
Memory-Scalable GPU Spatial Hierarchy Construction

Qiming Hou� Xin Suny Kun Zhouz Christian Lauterbachx Dinesh Manochax

� Tsinghua University y Microsoft Research Asia z Zhejiang University x University of North Carolina at Chapel Hill

Abstract

Recent GPU algorithms for constructing spatial hierarchies have
achieved promising performance for moderately complex models
by using the BFS (breadth-�rst search) construction order. While
being able to exploit the massive parallelism on the GPU, the BFS
order also consumes excessive GPU memory, which becomes a
serious issue for interactive applications involving very complex
models with more than a few million triangles. In this paper, we
propose to use the PBFS (partial breadth-�rst search) construction
order to control memory consumption while maximizing perfor-
mance. We apply the PBFS order to two hierarchy construction
algorithms. The �rst algorithm is for kd-trees that automatically
balances between the level of parallelism and intermediate memory
usage. With PBFS, peak memory consumption during construction
can be ef�ciently controlled without costly CPU-GPU data trans-
fer. We also develop memory allocation strategies to effectively
limit memory fragmentation. The resulting algorithm scales well
with GPU memory and constructs kd-trees of models with millions
of triangles at interactive rates on GPUs with 1GB memory. Com-
pared with existing algorithms, our algorithm is an order of mag-
nitude more scalable for a given GPU memory bound. The sec-
ond algorithm is for out-of-core BVH (bounding volume hierarchy)
construction for very large scenes based on the PBFS construction
order. At each iteration, all constructed nodes are dumped to the
CPU memory, and the GPU memory is freed for the next iteration's
use. In this way, the algorithm is able to build trees that are too
large to be stored in the GPU memory. Experiments show that our
algorithm can construct BVHs for scenes with up to 20M triangles,
several times larger than previous GPU algorithms.

Keywords: memory bound, kd-tree, bounding volume hierarchy

1 Introduction

Current many-core GPUs have evolved into incredible computing
processors for general purpose computation, and this evolution is
likely to continue in the future. Recently, GPU construction of hi-
erarchical data structures such as kd-trees [Zhou et al. 2008] and
BVHs [Lauterbach et al. 2009] has shown great promise in a vari-
ety of applications, including ray tracing, photon mapping, point
cloud modeling and simulations. Unlike traditional CPU-based
algorithms, which build hierarchical data structures following the
DFS (depth-�rst search) order, the GPU algorithms achieve inter-
active construction by using the BFS (breadth-�rst search) order,
which best exploits the massive parallelism on the GPU. These al-
gorithms exploit the multiple cores and high memory bandwidth in
terms of building hierarchies of moderately complex models at in-
teractive rates. Unfortunately, this parallel computation comes at
the cost of excessive memory consumption overhead because the
GPU algorithms need to maintain and process a large amount of
data simultaneously. This becomes a serious issue for interactive
applications involving complex models with more than a few mil-
lion triangles [Zhou et al. 2008; Lauterbach et al. 2009]. Current
GPUs have a different memory architecture than CPUs. The on-
board memory on GPUs is limited to a few GBs. Moreover, GPUs
have high memory bandwidth, much smaller per-thread caches and
GPU's memory limitation can not be virtualized by on-demand pag-

(a) Falling objects (b) Running animals

Figure 1: Kd-tree construction and ray tracing of two large ani-
mated scenes. (a) 7,140K triangles, 612 instances of three models
each of which has 5K-20K triangles. (b) 6,763K triangles, a ter-
rain and 135 instances of three skinning meshes each of which has
17K-85K triangles. For each scene, at each frame, we construct a
kd-tree and use it to ray trace the scene completely on the GPU.
Images are rendered at1024� 1024resolution with 4 point lights.
Note that object instancing is solely used to simplify animation pro-
duction and is not exploited by the kd-tree constructor.

ing. As a result, it is important to design GPU-based algorithms that
can cope with these memory architecture characteristics of GPUs
for interactive applications.

An important characteristic of many-thread algorithms running on
parallel processing platforms is that the memory consumption is
correlated with the level of parallelism. GPU's architecture exag-
gerates this issue as it requires signi�cantly more parallel threads
than physical execution units to perform ef�ciently. Executing
more computations in parallel requires simultaneously maintaining
more intermediate data and thus consumes more memory. The key
idea of this paper is to make proper tradeoffs between memory con-
sumption and level of parallelism to control memory consumption
while maximizing performance. For hierarchy construction, such
tradeoffs are facilitated by the PBFS (partial breadth-�rst search)
order. Unlike the BFS and DFS, the PBFS allows the set of tree
nodes being processed simultaneously to be explicitly controlled
in each iteration, and thereby enables management of the memory
consumption and level of parallelism. By carefully tuning the set
of nodes being processed simultaneously, we can achieve a good
balance between them. Note that the PBFS only affects the order
of node processing and does not impact the quality of the resulting
hierarchy.

