements to a private work space allocated from
this global temporary list. At the end of each thread, the starting
address of its private work space and the number of elements it has
appended are saved. After the forall loop, a prefix sum is used to
compute the final address in the result list for the elements appended
by each thread. A final kernel is launched to copy elements from
per-thread private work spaces to their respective final addresses in
the result list.

The key component in this algorithm is the per-thread private work
space allocation. This step has to be implementable on all existing
GeForce GPUs, i.e., it has to be implemented without using any
atomic operations. Our solution is to split the entire global work
space into a fixed number of equal-sized pools and assign each log-
ical thread to a pool based on the thread’s physical SM (Streaming
Multiprocessor) id and in-SM thread id. Such an assignment guar-
antees that no simultaneously executing threads will append to the
same pool and completely eliminates the need of atomic operations.
Each thread loads the tail pointer of its pool to a register at its be-
ginning and stores it at its end. The allocation at each push_back
simply increments the tail pointer.

Note that the algorithm fails if the size of elements appended to any
pool exceeds the pool’s size. Ideally, the number of elements ap-
pended to each pool should be balanced to minimize failures when
sufficient memory is available. Our pool allocation strategy is based
on the physical execution unit assignment. Pool utilization is auto-
matically balanced as the GPU hardware thread scheduler balances
thread workload.

We also optimized two special cases of push_back. When exactly
one push_back is called per iteration for a given list, a resize is
inserted before the forall and the push_back is converted to an
ordinary store. When at most one push_back is called per iteration

for a given list, the push_back is converted to a call to the BSGP
compact collective primitive at the end of the forall.

Appendix B: Optimizations for Pairwise

Comparisons between Parallelization Ap-

proaches

While the raw idea of comparing timings of two parallelization ap-
proaches to find the faster one is relatively simple, in practice many
optimizations are required to minimize the impact of timing errors
and reduce the overhead of timing the slower approach.

To make the comparison more reliable, a comparison result is dis-
carded if the running time of either candidate is shorter than Tsleep.
Tsleep is an approximation of the OS task switch interval currently
measured as the time of a Sleep(1) OS call. We expect Tsleep

to be significantly larger than a majority of low-level timing error
sources like the cache miss, TLB miss and page fault while still
small enough to remain unnoticeable to programmers.

Two optimizations are employed to minimize the overhead intro-
duced by the slower test candidate. The first is to impose an up-
per bound on the forall subrange size used in comparisons. This
makes sure that a majority of the loop range will be executed only
by the winning candidate in the comparison. The upper bound is
initially set to infinity. After each comparison, if the currently faster
candidate takes more than 10Tsleep to process the current compari-
son subrange, the upper bound is reduced to half of the current sub-
range size. The second optimization is to allow early termination
when one parallel approach is significantly more efficient than the
other. After each comparison, if one candidate wins by more than
5Tsleep, it is chosen as the final winner without further comparisons.

Appendix C: CPU-GPU Transition Threshold

Tuning

As mentioned in Section 4.4, the threshold for selecting CPU/GPU
parallelization approaches is determined via a binary search like
method. At initialization, the threshold is first set to 768NS M where
NS M is the number of multiprocessors in the GPU. This value is
an empirical estimation of the required number of threads to fully
utilize the parallelism on GPU. After every forall execution, the
threshold is increased if the CPU approach is faster and decreased
if the GPU approach is faster. The increase and decrease are per-
formed by multiplying a constant factor. The threshold is fixed the
first time the comparison result reverts, i.e., the first time the winner
approach changes.

