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Figure 1: A car rendered with defocus, motion blur, mirror reflection and ambient occlusion at 1280 × 720 resolution with 23 × 23

supersampling. The scene is tessellated into 48.9M micropolygons (i.e., 53.1 micropolygons per pixel). The blurred image is rendered in 4
minutes on an NVIDIA GTX 285 GPU. The image rendered in perfect focus takes 2 minutes and is provided to help the reader to assess the
defocus and motion blur effects.

Abstract

We present a micropolygon ray tracing algorithm that is capable of
efficiently rendering high quality defocus and motion blur effects.
A key component of our algorithm is a BVH (bounding volume hi-
erarchy) based on 4D hyper-trapezoids that project into 3D OBBs
(oriented bounding boxes) in spatial dimensions. This acceleration
structure is able to provide tight bounding volumes for scene ge-
ometries, and is thus efficient in pruning intersection tests during
ray traversal. More importantly, it can exploit the natural coher-
ence on the time dimension in motion blurred scenes. The structure
can be quickly constructed by utilizing the micropolygon grids gen-
erated during micropolygon tessellation. Ray tracing of defocused
and motion blurred scenes is efficiently performed by traversing the
structure. Both the BVH construction and ray traversal are easily
implemented on GPUs and integrated into a GPU-based microp-
olygon renderer. In our experiments, our ray tracer performs up to
an order of magnitude faster than the state-of-art rasterizers while
consistently delivering an image quality equivalent to a maximum-
quality rasterizer. We also demonstrate that the ray tracing algo-
rithm can be extended to handle a variety of effects, such as sec-
ondary ray effects and transparency.

Keywords: GPUs, Reyes, rasterization, depth-of-field, motion
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1 Introduction

Current cinematic-quality rendering systems are based on the Reyes
architecture [Cook et al. 1987], which uses micropolygons to rep-
resent high order surfaces and highly detailed objects. In a Reyes
pipeline, all input geometric primitives are first tessellated into mi-
cropolygons (i.e., quads less than one pixel in size). Shading is
then calculated on micropolygon vertices. In the subsequent sam-
pling stage, micropolygons are rasterized into fragments, which are
filtered to produce the final image.

Rasterization has long been regarded as the best way to sample mi-
cropolygons and widely used in existing micropolygon renderers.
When sampling stationary geometry (i.e., without defocus and mo-
tion blur), rasterization is simple to implement and performs ef-
ficiently because tight bounding boxes can be easily computed for
micropolygons. However, when rendering defocus and motion blur,
tight bounding boxes can no longer be computed and brute-force
rasterization becomes very inefficient. Non-intuitive parameters for
quality and performance tradeoffs have to be exposed to end-users
to achieve a satisfactory balance between artifacts and render time,
as noted in Fatahalian et al. [2009].

In this paper, we tackle the problem of sampling defocused and
motion blurred micropolygons using ray tracing. We propose to
replace the rasterizer in the sampling stage of micropolygon ren-
derers with a ray tracer. Ray tracing does not need to compute tight
bounding boxes of micropolygons and is known to work efficiently
for irregular visibility sampling. By designing an effective accel-
eration structure, we demonstrate that for high quality defocus and
motion blur, the advantage of ray tracing in irregular sampling out-
weighs its inherent algorithmic overhead. Experiments show that
our ray tracer is up to an order of magnitude faster than the state-
of-the-art rasterizers. Moreover, with our algorithm, users do not
need to make non-intuitive tradeoffs between the rendering perfor-
mance and image quality.