We apply the PBFS order to two hierarchy construction algorithms.
The �rst algorithm is a GPU kd-tree algorithm that achieves su-
perior performance for a given memory bound. The algorithm
uses PBFS to automatically adapt the level of parallelism based
on available memory and thus allows the peak memory consump-
tion to be controlled without swapping any data out of the GPU.
On an NVIDIA GeForce GTX 280 GPU with 1 GB memory, we
can construct kd-trees of scenes with up to several million triangles
at interactive rates. The second algorithm is an out-of-core BVH
construction algorithm on the GPU. Compared to kd-tree construc-

tion, BVH construction has a relatively small memory overhead. It
does not split triangles and does not need to dynamically allocate
GPU memory. Consequentially, the primitive storage remains static
throughout the construction and the �nal tree size can be bounded
prior to construction. However, the memory consumption will still
exceed the available GPU memory for very large scenes. We use
PBFS to extend BVH construction to handle such scenes. At each
PBFS iteration, all constructed nodes are dumped to the CPU mem-
ory or disk, and the GPU memory is freed for the next iteration's
use. In this way, the algorithm is able to build trees that are too
large to be stored in the GPU memory. Our algorithm can construct
BVHs for scenes with up to 20M triangles.

As far as we know, ours are the �rst GPU hierarchy construction
algorithms that are designed with a memory bound in mind. Our
methods can handle scenes nearly an order of magnitude larger
than previous GPU methods. For small scenes that previous GPU
methods can handle, our algorithm achieves similar construction
performance. For large scenes, our method performs comparably
to the state-of-the-art multi-core CPU algorithms in terms of con-
struction time while maintaining tree quality similar to high quality
methods. In general our methods scale well with respect to the
amount of available memory, and hierarchy construction can be
performed within user-speci�ed memory bounds at a modest per-
formance cost.

We will brie�y review previous work relevant to fast spatial hier-
archy construction in Section 2. In Section 3, we describe our
memory-scalable kd-tree construction algorithm. Section 4 de-
scribes how to use the PBFS order to support out-of-core BVH con-
struction on the GPU. Finally, we present results in Section 5.

2 Related Work

Several CPU-based algorithms have been proposed for fast con-
struction of SAH (surface area heuristic) kd-trees [Goldsmith and
Salmon 1987; MacDonald and Booth 1990], which are com-
monly regarded to offer optimal ray tracing performance. Hunt
et al. [2006] approximated the SAH cost function to achieve
sub-interactive construction with minimal degradation in tree qual-
ity. Shevtsov et al. [2007] developed an interactive parallel con-
struction algorithm with a modest memory footprint on multi-core
CPUs. However, their tree suffers from considerable quality loss.
Soupikov et al. [2008] recently introduced approximate triangle
clipping to compensate for this quality loss within a similar con-
struction time. However with both algorithms, tests show serious
scalability issues at more than a few hundred threads. This makes
them inappropriate for massively parallel architectures like GPUs.

Zhou et al. [2008] proposed the �rst kd-tree construction that runs
entirely on the GPU. The algorithm maximizes parallelism in the
construction process and scales well to GPUs with hundreds of
cores. High quality trees can be constructed in rapid time. How-
ever, the high parallelism is achieved at the cost of excessive mem-
ory consumption. This results in a scene size limitation one order of
magnitude smaller than previous methods. We use the node split-
ting schemes of [Zhou et al. 2008] to maintain tree quality and con-
struction performance but introduce novel parallelization and mem-
ory management techniques to bound the memory consumption.

BVH is an alternative spatial hierarchy for ray tracing that favors
build time over tracing performance. Ef�cient construction has
been demonstrated on both CPU and GPU [Wald 2007; Wald et al.
2008; Lauterbach et al. 2009]. Recent work also demonstrates
ray tracing performance improvement by incorporating kd-tree-like
features into BVHs [Ernst and Greiner 2007]. The state-of-the-art
GPU BVH construction algorithm [Lauterbach et al. 2009] has a
work-�ow resembling GPU kd-tree construction. We apply the

4 4

3

2

1 1

0

5 5

3 6 6

2

(a) DFS kd-tree construction

3 3 3 3 3 3 3 3

2 2 2 2

1 1

0

(b) BFS kd-tree construction

4 4 4 4

3 3

2 2

1 1

0

5 5 5 5

3 3

2

6 6 6 6

2

(c) Our PBFS kd-tree construction

constructed node splitting node unconstructed node

Figure 2: Different kd-tree construction orders. The number in
each node corresponds to the iteration it is created in.

the PBFS construction order to the hybrid algorithm described in
[Lauterbach et al. 2009] for out-of-core BVH construction of very
large scenes.

Wachter and Keller [2007] tackled the memory problem of kd-trees
from a different perspective. They terminated the splitting node
when necessary to bound the �nal hierarchy size. Their approach
puts the tree quality at risk and does not apply to hierarchies with
naturally bounded size like BVH. In contrast, our work seeks to
control the work memory requirement during construction while
maintaining tree quality. Lauterbach et al. [2008] reduced the mem-
ory consumption by using triangle strips. We still use triangle lists
because they are more general and widely used in computer graph-
ics. Paging systems like virtual memory can be used to handle large
data within limited physical memory, effectively providing out-of-
core support for any algorithm. Built-in virtual memory support can
be expected in future GPUs such as Larrabee [Seiler et al. 2008]. A
general paging-like out-of-core system also has been demonstrated
on current hardware [Budge et al. 2009]. While paging systems can
be very ef�cient when handling large input/output, paging interme-
diate work memory can result in signi�cant performance overhead.
Our PBFS aims to overcome this problem by bounding work mem-
ory within available physical memory. PBFS can also be used in
combination with paging systems to handle out-of-core input/out-
put more ef�ciently.

Memory-bounded situations have been investigated in traditional
parallel programming research [Sun and Ni 1993]. The main focus
there is the tradeoff between data replication and communication in
distributed systems. Our work controls peak memory usage by lim-
iting the creation of new data and does not involve data replication.