Special care is required for the CPU versus GPU timing compari-
son. For a given forall, there are two possibilities for the tran-
sition point. When CPU is consistently faster than the GPU for all
loop range sizes, the transition point is at positive infinity. In our ex-
perience, this case rarely occurs and we currently do not handle it.
When GPU is faster than CPU for large loop ranges, the point CPU
processing time exceeds GPU launch overhead may be used as a
reasonably accurate transition point. In this case, the timing results
during threshold tuning may be highly noisy as the GPU launch
overhead is comparable to timing errors like the OS task switch
time. We developed two mechanisms to alleviate this problem. The
first mechanism is to filter noises by taking the most common out-
come of multiple comparisons. The threshold is only increased or
decreased if a number of continuous measurements yield the same
result. The second mechanism is to approximate the GPU launch
overhead as the minimal execution time of all timed GPU execu-
tions. Since all system errors in execution time measurements are
positive, the minimal value typically becomes stable after a small
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Figure 7: Flowchart of the JPEG Encoder

number of timed GPU executions. The minimum approximation
may be expected to be reasonably accurate since when the available
parallelism are not fully utilized on existing GPU architectures, the
execution time is dominated by the kernel launch overhead and the
sequential execution time of one forall iteration.

Appendix D: JPEG Encoder Source Code

1 /*

2 non-bottleneck code, type and tables are copied from

3 Cristian Cuturicu’s 1999 simple jpeg encoder

4 specialized to little endian architecture

5 */

6 #include <windows>

7 #include <emmintrin>

8 #include "jpeg_type_table.h"

9

10 typedef unsigned char byte;

11 typedef unsigned int uint;

12

13 inline int wordSwap(int a){

14 a&=0xffff;

15 return ((a>>8)|(a<<8))&0xffff;

16 }

17

18 // Set quantization table and zigzag reorder it

19 void set_quant(BYTE *basic, BYTE quality,

20 BYTE *newtable){

21 int i;

22 long temp;

23 for (i=0; i<64; i++){

24 temp=((long)basic[i]*(long)quality+50L)/100L;

25 // limit the values to the valid range

26 if(temp<=0L)temp=1L;

27 if(temp>255L)temp=255L;

28 newtable[zigzag[i]]=(BYTE)temp;

29 }

30 }

31

32 static float t_Y[64];

33 static float t_Cb[64];

34 void prepare_quant_tables(){

35 static double a[8] = {1.0, 1.387039845, 1.30656296,

36 1.17587560, 1, 0.78569496, 0.5411961, 0.275899379};

37 BYTE row, col;

38 BYTE i=(byte)0;

39 for (int row=0;row<8;row++){

40 for (int col=0;col<8;col++){

41 t_Y[i]=(float)(1.0/(

42 (double)DQTinfo.Ytable[zigzag[i]]*

43 a[row]*a[col]*8.0));

44 t_Cb[i]=(float)(1.0/(

45 (double)DQTinfo.Cbtable[zigzag[i]]*

46 a[row]*a[col]*8.0));

47 i++;

48 }

49 }

50 }

51

52 void initDQT(BYTE q){

53 DQTinfo.marker = wordSwap(0xFFDB);

54 DQTinfo.length = wordSwap(132);

55 DQTinfo.QTYinfo = 0;

56 DQTinfo.QTCbinfo = 1;

57 set_quant(std_luminance_qt,q,DQTinfo.Ytable);

58 set_quant(std_chrominance_qt,q,DQTinfo.Cbtable);

59 prepare_quant_tables();

60 }

61

62 __portable__ float fastfloatu(int c){

63 if(targeting("CUDA")){

64 return (float)c;

65 }else{

66 return __int_as_float(c+0x4b000000)-8388608.f;

67 }

68 }

69

70 __portable__ float fastfloats(byte c){

71 if(targeting("CUDA")){

72 return (float)(int)(char)c;

73 }else{

74 int z=(int)(uint)c;

75 return __int_as_float(z^0x4b000080)-8388736.f;

76 }

77 }

78

79 __portable__ int fastintus(float f){

80 if(targeting("CUDA")){

81 return __float2int_rn(f)-128;

82 }else{

83 return __float_as_int(f+8388608.f)-0x4b000080;

84 }

85 }

86

87 __portable__ int fastints(float f){

88 if(targeting("CUDA")){

89 return __float2int_rn(f);

90 }else{

91 return __float_as_int(f+8388736.f)^0x4b000080;