Designing an efficient ray tracing algorithm for micropolygons with
defocus and motion blur is far from straightforward. The key chal-
lenge is the acceleration structure. First, the structure has to be



flexible to support the 4D space-time extension to handle motion
blur. It also has to be robust such that the traversal complexity will
not degenerate for challenging geometries such as hair and furs rep-
resented by spatially-clustered long curves. Furthermore, the mem-
ory consumption of the structure has to be minimized to process
millions of micropolygons in-core for parallelism utilization. Sec-
ondly, the structure has to be constructed very efficiently without
significantly compromising traversal performance. Since the ray
tracer only processes the sampling stage in the Reyes pipeline, only
a fixed amount of primary rays generated by defocus and motion
blur supersampling are traced. Therefore, the structure construc-
tion cost cannot be amortized over a large amount of rays and may
constitute a significant portion of the rendering time. Finally, rays
have to be kept coherent during traversal. While primary rays are
inherently coherent, high quality defocus and motion blur require
rays to be generated using stochastic sampling. Directly tracing
rays in their generation order may result in very poor coherence.
As a consequence, the rays have to be reorganized to exploit the
inherent coherence.

The basis of our ray tracing algorithm is a novel acceleration struc-
ture – a BVH based on 4D hyper-trapezoids that project into 3D
OBBs in spatial dimensions. This structure has several features
making it very suitable for tracing defocused and motion blurred
micropolygons. First, the hyper-trapezoids are able to exploit the
natural coherence on the time dimension in motion blurred scenes.
Second, by using OBBs in spatial dimensions, degeneration is
avoided for challenging geometries. Third, as a BVH, the mem-
ory consumption of the structure is naturally bounded. And finally,
the structure can be efficiently constructed by utilizing the microp-
olygon grid, a natural structure generated during micropolygon tes-
sellation.

Based on the OBB hyper-trapezoid BVH, we develop a micropoly-
gon ray tracing algorithm to render high quality defocus and motion
blur effects. During ray traversal, the algorithm sorts rays using a
coherence heuristic based on the per-ray motion time and ray di-
rections to improve traversal coherence. The ray tracer, including
both the BVH construction and ray traversal, can be efficiently im-
plemented on the GPU, and integrated into existing GPU-based mi-
cropolygon renderers [Zhou et al. 2009]. The algorithm can be also
extended to deal with a variety of effects, such as occlusion culling,
secondary ray effects including shadow, reflection and refraction,
and memory-bounded (and layer-limited) transparency.

In the rest of the paper, we first briefly review related work. In
Section 3, we detail the acceleration structure and the micropoly-
gon ray tracing algorithm, followed by the description of several
extensions of the algorithm in Section 4. Section 5 evaluates the
rendering quality and performance of our algorithm using several
examples, and Section 6 concludes the paper.

2 Related Work

Micropolygon Rendering Micropolygons are the basic geomet-
ric element of the Reyes rendering architecture [Cook et al. 1987].
Several Reyes implementations, including Pixar’s PRMan, have
been widely used in film production. Recent research efforts focus
on developing data-parallel algorithms for micropolygon rendering.
Patney and Owens [2008] mapped the tessellation algorithms for
micropolygon generation to the GPU. Fatahalian et al. [2009] in-
vestigated data-parallel implementations of a variety of micropoly-
gon rasterization algorithms. RenderAnts [Zhou et al. 2009] im-
plements a complete micropolygon-based renderer on the GPU and
demonstrates significant speedups over CPU-based renderers. Our
work provides micropolygon ray tracing as an alternative algorithm
for the sampling stage of micropolygon renderers.

Defocus and Motion Blur Defocus and motion blur are impor-
tant and common effects in real-world images. For cinematic ren-
dering, these effects are typically computed using supersampling.
Stochastic sampling is immune to aliasing artifacts [Cook et al.
1984; Cook 1986] while challenging for rasterizers to compute
tight bounding boxes. Deterministic sampling like the accumula-
tion buffer [Haeberli and Akeley 1990] provides tighter bounding
boxes for rasterizers while being more prone to aliasing. State-
of-the-art rasterizers make tradeoffs between sampling randomness
and bounding box tightness to balance the rendering performance
and image quality [Cook et al. 1993; Fatahalian et al. 2009].

A few recent publications seek to accelerate the rendering of defo-
cus and motion blur effects using adaptive sampling and frequency
analysis [Hachisuka et al. 2008; Egan et al. 2009; Soler et al. 2009].
The key difference between our work and theirs is that we focus on
reducing the cost of sampling itself rather than the number of sam-
ples computed. Any sampling patterns proposed in their work can
be used in our algorithm. In this paper we assume a uniform sam-
pling strategy is used.