3 Memory-Scalable KD-Tree Construction

Most CPU-based kd-tree construction methods follow the natural
DFS order. Even multi-core CPU algorithms follows the DFS or-

der in the majority of their pipelines. While the DFS order has a
small memory footprint, it is dif�cult to achieve good scalability on
more than a few hundred of threads. GPU-based constructors fol-
low the BFS order [Zhou et al. 2008; Lauterbach et al. 2009]. The
BFS maximizes the number of nodes constructed simultaneously
and thus bene�ts from the high parallelism of the GPU to outper-
form DFS methods. However it also results in a signi�cantly larger
memory footprint.

During kd-tree construction, each node being split requires stor-
age of extra temporary data for the subsequent computation. Thus,
the memory consumption is proportional to the number of nodes
being split simultaneously. Based on this, we can make a rough
comparison of the memory cost between DFS and BFS schemes.
Fig. 2 illustrates the set of splitting nodes maintained simultane-
ously in three construction schemes. The number of splitting nodes
with the DFS scheme is proportional to the current construction
depth, as shown in Fig. 2(a). For a scene withn primitives, this
depth isO(log n). In a BFS constructor, the number of splitting
nodes grows exponentially with the construction depth and eventu-
ally reachesO(n). This is shown in Fig. 2(b). This kind of extreme
difference leads to a heavy storage load for the BFS construction
scheme.

We introduce a partial breadth-�rst search (PBFS) solution to com-
promise between parallelism and the size of the peak memory foot-
print. We control the peak memory by tuning the number of nodes
being split simultaneously. Compared to the exhaustive BFS, the
PBFS only splits part of the nodes at a time. This is illustrated in
Fig. 2(c). When some trunks of the tree are completely constructed,
the corresponding memory is released so that we can split the re-
maining nodes.

In the following, we �rst brie�y review the BFS-based construction
algorithm of [Zhou et al. 2008] in Section 3.1. We then present
our PBFS scheme in detail in Section 3.2. Our anti-fragmentation
dynamic buffer management scheme is introduced in Section 3.3.
Section 3.4 describes how we handle memory issues related to tri-
angle clipping.

3.1 Review of BFS KD-Tree Construction on GPU

The GPU kd-tree construction in [Zhou et al. 2008] mainly con-
sists of two stages. The nodes are divided into two categories, large
nodes and small nodes, and are split with different schemes. A
node is categorized as large if the number of triangles it contains
is greater than a prescribed threshold; otherwise, the node is small.
The kd-tree construction starts from the root node. First, a large
node stage is launched to split all large nodes recursively. Small
nodes generated by splitting large nodes are stored in a dynamic
buffer. After dividing all large nodes, the large node stage termi-
nates, outputing a buffer of small nodes. Then a small node stage is
launched to �nish the construction by splitting all small nodes re-
cursively. For each large node, which contains more than64 trian-
gles, the median splitting and “empty space maximizing” are em-
ployed to minimize the traversing cost of ray tracing. After node
splitting, each triangle intersected by a splitting plane is clipped
into two polygons (calledclipped trianglesin the following) and
distributed to the child nodes. A dynamic buffer is required to hold
the vertices of all the clipped triangles generated in the large node
stage. For each small node, which contains no more than64 trian-
gles, the splitting plane is determined to minimize the SAH cost to
minimize the traversal cost. Triangle clipping is not performed dur-
ing the small node stage. Each triangle intersected by the splitting
plane is simply distributed to both children.

Root Node

Small Node Stage

Split Large Nodes

Output Tree

Launch Small
Node Stage?

All Nodes
Constructed?

Y

Y

N

N

Figure 3: Our alternating kd-tree construction pipeline: the large
node stage and small node stage are launched in alternation.

The SAH cost function is de�ned as:

SAH (x) = Cts + (CL (x)AL (x) + CR (x)AR (x))=A;

whereCts is the constant cost of traversing the node itself,CL (x)
is the cost of the left child given a split positionx andCR (x) is the
cost of the right child given the same split.AL (x) andAR (x) are
the surface areas of the left and right children respectively.A is the
surface area of the node.CL (x) andCR (x) are usually evaluated
as the number of triangles in the two children. For each small node,
the splitting plane candidates are restricted to planes containing the
faces of the axis-aligned bounding boxes (AABBs) of the clipped
triangles contained in the node.

Zhou et al. [2008] also provide a data structure for storing the tri-
angles in small nodes as bit masks. All small nodes whose parent
nodes are large nodes are called small roots. The triangle set con-
tained in each small node is then stored as a bit mask representing
a subset of its small root. For each small root, the triangle sets con-
tained on both sides of each splitting plane candidate are also pre-
computed as bit masks. For each small node, with its triangle mask
and the precomputed split triangle sets of its small root,CL (x) and
CR (x) can be computed ef�ciently with bitwise operations.

3.2 PBFS Construction

Note that in the above kd-tree algorithm, small nodes consume
much more memory than large nodes because the number of small
nodes is much greater than that of large nodes. In particular, the pre-
computation data of all small roots consume most of the temporary
data in the tree construction. Because the data of each small root
are needed by all of its descendant nodes, the data can only be freed
after all descendants of the small root are completely constructed.
Therefore, the key point to consider in designing the PBFS strategy
is to �nd an inexpensive way to control the number of small nodes
(including small roots) being processed simultaneously.