92 }

93 }

94

95 __portable__ int fastint16s(float f){

96 if(targeting("CUDA")){

97 return __float2int_rn(f);

98 }else{

99 return __float_as_int(f+8421376.f)^0x4b008000;

100 }

101 }

102

103 void makeYuvBlock(auto py,auto pu,auto pv,auto img,

104 int idelta,int bbase,int nb16,int w,int h){

105 auto nb8=nb16*6;

106 auto wb=(w+15)>>4,hb=(h+15)>>4;

107 //produce UV in the Y block order



108 forall([ofs,xb,yb] in makePartialGrid(

109 bbase*256,(bbase+nb16)*256,

110 256,wb,hb)){

111 auto x=xb*16+(ofs&7)+((ofs&64)>>3);

112 auto y=yb*16+((ofs>>3)&7)+((ofs&128)>>4);

113 auto pc=idelta+(min(y,h-1)*w+min(x,w-1))*3;

114 auto r=fastfloatu((int)img[pc+2]);

115 auto g=fastfloatu((int)img[pc+1]);

116 auto b=fastfloatu((int)img[pc]);

117 auto Y=0.299f*r+0.587f*g+0.114f*b;

118 py.push_back((byte)fastintus(Y));

119 pu.push_back((byte)fastints(0.56433f*(b-Y)));

120 pv.push_back((byte)fastints(0.71326f*(r-Y)));

121 }

122 }

123

124 //round-to-nearest integer /4

125 __portable__ int div4(int c){

126 c+=(c>>31)<<2;

127 c+=2;

128 return c>>2;

129 }

130

131 byte<> downSampleBlock(byte<> pu){

132 auto puh=new byte<>;

133 forall(i=0:pu.n/4-1){

134 auto pos=((i>>6)*4+(((i>>2)&1)+((i>>4)&2)))*64+

135 (i&(3*8+3))*2;

136 int c=0;

137 c+=(int)(char)pu[pos];

138 c+=(int)(char)pu[pos+1];

139 c+=(int)(char)pu[pos+8];

140 c+=(int)(char)pu[pos+9];

141 puh.push_back((byte)div4(c));

142 }

143 return puh;

144 }

145

146 //Compute DC components of one block from CPU

147 int3 makeLastBlock(auto img,int w,int h,

148 int xlast,int ylast){

149 char Ys[256];

150 char us[256];

151 char vs[256];

152 for(int i=0;i<256;i++){

153 auto x=(i&15),y=(i>>4);

154 x=min(xlast+x,w-1);

155 y=min(ylast+y,h-1);

156 auto pc=&img[(y*w+x)*3];

157 auto r=fastfloatu((int)pc[2]);

158 auto g=fastfloatu((int)pc[1]);

159 auto b=fastfloatu((int)pc[0]);

160 auto Y=0.299f*r+0.587f*g+0.114f*b;

161 Ys[i]=((char)fastintus(Y));

162 us[i]=((char)fastints(0.56433f*(b-Y)));

163 vs[i]=((char)fastints(0.71326f*(r-Y)));

164 }

165 int ytot=0,utot=0,vtot=0;

166 for(int i=0;i<64;i++){

167 auto x=(i&7),y=(i>>3);

168 int puv=x*2+(y*2)*16;

169 ytot+=(int)Ys[x+8+(y+8)*16];

170 utot+=div4((int)us[puv]+(int)us[puv+1]+

171 (int)us[puv+16]+(int)us[puv+17]);

172 vtot+=div4((int)vs[puv]+(int)vs[puv+1]+

173 (int)vs[puv+16]+(int)vs[puv+17]);

174 }

175 return make_int3(

176 fastint16s((float)ytot*t_Y[0]),

177 fastint16s((float)utot*t_Cb[0]),

178 fastint16s((float)vtot*t_Cb[0]))

179 }

180

181 __device__ void DCT8(float* a,int pitch){

182 float tmp0,tmp1,tmp2,tmp3,tmp4,tmp5,tmp6,tmp7;

183 float tmp10,tmp11,tmp12,tmp13;