There are a few methods for approximating defocus and motion blur
effects [Sung et al. 2002; Demers 2004; Kass et al. 2006; Lee et al.
2009]. These methods are designed to achieve high performance
and may produce artifacts in some image regions. On the contrary,
our method is designed to provide guaranteed quality while running
as fast as possible. Our method guarantees an image quality no
worse than a maximum-quality brute force rasterizer.

Ray Tracing and Acceleration Structures Distributed ray trac-
ing [Cook et al. 1984] formulates defocus and motion blur render-
ing as a ray tracing problem while leaving out the acceleration of
such formulation. Space-time ray tracing [Glassner 1988] accel-
erates ray tracing of motion blurred scenes using BVH based on
4D polyhedrons with up to twelve fixed-orientation faces. The
algorithm simply treats the time dimension as an additional spa-
tial dimension and ignores the unique geometry coherence property
along the time dimension. Our work follows the formulation of dis-
tributed ray tracing and uses OBB hyper-trapezoids to exploit the
inherent temporal coherence in motion blurred scenes to construct
a space-time 4D hierarchy with significantly tighter bounding vol-
umes.

Micropolygon ray tracing has been proved to be very useful in film
production [Christensen et al. 2003; Christensen et al. 2006]. The
basic idea of our hyper-trapezoid BVH resembles the moving Kay-
Kajiya tree in [Christensen et al. 2006]. However, these previous
works focus on tracing secondary rays. Primary-ray effects like
defocus and motion blur are still rendered via rasterization. In con-
trast, our ray tracing algorithm is designed and optimized for tracing
defocus and motion blur rays. In addition, our algorithm, including
the BVH construction and ray traversal, is highly parallel and ef-
ficiently implemented on GPUs, which has never been achieved in
previous micropolygon ray tracing.

Several parallel algorithms for constructing ray tracing accelera-
tion hierarchies have been developed recently [Shevtsov et al. 2007;
Wald 2007]. Parallel hierarchy construction has also been mapped
to GPUs [Zhou et al. 2008; Lauterbach et al. 2009]. All these tech-
niques are designed for axis-aligned hierarchies, which may degen-
erate for spatially-clustered non-axis-aligned geometries like hair
and furs. Oriented hierarchies are less prone to non-axis-aligned
geometries and more efficient in pruning intersection tests during
ray traversal [Ize et al. 2008]. The high construction cost, however,
remains an obstacle to the on-the-fly construction of oriented hier-
archies. We present a novel oriented hierarchy design that allows
fast GPU construction by utilizing the micropolygon grid, a natural
structure generated during micropolygon tessellation.



Hyper-trapezoids have been first proposed for collision detec-
tion [Hubbard 1995]. This work simply uses axis-aligned hyper-
trapezoids as approximation geometry for the moving object inter-
section test and does not construct any hierarchy. We extend their
hyper-trapezoid definition with orientation in spatial dimensions
and develop hyper-trapezoid hierarchy construction and traversal
algorithms for ray tracing.

3 Micropolygon Ray Tracing

In this section, we first briefly revisit the ray tracing formulation of
defocus and motion blur in Section 3.1, followed by the description
of OBB hyper-trapezoids in Section 3.2. Section 3.3 details our
hyper-trapezoid BVH construction algorithm. In Section 3.4, we
discuss ray generation and coherence reorganization, and present
the BVH traversal algorithm in Section 3.5. Finally, in Section 3.6,
we describe how to integrate our ray tracer into a micropolygon
rendering pipeline.

3.1 Ray Tracing Formulation

Both defocus and motion blur rendering can be formulated as ray
tracing problems as in distributed ray tracing [Cook et al. 1984].
These formulations can be adapted to micropolygons in a straight-
forward manner.