Our solution is to alternate between large node and small node con-
struction, as shown in Fig. 3. Our observation is that it is unneces-
sary to wait until all small roots are generated since the small roots
are continuously generated throughout the large node stage. At any
time if we �nd the small roots are too numerous to be split simulta-
neously, we should launch a small node stage to complete the con-
struction of as many small roots as available memory allows. After
this visit to the small node stage, all temporary data associated with
the completed nodes are discarded. We can then return to the large
node stage to continue generating small roots.

The above solution needs to compute the maximal number of small
roots that the algorithm can process simultaneously under a mem-

Static Buffer (Vertex Buffer, Index Buffer, ...)

123456

Clipped Triangle Buffer

Reserved Clipped Triangle Slots

Constructed Node Blocks...

Other Dynamic Buffers

Figure 4: Memory pool layout in our dynamic buffer management
scheme.

ory bound. In other words, we need to compute the memory cost
for building the subtree under a small root. Unfortunately, there is
no theoretical peak memory usage for the SAH-based kd-tree con-
struction because the tree depth is uncertain. We thus need a tight
estimation. Observing that the precomputation data of small roots
take most of the peak memory usage, we calculate the size of pre-
computation data exactly and estimate the remaining memory usage
as a constant factor times the number of small roots. We set this
factor to a very conservative value at �rst and update it after each
launched small node stage. The number of small roots that can be
handled under a memory bound can be easily computed by dividing
the memory bound by the estimated per-node memory usage.

Each small node stage begins with the estimated number of small
roots to handle. If the number is overestimated and the stage fails
due to insuf�cient memory, we rollback all operations completed
during this stage and try again with half of the original small roots.
While this approach is robust, the rollback mechanism is costly.
In practice, we �nd that the memory cost estimation is accurate
enough to entirely avoid the costly rollback in all our experiments.

3.3 Dynamic Buffer Management

Dynamic buffers are constantly used throughout the kd-tree con-
struction process for maintaining splitting nodes and storing con-
structed nodes. They inevitably lead to memory fragmentation. If
there are a few memory fragments left in the middle of an available
memory region, allocating a large buffer could fail, as often hap-
pens when working on large scenes. Therefore, we need ef�cient
dynamic buffer management to reduce fragmentation. For this pur-
pose, we reserve all available memory as a pool at the beginning of
the kd-tree construction, and allocate memory from the pool using
special strategies.

We compactly place all static buffers, such as the vertex buffer and
the index buffer, at the beginning of our memory pool. For special
reasons to be explained in Section 3.4, we also allocate the buffer
of clipped triangles statically, even though it is a dynamic buffer.

The most important dynamic buffer is the buffer of constructed
nodes. This buffer is continuously appended throughout the entire
construction process and cannot be discarded. Without special han-
dling, allocations made for this buffer can cause permanent mem-
ory fragmentation. We observe that the nodes deposited into the
buffer are left untouched until the construction is complete. This
observation allows us to apply a block-based strategy. We allo-
cate the constructed nodes buffer in4 MB memory blocks from the
high address end of the memory pool. When construction begins, a
block is allocated at the highest address. When the buffer becomes

R0

T0 T1 T2 T3 T4 T5 T6 T7 T8

T1 T3 T5 T7 T8T2

T”1 T’1 T3 T”2 T5 T’7 T’8T’2 T”8T”7

Used slot Reused slot Free slot

Small rootsR1

Slots freed

Triangle clipping

Figure 5: Reusing the clipped triangle slots. Three slots are freed
after a small node stage. These slots are then reused to store new
clipped triangles generated during subsequent triangle clipping.

full, we allocate another block compactly before the previous one.
Allocations for all other dynamic buffers are performed at the low
address end. The result is that, as long as the memory pool is not
used up, the management of the constructed nodes buffer does not
interfere with other memory allocations. This is illustrated as the
cyan blocks in Fig. 4.

3.4 Ef�cient Storage of Clipped Triangles

The large node stage also takes a considerable portion of the mem-
ory because of the clipped triangles contained in the nodes. As
shown in Fig. 4, all of these triangles are kept in a buffer. Nodes
only maintain the indices of their triangles. Since we clip triangles
to nodes, newly clipped triangles may be added during construction.
Therefore, the triangle buffer has to be appended on the �y. Instead
of dynamically appending this buffer, we pre-allocate a static buffer
with suf�cient size for all triangles.

The triangle buffer differs from the constructed nodes buffer in our
PBFS scheme. After precomputation of each small node stage, the
clipped triangles contained in already-processed small roots are no
longer useful. We can label them after each small node stage and
reuse the freed memory slots later. As shown in Fig. 5, three slots
are freed after a small node stage. These slots are then reused to
store new clipped triangles generated during subsequent triangle
clipping. Also, this buffer does not grow as rapidly as that of the
constructed nodes. For typical scenes, the analysis in [Wald and
Havran 2006] shows that splitting a node withk triangles generates
O(

p
k) clipped triangles. By adding up clipped triangles generated

at all O(log n) tree levels, the total number of generated clipped
triangles can be expected to beO(n), wheren is the number of
original triangles. These facts make it more attractive to allocate the
triangle list buffer statically. In practice, we �nd a static triangle list
with the capacity of1:5n triangles is suf�cient for our test scenes.