184 float z1, z2, z3, z4, z5, z11, z13;

185 tmp0 = a[pitch*0] + a[pitch*7];

186 tmp7 = a[pitch*0] - a[pitch*7];

187 tmp1 = a[pitch*1] + a[pitch*6];

188 tmp6 = a[pitch*1] - a[pitch*6];

189 tmp2 = a[pitch*2] + a[pitch*5];

190 tmp5 = a[pitch*2] - a[pitch*5];

191 tmp3 = a[pitch*3] + a[pitch*4];

192 tmp4 = a[pitch*3] - a[pitch*4];

193

194 tmp10 = tmp0 + tmp3; /* phase 2 */

195 tmp13 = tmp0 - tmp3;

196 tmp11 = tmp1 + tmp2;

197 tmp12 = tmp1 - tmp2;

198

199 a[pitch*0] = tmp10 + tmp11; /* phase 3 */

200 a[pitch*4] = tmp10 - tmp11;

201

202 z1 = (tmp12 + tmp13) * ((float) 0.707106781);

203 a[pitch*2] = tmp13 + z1; /* phase 5 */

204 a[pitch*6] = tmp13 - z1;

205

206 tmp10 = tmp4 + tmp5; /* phase 2 */

207 tmp11 = tmp5 + tmp6;

208 tmp12 = tmp6 + tmp7;

209

210 z5 = (tmp10 - tmp12) * ((float) 0.382683433);

211 z2 = ((float) 0.541196100) * tmp10 + z5;

212 z4 = ((float) 1.306562965) * tmp12 + z5;

213 z3 = tmp11 * ((float) 0.707106781);

214

215 z11 = tmp7 + z3; /* phase 5 */

216 z13 = tmp7 - z3;

217

218 a[pitch*5] = z13 + z2; /* phase 6 */

219 a[pitch*3] = z13 - z2;

220 a[pitch*1] = z11 + z4;

221 a[pitch*7] = z11 - z4;

222

223 }

224

225 struct CDctCoefficient{

226 short a[64];

227 };

228 void dctQuantitize(CDctCoefficient<> ret,int rbase,

229 byte<> a,int dcpre,int dclast,float[64] tab){

230 int nb;

231 nb=a.n>>6;

232 auto dc=new short<nb+1>;

233 forall(i=0:nb-1){

234 float d[64];

235 auto ib=i*64;

236 For(j=0:63){

237 d[j]=fastfloats(a[ib+j]);

238 }

239 For(j=0:7){

240 DCT8(d+j*8,1);

241 }

242 For(j=0:7){

243 DCT8(d+j,8);

244 }

245 int ri=rbase+i;

246 For(j=0:63){

247 const{j2=(int)zigzag[j];}

248 int q=fastint16s(d[j]*tab[j]);

249 if(j==0){

250 dc[i+1]=(short)q;

251 }

252 ret[ri].a[j2]=(short)q;

253 }

254 }

255 dc[0]=dcpre;

256 ret[rbase+nb-1].a[0]=dclast;

257 forall(i=0:nb-1){

258 ret[rbase+i].a[0]-=dc[i];

259 }

260 }

261

262 __device__ void getCategoryBitcode(

263 int& category,int& bitcode,int a){

264 if(targeting("CUDA")){

265 int fi=__float_as_int((float)a);

266 category=((fi>>23)&0xff)-0x7e;

267 }else{

268 int ap=(int)a;

269 if(ap<0){ap=-ap;}

270 category=1;

271 if(targeting("x86")){

272 category+=_BitScanReverse(ap);

273 }else{



274 if(ap>=256){ap>>=8;category+=8;}

275 if(ap>=16){ap>>=4;category+=4;}

276 if(ap>=4){ap>>=2;category+=2;}

277 if(ap>=2){/*ap>>=1;*/category+=1;}

278 }

279 }

280 bitcode=(int)a;

281 if(bitcode<0)bitcode+=(1<<category)-1;

282 }

283

284 const int HASH_DC=0;

285 const int HASH_AC=1;