Our algorithm takes a set of shaded micropolygons and the camera
configuration as input. A number of subpixel samples with assigned
lens points and time stamps are generated for each pixel to produce
defocus and motion blur effects. One primary ray is then generated
and traced for each sample. For defocus, the ray starts from the
assigned lens point of the corresponding subpixel and goes through
the point on the focal plane corresponding to the subpixel. For mo-
tion blur, the ray is extended to 4D space-time with the assigned
time stamp as the fourth dimension coordinate.

3.2 OBB Hyper-trapezoids

The key difference between traditional BVHs and our BVH is the
shape of the bounding volume. The bounding shapes we use are
4D OBB hyper-trapezoids that project to 3D OBBs in the spatial
dimensions. For the sake of simplicity, in the following we describe
our hyper-trapezoids in the 3D space-time of motion-blurred 2D
scenes. We also assume all motion to be linear, i.e., the geometry
at time T = Ti is a linear interpolation of the geometry at time
T = 0 and T = 1. Non-linear motions can be easily handled by
piecewise-linear approximation [Christensen et al. 2006].

Consider a 2D dynamic scene shown in Fig. 2(a). By adding a third
time axis, we can get a 2D space translated continuously in time,
i.e., the 3D space-time shown in Fig. 2(b). Motion rays with time
stamps in the 2D space are mapped to ordinary rays perpendicular
to the time axis in the 3D space-time. Motion blurred rendering
of the original scene may thus be performed by tracing rays in the
space-time using a 3D ray tracer.

Note that it is inefficient to use general-purpose 3D acceleration hi-
erarchies in the space-time ray tracing. All shapes in the space-time
are prismatoids that span across the entire time dimension. Axis-
aligned hierarchies would be unable to utilize the time dimension
at all and produce highly inefficient bounding volumes as shown
in Fig. 3(a). General oriented hierarchies can produce tight bound-
ing volumes, but would be forced to introduce rotation in the time
dimension which destroys time-perpendicular properties and com-
plicates intersection tests. Without special handling of the time di-
mension, direct 3D space-time ray tracing risks performance degra-
dation due to such a special geometry distribution.
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(a) A 2D scene with motion (b) Corresponding 3D space-time

Figure 2: A 2D scene with motion and its corresponding 3D space-
time. Each slice perpendicular to the time axis in the space-time
corresponds to the 2D scene at a particular instant of time.

(a) Axis-aligned bound. volumes (b) Hyper-trapezoid bound. volumes

Figure 3: Axis-aligned bounding volumes and OBB hyper-
trapezoid bounding volumes in a 3D space-time.

We solve this problem by using OBB hyper-trapezoids as bound-
ing volumes. We define an OBB hyper-trapezoid to be the linear
combination of two oriented boxes with the same orientation ly-
ing on plane T = 0 and T = 1 respectively. Fig. 3(b) illustrates
an example of OBB hyper-trapezoids. Intuitively, an OBB hyper-
trapezoid in the 3D space-time corresponds to a moving oriented
box in the 2D space whose start and end poses correspond to the top
and bottom bases of the 3D hyper-trapezoid. Our hyper-trapezoids
are able to adapt to motion and bound moving objects more tightly
than axis-aligned volumes in space-time. The effectiveness of OBB
hyper-trapezoids is proved in our experiments as described in Sec-
tion 5.2. In addition, OBB hyper-trapezoids in space-time have the
following property:

Property 1 An OBB hyper-trapezoid bounds a moving object in
the space-time if and only if the hyper-trapezoid bounds the object’s
start and end poses.

This property allows some key hyper-trapezoid operations to be
performed conveniently on the start and end poses in the original
space. We utilize the property to design efficient BVH construction
and traversal algorithms. Proof of Property 1 is straightforward:
OBB hyper-trapezoids are convex shapes. If a hyper-trapezoid
bounds an object’s start and end poses, all points formed by the
linear combination of the start and end poses are enclosed in the
corresponding hyper-trapezoid, i.e., the hyper-trapezoid bounds the
moving object.

The hyper-trapezoid described above can be extended to the 3D
space (i.e., 4D space-time) in a straightforward manner. A 4D OBB
hyper-trapezoid is defined to be the linear combination of two 3D
OBBs with the same orientation at the start and end of a motion.