Slot reuse is only possible if the information for each clipped trian-
gle can be stored in a �xed-size format. Note that we store the cur-
rent shape of each clipped triangle. This shape is a triangle-AABB
intersection, therefore a convex polygon of 3 to 9 vertices. Special
handling is required to pack it in a compact �xed-size format.

A triangle clipped by axis-aligned planes will result in a polygon
with no more than nine vertices and no more than nine edges. The
nine edges can come from the original three edges and the six faces
of the AABB. We encode each edge as a 3- to 4-bit binary num-
ber. Edges of the AABB are labeled from000 to 101. The three
original triangle edges are labeled from110 to 1000. The total

1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1

V0

V1

V2

X

Y

Z

000 001

010

011

100

101

110

111

1000

Figure 6: Packing a clipped triangle shape into a 32-bit integer.

number of the edges is packed in the four least signi�cant bits. The
edge labels are placed from the most signi�cant bits to the least sig-
ni�cant bits in either clockwise or counterclockwise order. If the
clipped triangle contains the1000edge, this edge is always placed
in the four most signi�cant bits. Fig. 6 illustrates the packing of
a 9-edged clipped triangle shape. Since there cannot be two edges
with the same label in a polygon, this 32-bit integer is enough for
us to recover all edges and vertices of a polygon given its original
vertices and the AABB. With this representation, a clipped triangle
only needs to keep the AABB, the edge integer, and the index of the
original triangle. This representation only takes 32 bytes per trian-
gle and signi�cantly reduces the memory cost. The reconstruction
of vertices does not slow down the triangle clipping because of the
reduced memory fetching.

3.5 Tree Output

When building the kd-tree with a given memory bound, the out-
put process of the constructed tree merits a bit of discussion. In
[Zhou et al. 2008], the constructed tree is converted into a pre-order
traversal format. However, this conversion is itself a BFS traver-
sal. At its memory peak, the original constructed tree, the pre-order
traversal, and the node correspondence between them coexist in the
memory. This peak is considerably larger than the memory peak in
our PBFS construction and has to be avoided. Also, the �nalization
algorithm of [Zhou et al. 2008] has relatively strict requirements on
the processing order of tree nodes and does not �t well in our PBFS
scheme.

We chose to use our natural construction layout directly as the �-
nal tree node layout and omit the conversion altogether. In theory,
our layout may cause a degradation in ray tracing performance. In
practice, we found such degradation to be minor. Additionally, this
format change allows us to omit the �nalization step in [Zhou et al.
2008], resulting in slightly faster tree construction as discussed in
the next section.

4 Out-Of-Core BVH Construction

In this section, we describe how to use the PBFS construction or-
der to extend the hybrid BVH construction algorithm proposed by
[Lauterbach et al. 2009] to handle very large scenes. The under-
lying approach consists of two steps. First, several coarsest tree
levels are constructed in a bootstrap pass to generate suf�cient par-
allelism, using Linear Bounding Volume Hierarchy (LBVH), a spa-
tial Morton codes based algorithm. Next, the remaining tree is then
constructed in BFS order using SAH based strategies.

Create Initial Splitting Nodes,
Sort AABBs in-place

Load Partial AABBs and
Splitting Nodes

Output Tree

All Nodes Constructed?

Y

N

Dump AABBs and Nodes

Construct Sub-tree,
Dump Sub-tree, Free AABBs

Figure 7: Our BVH construction pipeline: after generating an ini-
tial list of a few thousand splitting nodes, the sub-trees of these
nodes are constructed iteratively.

There is a signi�cant difference in memory footprint between BVH
and kd-tree construction. BVH construction does not split triangles
or create duplicate triangle references. Consequentially, the prim-
itive storage remains static throughout the whole construction and
the �nal tree size can be bounded prior to construction. Based these
observations, Lauterbach et al. [2009] only allocate memory for
primitives and the �nal tree at the beginning of the construction al-
gorithm. Node splitting and triangle sorting are done in-place and
little temporary memory is required for construction. While the
memory overhead is relatively small, Lauterbach et al. [2009] still
cannot build trees that are too large to be stored in the GPU memory
(e.g. up to 1.5M triangles on a 1GB GPU). An out-of-core solution
is necessary to handle such large scenes.

Our BVH construction pipeline is illustrated in Fig. 7. The BVH
construction also consists of two phases. First, all primitives are
loaded into the GPU memory and the AABBs are computed. The
bootstrap pass and a few SAH iterations are performed to generate
an initial list of a few thousand splitting nodes. All the AABBs are
sorted in-place to match the order of their containing nodes. After
that, the AABBs and constructed nodes are dumped to the CPU
memory and all GPU memory occupied by phase one are freed.

In the second phase, we iteratively copy continuous portions of
the splitting nodes and the AABBs of primitives contained in these
nodes to the GPU, and construct sub-trees for these nodes. At the
end of each iteration, the constructed sub-trees are dumped to the
CPU memory and the primitive AABBs are freed. We bound the
memory consumption of sub-trees construction using the total num-
ber of primitives in the constructed sub-trees. This bound is then
used to maximize the number of sub-trees constructed simultane-
ously in each iteration, just like in Section 3.2.

5 Results and Discussion

We have implemented the described algorithms in CUDA on a
workstation with Intel Xeon dual-core 3.0 GHz CPU and an
NVIDIA GeForce GTX 280 graphics card with 1 GB of memory.