286

287 //RLE and Huffman encoding

288 __device__ int encodeBlock(

289 byte<> huffman,

290 int& nbit,int& bits,

291 auto dct,int bid,int isUV,

292 int<> lgs,int<> codes){

293 int total=0;

294 isUV*=(16+256);

295 auto bitsWriter=[](int cat,int sym){

296 total+=cat;

297 nbit+=cat;

298 bits=(bits<<cat)+sym;

299 For(i=0:1){

300 if(nbit>=8){

301 nbit-=8;

302 huffman.push_back((byte)(bits>>nbit));

303 }

304 }

305 };

306 auto huffManWriter=[](int side,int sym){

307 int hsym=side*16+isUV+sym;

308 bitsWriter(lgs[hsym],codes[hsym]);

309 };

310 int Diff=(int)dct[bid].a[0];

311 int category,bitcode;

312 if (Diff == 0){

313 huffManWriter(HASH_DC,0); //Diff might be 0

314 }else{

315 getCategoryBitcode(category,bitcode,Diff);

316 huffManWriter(HASH_DC,category);

317 bitsWriter(category,bitcode);

318 }

319

320 // Encode ACs

321 int nz=0;

322 for(int i=1;i<64;i++){

323 int c=(int)dct[bid].a[i];

324 if(c==0){

325 nz++;

326 }else{

327 For(j=0:2){

328 if(nz>=16){

329 huffManWriter(HASH_AC,0xf0);

330 nz-=16;

331 }

332 }

333 getCategoryBitcode(category,bitcode,c);

334 huffManWriter(HASH_AC,nz*16+category);

335 bitsWriter(category,bitcode);

336 nz=0;

337 }

338 }

339 if(nz)huffManWriter(HASH_AC,0);

340 return total;

341 }

342

343 class chuffmantab{

344 int<> codes;

345 int<> lgs;

346 byte* syms;

347 int nsym;

348 void __init__(byte* nrcodes,byte* values,int n){

349 this.nsym=n;

350 this.syms=new byte[n+16];

351 memcpy(this.syms,nrcodes+1,16);

352 memcpy(this.syms+16,values,n);

353 //make huffman table

354 struct clengthid{

355 int lg;

356 int id;

357 };

358 auto nx= n==12?16:256;

359 this.lgs=new int<nx>;

360 this.codes=new int<nx>;

361 auto lgsrt=new clengthid[n];

362 auto p=0;

363 for(int lg=1;lg<=16;lg++){

364 auto nlg=(int)nrcodes[lg];

365 for(int i=0;i<nlg;i++){

366 auto id=(int)values[p];

367 lgsrt[p].lg=lg;

368 lgsrt[p].id=id;

369 this.lgs[id]=lg;

370 p++;

371 }

372 }

373 auto clg=0,ccode=0;

374 for(int i=0;i<n;i++){

375 auto lgi=lgsrt[i].lg;

376 if(!lgi)continue;

377 while(clg<lgi){

378 clg++;

379 ccode+=ccode;

380 }

381 this.codes[lgsrt[i].id]=ccode;

382 ccode++;

383 }

384 delete lgsrt;

385 }

386 __done__(){

387 if(this.syms)delete this.syms;

388 }

389 };

390

391 inline void writeBuf(byte*& pjpeg,void* buf,int n){

392 memcpy(pjpeg,buf,n);

393 pjpeg+=n;

394 }

395

396 byte<> compactHuffman(auto huffman0, auto outofs,

397 auto totbits,auto inofs,auto nbithuff){

398 auto huffman=new byte< (nbithuff+7)>>3 >;

399 forall(pout in outofs with

400 total in totbits, pin in inofs){

401 int nbshift=-pout&7;

402 pout+=nbshift;

403 pout>>=3;

404 int nmybit=total-nbshift;

405 int nbfill=((nmybit+7)>>3)-1;

406 int p=pin;

407 for(int j=0;j<nbfill;j++){

408 huffman[pout++]=(byte)((

409 (int)huffman0[p]<<nbshift)+

410 ((int)huffman0[p+1]>>(8-nbshift)));