KD-Tree Construction In Fig. 8, we show nine test scenes with
different scales ranging from 10K to 7M triangles. On our hard-
ware, the kd-tree builder in [Zhou et al. 2008] can only handle the
�rst four scenes. It fails for scenes with more than 871K trian-
gles due to excessive memory consumption. Therefore, our PBFS
scheme improves scene scalability by approximately one order of

(a) Toys (b) Robots (c) Kitchen
11K triangles 71K triangles 111K triangles

(d) Fairy Forest (e) Dragon (f) Turbine Blade
178K triangles 871K triangles 1,765K triangles

(g) Soda Hall (h) Neptune (i) Asian Dragon
2,195K triangles 4,008K triangles 7,219K triangles

Figure 8: Test scenes used in this paper. All the images have a
resolution of1024� 1024. The Robots (b) is rendered with 3 lights
and 1 re�ection bounce. The Kitchen (c) is rendered with 6 lights
and 8 bounces. The Fairy Forest (d) is rendered with 2 point lights.
All the other scenes are rendered with 1 point light.

magnitude. Since the �rst four scenes can be processed in pure
BFS order, our algorithm automatically degenerates to a two-stage
construction and achieves comparable performance. This is illus-
trated in Table 1.M peak is the peak memory consumption of our
method, including the �nal kd-tree while excluding the scene data.
The slight difference inTtree is mainly due to the fact that we do not
convert the constructed tree to a pre-order traversal. Note that even
in these small scenes, our PBFS scheme has a lower peak memory
consumption than that of [Zhou et al. 2008]. This is largely due
to our ef�cient clipped triangle storage as described in Section 3.4.
An interesting fact is thatTtrace is about twice as fast as reported
in [Zhou et al. 2008]. We attribute this performance divergence to
hardware differences. Note that we employed the same ray tracing
program as in [Zhou et al. 2008]. Comparing to the GeForce 8800
Ultra GPU used in [Zhou et al. 2008], the GeForce GTX 280 GPU
used in this paper has a lower texture unit to core ratio. This may
have a signi�cant negative performance impact on the ray tracing
kernel which uses textures to access kd-trees and scene data.

In Table 2, we compare our algorithm with the state-of-the-art
multi-core CPU kd-tree algorithms. The statistics of CPU meth-
ods are directly taken from [Soupikov et al. 2008] and [Shevtsov
et al. 2007] with the latter marked with superscript� . The CPU
methods make different trade-offs between construction time and
tree quality. We compare our tree construction time with the fastest
construction method and compare our trace time with the highest
tree quality method.M peak is the peak memory consumption of
our algorithm. It includes the �nal kd-tree but not the scene data.
As shown, our algorithm can achieve comparable tree construction

Scene Our method BFS construction
Ttree Ttrace M peak Ttree Ttrace M peak

Fig. 8(a) 0:015s 0:026s 3 MB 0:012s 0:026s 8 MB
Fig. 8(b) 0:037s 0:085s 29 MB 0:038s 0:075s 50 MB
Fig. 8(c) 0:042s 0:332s 60 MB 0:043s 0:329s 90 MB
Fig. 8(d) 0:058s 0:127s 68 MB 0:065s 0:125s 123MB

Table 1: Comparison with the BFS construction order [Zhou et al.
2008].

Scene Our method CPU methods
Ttree Ttrace M peak T min

tree T min
trace

Fig. 8(e) 0:170s 0:020s 272MB n/a n/a
Fig. 8(f) 0:287s 0:041s 550MB 0:690s� 0:091s
Fig. 8(g) 0:461s 0:036s 746MB 0:450s 0:040s
Fig. 8(h) 0:849s 0:074s 747MB n/a n/a
Fig. 8(i) 1:428s 0:108s 715MB 1:600s 0:200s

Table 2: Comparison with the multi-core CPU methods.

performance to these methods while providing higher quality trees
with less ray tracing time.

An important feature of our algorithm is that, instead of using up all
available GPU memory, the user can choose to specify a memory
bound for kd-tree construction. In many practical applications, not
all GPU memory can be used for tree construction – some mem-
ory has to be reserved for other data (e.g., animation data) or tasks
(e.g., simulation). Our memory scalable algorithm is very useful
in these types of situations. We tested three scenes under differ-
ent memory bounds as shown in Table 3. “Unbounded” means the
memory bound is taken as all available GPU memory, namely the
total GPU memory minus the memory reserved for scene geome-
try, rendering, and the operating system. #SNS is the number of
small node stages launched during construction. As the memory
bound decreases, the construction has to be split into more small
node stages to reduce peak memory consumption and results in less
parallelism in individual small node stages. For small scenes, this
causes under-utilization of the GPU, and slows down construction
performance. For the Dragon scene, restricting the memory bound
to less than half of the memory peak in the unbounded case results
in a10%performance loss. However for larger scenes, even a small
fraction of the intrinsic parallelism is suf�cient to achieve full GPU
utilization. For the Blade and Neptune scenes, the performance
loss is only about6%. “Minimum” means the minimum memory
required by our algorithm to run, which is the total size of clipped
triangles and the �nal constructed tree. This value is equivalent to
the memory consumption of construction on CPUs. Working under
this minimum memory on GPUs would lead to degenerate perfor-
mance due to the lack of parallelism. At least a few more megabytes
is required to get practical performance.

We also tested our kd-tree algorithm using the two large animated
scenes shown in Fig. 1. The falling objects animation in Fig. 1(a)
has gradually increasing scene complexity beginning with 560K tri-
angles and reaching 7,140K in the end. This scene demonstrates
how our performance and memory consumption changes with re-
spect to the scene complexity. As illustrated in Fig. 9(a), the mem-
ory peak of our construction algorithm exhibits a two-phase behav-
ior. When the scene is small and can �t into the available memory,
the peak grows rapidly at a roughly linear speed. As the scene be-
comes larger, our PBFS scheme takes effect and the memory peak
oscillates at a relatively steady level. As the scene size increases
further, the memory consumed by the scene geometry increases
and the memory available for kd-tree construction decreases. Our

Scene M bound #SNS M peak Ttree

Fig. 8(e)

Unbounded 1 272MB 0:170s
200MB 3 170MB 0:187s
150MB 5 131MB 0:194s
100MB 7 93 MB 0:204s

Minimum – 55 MB –

Fig. 8(f)

Unbounded 1 550MB 0:287s
400MB 3 344MB 0:296s
300MB 5 260MB 0:306s
200MB 8 184MB 0:315s

Minimum – 107MB –

Fig. 8(h)

Unbounded 4 747MB 0:849s
650MB 6 646MB 0:855s
500MB 9 481MB 0:870s
350MB 18 320MB 0:904s

Minimum – 255MB –

Table 3: Kd-tree construction under different memory bounds.

0 1 2 3 4 5 6 7 8
0

200

400

600

800

1000

Number of triangles (Million)

M
em

or
y

pe
ak

 (
M

B
yt

es
)

0 1 2 3 4 5 6 7 8
0

0.3

0.6

0.9

1.2

1.5

Number of triangles (Million)

C
on

st
ru

ct
io

n
tim

e
(S

ec
)

(a) Memory peak (b) Construction performance

Figure 9: Memory peak and performance of our construction al-
gorithm for the animated scene shown in Fig. 1(a).

construction algorithm thus reduces its memory peak accordingly.
Regardless of the memory peak behavior, our construction time
grows linearly with the number of triangles, as shown in Fig. 9(b).
The PBFS scheme successfully controls peak memory consumption
with minimal performance penalty.

The example in Fig. 1(b) demonstrates the potential of our method
in handling large animations. The scene geometry and animation
consume 248 MB GPU memory. Excluding the memory reserved
for rendering and the operating system, only 650 MB memory on
the GPU is available for kd-tree construction. Our algorithm can
handle that well and achieves interactive performance. Each frame
takes approximately1:84 seconds to render: the kd-tree construc-
tion takes about 1.46 seconds, and the remaining time is spent on
ray tracing, shading, and animation preparation.

BVH Construction Fig. 10 shows three test scenes which cannot
be handled by the in-core BFS-based algorithm [Lauterbach et al.
2009] due to the large memory consumption of geometry and the �-
nal tree. Lauterbach et al. [2009] only handled scenes with less than
2M triangles, while our out-of-core algorithm can support scenes
with up to 20M triangles. The statistics of construction timings and
hierarchy quality are shown in Table 4.M CP U is the peak mem-
ory consumption of an in-core CPU BVH construction algorithm.
M peak is the peak memory consumption of our BVH construction
algorithm. Ttree is hierarchy construction time, includingTcopy ,
the GPU–CPU data transfer time.Ttrace is the relative ray trac-
ing performance on a CPU ray tracer compared to the full SAH
solution [Wald 2007]. For all scenes, our constructed BVHs offer
similar rendering performance to the CPU reference results.

The GPU memory bottleneck in our BVH construction algorithm

(a) Thai Statue (b) Power Plant (c) Swarm Objects
10,000K triangles 12,748K triangles 20,021K triangles

Figure 10: Test scenes for out-of-core BVH construction. All im-
ages are rendered at resolution1024� 1024with 1 point light.

Scene M CP U M peak Ttree Tcopy Ttrace

Fig. 10(a) 1; 100MB 452MB 4:081s 1:086s 93%
Fig. 10(b) 1; 430MB 612MB 7:561s 1:429s 93%
Fig. 10(c) 2; 200MB 897MB 8:064s 2:168s 97%

Table 4: BVH construction timings and hierarchy quality.

is the AABB computation phase. In that phase, all geometry data
and AABBs have to be stored in GPU memory. After the phase, the
geometry data may be freed and the total memory consumption no
longer increases. Therefore, for our BVH construction algorithm
the minimum memory requirementM minimum is equal toM peak

in Table 4. In terms of CPU memory consumption, our method is
exactly the same as a CPU construction algorithm.

Note that for the same tree quality, our out-of-core BVH construc-
tion is still slower than the in-core reference algorithm running on a
8-core CPU with 16GB memory [Wald 2007]. Even with PBFS, the
speed of our BVH construction is still far behind GPU's ideal per-
formance. The in-place BVH construction requires stronger mem-
ory consistency than what current GPUs offers and memory barri-
ers have to be added to guarantee correctness. The memory barriers
cause suboptimal latency hiding and result in performance degrada-
tion. Our main focus is to push the state of the art in the hierarchies
that can be built by GPU-based algorithms, base on memory ef�-
ciency. Future GPU architectures like Fermi offer write caches and
stronger memory consistency, which may result in signi�cant boost
of our BVH construction performance. In addition, we plan to use
the CPU to construct a portion of the nodes in parallel with the
GPU as a future work. Signi�cant potential improvement may be
achieved if workloads can be ef�ciently balanced between the CPU
and GPU. CPU–GPU data transfer time will also be eliminated for
nodes constructed by the CPU.