411 p++;

412 }

413 if(nbfill>=0){

414 //tail byte

415 int nbit=nmybit-(nbfill<<3);

416 int bits=(int)huffman0[p]<<nbshift;

417 if(nbit>(8-nbshift))

418 bits+=(int)huffman0[p+1]>>(8-nbshift);

419 bits>>=(8-nbit);

420 int ptotbits=__index+1;

421 while(nbit<8&&ptotbits<totbits.n){

422 int nbnext=min(totbits[ptotbits],8);

423 nbit+=nbnext;

424 bits=(bits<<nbnext)+((int)huffman0[

425 inofs[ptotbits]]>>(8-nbnext));

426 ptotbits++;

427 }

428 //last byte case

429 if(nbit<8){

430 bits<<=(8-nbit);

431 }else{

432 bits>>=nbit-8;

433 }

434 huffman[pout++]=(byte)bits;

435 }

436 }

437 return huffman;

438 }

439



440 int rleAndHuffman(byte<> huffman,auto dct,auto nb,

441 auto lgsAll,auto codesAll){

442 auto totbits=new int<>;

443 auto inofs=new int<>;

444 auto p_nbit=new CPersistentVariable(int)(0);

445 auto p_bits=new CPersistentVariable(int)(0);

446 auto p_total=new CPersistentVariable(int)(0);

447 auto nbithuff=0;

448 forall"novector,nomeasure"(

449 [what,bid] in makeGrid(6,nb)){

450 auto b;

451 if(what<4){

452 b=bid*4+what;

453 }else{

454 b=bid+nb*what;

455 }

456 int nbit=p_nbit.value, bits=p_bits.value;

457 int total=encodeBlock(huffman,

458 nbit,bits,

459 dct,b,what>>2,

460 lgsAll,codesAll);

461 p_nbit.value=nbit;

462 p_bits.value=bits;

463 p_total.value+=total;

464 if(targeting("CUDA")){

465 // On GPU, we have to compact per-block

466 //huffman after this pass.

467 if(nbit>0){

468 bits<<=(8-nbit);

469 huffman.push_back((byte)bits);

470 }

471 totbits.push_back(total);

472 inofs.push_back((total+7)>>3);

473 }

474 }

475 if(p_total.value!=0){

476 int endnbit=p_nbit.value;

477 int endbits=p_bits.value;

478 nbithuff=p_total.value;

479 if(endnbit>0){

480 endbits<<=(8-endnbit);

481 huffman.push_back((byte)endbits);

482 }

483 }else{

484 //compact per-block huffman bits for GPU

485 auto outofs=new int<totbits.n>;

486 nbithuff=scan(rop_add,outofs,totbits);

487 scan(rop_add,inofs,inofs);

488 auto huffman0=huffman;

489 huffman=compactHuffman(huffman0,outofs,

490 totbits,inofs,nbithuff);

491 }

492 return nbithuff;

493 }

494

495 byte<> encodeJpeg(byte* pimg,int w,int h,int quality){

496 auto jpeg=new byte<>;

497 jpeg.storageSide=STORE_CPU;

498 SOF0info.width=wordSwap(w);

499 SOF0info.height=wordSwap(h);

500 initDQT((BYTE)quality);

501 auto hddcY=new chuffmantab(

502 std_dc_luminance_nrcodes,

503 std_dc_luminance_values,12);

504 auto hdacY=new chuffmantab(

505 std_ac_luminance_nrcodes,

506 std_ac_luminance_values,162);

507 auto hddcUV=new chuffmantab(

508 std_dc_chrominance_nrcodes,

509 std_dc_chrominance_values,12);

510 auto hdacUV=new chuffmantab(

511 std_ac_chrominance_nrcodes,

512 std_ac_chrominance_values,162);

513 auto lgsAll=new int<>;

514 auto codesAll=new int<>;

515 lgsAll.add(hddcY.lgs);

516 lgsAll.add(hdacY.lgs);