6 Conclusion and Future Work

We have presented two GPU algorithms for constructing spatial hi-
erarchies with controllable memory consumption, one for in-core
kd-tree construction and one for out-of-core BVH construction.
Both algorithms are based on the PBFS construction order, and
can handle scenes several times larger than previous GPU meth-
ods. The construction time is comparable with the state-of-the-art
multi-core CPU methods and our tracing performance outperforms
these methods.

The PBFS scheme provides an effective approach for balancing
memory usage while exploiting the parallelism in general purpose
GPU computation. In the future, we would like to apply this scheme
to other GPU algorithms in scienti�c computations and related ap-
plications. Although promising, our kd-tree algorithm still has
some limitations – it does not control the �nal tree size. To cope

with available memory less than the tree size, tree-size-controlling
techniques as in [Wachter and Keller 2007] have to be incorporated
into our PBFS scheme.

Data transfer between GPUs and CPUs consumes signi�cant time
in the out-of-core BVH construction. In this paper, we focus on
using the PBFS scheme to reduce in-core peak memory require-
ment. Data transfer techniques like host-mapped GPU memory are
orthogonal to our work. In the future, we would like to incorporate
such techniques to improve the overall ef�ciency of construction.

The problem of memory consumption on GPUs is fundamentally
different from its counterpart on single-core or multi-core CPUs,
because hundreds of thousands of threads are launched simulta-
neously on GPUs. The same problem should be present on other
kinds of many-core platforms such as Fermi and Larrabee. The
PBFS scheme proposed in this paper is not limited to CUDA, our
choice of the implementation language. It is also suitable for other
languages such as Compute Shader and OpenCL.

Acknowledgements

Kun Zhou was partially funded by the NSF of China (No.
60825201) and NVIDIA. Christian Lauterbach and Dinesh
Manocha's work is partially supported by ARO Contract W911NF-
04-1-0088, NSF awards 0636208, 0917040 and 0904990,
DARPA/RDECOM Contract WR91CRB-08-C-0137, and Intel.

References

BUDGE, B. C., BERNARDIN, T., SENGUPTA, S., JOY, K. I., AND
OWENS, J. D. 2009. Out-of-core data management for path trac-
ing on hybrid resources. InProceedings of Eurographics 2009.

ERNST, M., AND GREINER, G. 2007. Early split clipping for
bounding volume hierarchies. InProceedings of IEEE Sympo-
sium on Interactive Ray Tracing'07, 73–78.

GOLDSMITH, J., AND SALMON , J. 1987. Automatic creation of
object hierarchies for ray tracing.IEEE Computer Graphics and
Applications 7, 5, 14–20.

HUNT, W., MARK , W. R.,AND STOLL , G. 2006. Fast kd-tree con-
struction with an adaptive error-bounded heuristic. InProceed-
ings of IEEE Symposium on Interactive Ray Tracing'06, 81–88.

LAUTERBACH, C., YOON, S.-E., TANG, M., AND MANOCHA,
D. 2008. ReduceM: Interactive and memory ef�cient ray tracing
of large models.Computer Graphics Forum 27, 4, 1313–1321.

LAUTERBACH, C., GARLAND , M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH construction on GPUs. In
Proceedings of Eurographics 2009.

MACDONALD , J. D., AND BOOTH, K. S. 1990. Heuristics for
ray tracing using space subdivision.The Visual Computer 6, 3,
153–166.

SEILER, L., CARMEAN , D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE , A., SUGER-
MAN , J., CAVIN , R., ESPASA, R., GROCHOWSKI, E., JUAN ,
T., AND HANRAHAN , P. 2008. Larrabee: a many-core x86
architecture for visual computing.ACM Trans. Gr. 27, 3, 8.

SHEVTSOV, M., SOUPIKOV, A., AND KAPUSTIN, A. 2007.
Highly parallel fast kd-tree construction for interactive ray trac-
ing of dynamic scenes. InProceedings of Eurographics'07, 395–
404.

SOUPIKOV, A., SHEVTSOV, M., AND KAPUSTIN, A. 2008. Im-
proving kd-tree quality at a reasonable construction cost. InPro-
ceedings of IEEE Symposium on Interactive Ray Tracing'08, 67–
72.

SUN, X.-H., AND NI , L. M. 1993. Scalable problems and
memory-bounded speedup.J. Parallel Distrib. Comput. 19, 1,
27–37.

WACHTER, C., AND KELLER, A. 2007. Terminating spatial hier-
archies by a priori bounding memory. InProceedings of IEEE
Symposium on Interactive Ray Tracing'07, 41–46.

WALD , I., AND HAVRAN , V. 2006. On building fast kd-trees for
ray tracing, and on doing that in O(Nlog N). InProceedings of
IEEE Symposium on Interactive Ray Tracing'06, 61–69.

WALD , I., IZE, T., AND PARKER, S. G. 2008. Special sec-
tion: Parallel graphics and visualization: Fast, parallel, and asyn-
chronous construction of bvhs for ray tracing animated scenes.
Comput. Graph. 32, 1, 3–13.

WALD , I. 2007. On fast construction of sah-based bounding vol-
ume hierarchies. InProceedings of IEEE Symposium on Inter-
active Ray Tracing'07, 33–40.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time
kd-tree construction on graphics hardware.ACM Trans. Gr. 27,
5, 126.