517 lgsAll.add(hddcUV.lgs);

518 lgsAll.add(hdacUV.lgs);

519 codesAll.add(hddcY.codes);

520 codesAll.add(hdacY.codes);

521 codesAll.add(hddcUV.codes);

522 codesAll.add(hdacUV.codes);

523 //file header

524 DHTinfo.length=4+16*4+(12+162)*2+2;

525 jpeg.resize(sizeof(APP0info)+sizeof(DQTinfo)+

526 sizeof(SOF0info)+2+(int)DHTinfo.length+

527 sizeof(SOSinfo));

528 DHTinfo.length=wordSwap((int)DHTinfo.length);

529 auto pjpeg=&jpeg[0];

530 #define writeBig(buf) \

531 memcpy(pjpeg,&buf,sizeof(buf));\

532 pjpeg+=sizeof(buf)

533 writeBig(APP0info);

534 writeBig(DQTinfo);

535 writeBig(SOF0info);

536 writeBig(DHTinfo);

537 writeBig((byte)0x00);

538 writeBuf(pjpeg,hddcY.syms,hddcY.nsym+16);

539 writeBig((byte)0x10);

540 writeBuf(pjpeg,hdacY.syms,hdacY.nsym+16);

541 writeBig((byte)0x01);

542 writeBuf(pjpeg,hddcUV.syms,hddcUV.nsym+16);

543 writeBig((byte)0x11);

544 writeBuf(pjpeg,hdacUV.syms,hdacUV.nsym+16);

545 writeBig(SOSinfo);

546 assert(pjpeg-&jpeg[0]==jpeg.n);

547 #undef writeBig

548 //encoding starts

549 auto winb=(w+15)>>4;

550 auto hinb=(h+15)>>4;

551 auto nbtot=winb*hinb;

552 int nbittotal=0,nbittar=0;

553 lgsAll.broadcast();

554 codesAll.broadcast();

555 distribute(b0:b1 in 0:nbtot-1 step [1<<8, 1<<14]){

556 auto y0=b0/winb,x0=b0-y0*winb;

557 auto y1=b1/winb,x1=b1-y1*winb;

558 int base;

559 //Cross-processor boundary handling:

560 // Recompute first and last block’s DC

561 // components from CPU to hide precision

562 // discrepancy.

563 int3 dcpre=make_int3(0,0,0);

564 if(b0>0){

565 auto y0pre=(b0-1)/winb;

566 auto x0pre=(b0-1)-y0pre*winb;

567 auto xpre=x0pre*16,ypre=y0pre*16;

568 dcpre=makeLastBlock(pimg,w,h,xpre,ypre);

569 }

570 int3 dclast=makeLastBlock(pimg,w,h,x1*16,y1*16);

571 auto ptrbase=((y0*16)*w+x0*16)*3;

572 auto img=new byte<>;

573 base=img.mount(pimg+ptrbase,

574 (min(y1*16+15,h-1)*w+min(x1*16+15,w-1)+1)*3-

575 ptrbase);

576 //RGB to YCbCr

577 auto py=new byte<>;

578 auto pu=new byte<>;

579 auto pv=new byte<>;

580 makeYuvBlock(py,pu,pv, img,base-ptrbase,

581 b0,b1+1-b0, w,h);

582 //CbCr downsampling

583 auto puh=downSampleBlock(pu); delete pu;

584 auto pvh=downSampleBlock(pv); delete pv;

585 int nb=b1+1-b0;

586 //DCT and quantitize

587 auto dct=new CDctCoefficient<nb*6>;

588 dctQuantitize(dct,0,py,dcpre.x,dclast.x,t_Y);

589 delete py;

590 dctQuantitize(dct,nb*4,puh,dcpre.y,dclast.y,t_Cb);

591 delete puh;

592 dctQuantitize(dct,nb*5,pvh,dcpre.z,dclast.z,t_Cb);

593 delete pvh;

594 //RLE and Huffman encoding

595 auto huffman=new byte<>;

596 auto nbithuff=rleAndHuffman(huffman,dct,nb,

597 lgsAll,codesAll);

598 if(b1==nbtot-1&&(nbithuff&7)!=0){

599 //one-bits fill for last block

600 huffman[huffman.n-1]|=

601 (byte)(1<<(-nbithuff&7)-1);

602 }

603 img.unmount();

604 serialize{

605 nbittotal+=nbithuff;



606 if(spap.isLastTask){

607 auto szreserve=(int)(

608 (float)((nbittotal+7)>>3)*1.05f);

609 jpeg.reserve(jpeg.n+szreserve);

610 }

611 }

612 serialize{

613 auto nbshift=-nbittar&7;

614 auto nblast=8-(-nbithuff&7);

615 if(nbshift){

616 auto blast=(jpeg[jpeg.n-1]|=

617 huffman[0]>>(8-nbshift));

618 if(blast==(byte)0xff){

619 jpeg.push_back((byte)0x00);

620 }

621 forall"novector,nomcore"(

622 i=0:huffman.n-2){

623 auto b=(huffman[i]<<nbshift)+

624 (huffman[i+1]>>(8-nbshift));

625 jpeg.push_back(b);

626 if(b==(byte)0xff){

627 jpeg.push_back((byte)0x00);

628 }

629 }

630 //last byte

631 if(nbshift<nblast){

632 jpeg.push_back(

633 huffman[huffman.n-1]<<nbshift);

634 }

635 }else{

636 forall"nosse,nomcore"(b in huffman){

637 jpeg.push_back(b);

638 if(b==(byte)0xff){

639 jpeg.push_back((byte)0x00);

640 }

641 }

642 }

643 nbittar+=nbithuff;

644 }

645 }

646 jpeg.push_back((byte)0xff);

647 jpeg.push_back((byte)0xd9);

648 return jpeg;

649 }

650

651 ////////////////////////////////////////////////////

652 long long tbegin(){

653 long long t0;

654 spapFlush();

655 QueryPerformanceCounter((LARGE_INTEGER*)&t0);

656 return t0;

657 }

658

659 double tend(long long t0){

660 long long t1,freq;

661 spapFlush();

662 QueryPerformanceCounter((LARGE_INTEGER*)&t1);

663 QueryPerformanceFrequency((LARGE_INTEGER*)&freq);

664 return (double)(t1-t0)/(double)freq;

665 }

666

667 int main(int argc,char** argv){

668 int w=0,h=0;

669 auto bmp=new byte<>;

670 auto qual=50;

671 if(argc<=1){

672 return 0;

673 }else{

674 auto f=fopen(argv[1],"rb");

675 if(!f){

676 printf("unable to open bmp %s\n",argv[1]);

677 return 0;

678 }

679 fseek(f,0x12,SEEK_SET);

680 fread(&w,sizeof(w),1,f);

681 fread(&h,sizeof(h),1,f);

682 fseek(f,0x36,SEEK_SET);

683 bmp.resize(w*h*3);

684 auto pbmp=&bmp[0];

685 for(int i=0;i<h;i++){

686 auto pline=pbmp+(h-1-i)*w*3;

687 fread(pline,3*w,1,f);

688 auto alg=(-3*w)&3;

689 if(alg){

690 fseek(f,alg,SEEK_CUR);

691 }

692 }

693 fclose(f);

694 if(argc>=3){

695 sscanf(argv[2],"%d",&qual);

696 }

697 }

698 //do the encoding

699 auto f=fopen("!out.jpg","wb");

700 auto t0=tbegin();

701 auto jpeg=encodeJpeg(&bmp[0],w,h,qual);

702 auto pj=jpeg.apiSafeMap(map_CPU|map_read);

703 auto th1=tbegin();

704 fwrite(pj,1,jpeg.n,f);

705 auto tio=tend(th1);

706 auto t=tend(t0);

707 fclose(f);

708 printf("I/O time: %.2lfms\n",tio*1000.);

709 printf("Encoding time: %.2lfms\n",t*1000.);

710 return 0;

711 }