3.3 BVH Topology and Construction

Our BVH construction follows the general process of a top-down
SAH-based BVH constructor [Wald et al. 2007]. We begin with
one root node containing all input micropolygons and recursively
perform node partitioning until a termination criterion is met. When
a node is partitioned, all micropolygons inside it are partitioned into
its two child nodes. This top-down recursive partitioning process
generates a BVH topology, i.e., a binary tree where each leaf node
stores a list of micropolygons. After the topology is constructed, a
bounding shape is computed for each node in a bottom-up manner
to get the traversal-ready BVH. As aforementioned, the bounding
shapes are 4D hyper-trapezoids with 3D OBBs as bases.

While the OBB hyper-trapezoid allows compact bounds of arbi-
trarily moving objects, it also significantly increases the number of
possible node-splitting candidates [Ize et al. 2008], leading to high
construction overheads. To address this issue, we exploit the tempo-
ral coherence in motion and the micropolygon grid structure used in
typical micropolygon tessellation algorithms to constrain the split
candidates within a small subset. First, we only consider the scene
pose at T = 0.5 during BVH topology construction. Due to tempo-
ral coherence, the topology of this pose is expected to work reason-
ably well for temporally-close scene poses [Wald et al. 2007]. Sec-
ond, we assume that the input data structure is an unorganized soup
of micropolygon grids where each grid is a collection of microp-
olygons with a 2D parametric space. The majority of current mi-
cropolygon generation algorithms [Patney and Owens 2008; Fisher
et al. 2009] consist of a recursive splitting stage and a regular or
semi-regular tessellation stage. Such algorithms naturally generate
the micropolygon grid structure we need as illustrated in Fig. 4.

Our BVH topology construction consists of two stages to match the
grid data structure. We first build a top-level SAH BVH of the grids
using the centroid-based SAH partitioning algorithm [Wald et al.
2007]. Grids in each node are recursively partitioned into child
nodes with respect to their centroids using axis-aligned planes. Dur-
ing SAH computation, the traversal cost of each grid is computed
as the number of micropolygons it contains. We continue splitting
even if no split candidate can reduce the SAH cost. This guarantees
that each leaf node in this top-level BVH contains at most one grid.
Once the top-level BVH is constructed, each of its leaf nodes is re-
placed with an in-grid BVH constructed using approximated SAH
splits. Within each grid, we approximate the optimal SAH split by
simply splitting at the midpoint of the longer axis in the parametric
space of the grid. The midpoint split stops once a node has less than
eight micropolygons. Note that for uniform grids, the optimal SAH
split coincides with the midpoint split. As micropolygon grids map
to uniform grids in the parametric space, intuitively the midpoint
split in the parametric space is an accurate approximation of the
optimal SAH split in the world space when the mapping between
the two spaces is sufficiently uniform. This intuition is verified in
our experiments. In 94% of the cases we experimented with, the
final SAH cost of the output subtrees produced by our paramet-
ric space algorithm is within 120% of the SAH cost produced by
greedy SAH optimization. For details about the SAH experiments,
please refer to Section 5.2.

The top-level BVH topology construction described above only
uses axis-aligned partition planes, and is thus prone to degener-
ate geometries like dense non-axis-aligned curves in hair and fur
scenes. We address this issue by switching to an orientation-aware
split strategy when no split candidate can reduce the SAH cost or
when a predefined depth limit is reached. The orientation-aware
strategy constructs the BVH topology using 1D sorting. All grids
in the node to be processed are sorted with respect to a 5D Morton
code [Morton 1966] consisting of the grid orientation and centroid
position. The orientation of a grid is computed as the average mi-

Figure 4: Example micropolygon grids generated by a micropoly-
gon renderer.

cropolygon normal for surfaces and the average segment direction
for curves. The orientations are converted to 2D using a low dis-
tortion sphere-disk map [Shirley and Chiu 1997] and packed in the
more significant position during Morton code construction. This
Morton code sort groups grids with coherent orientation together to
attempt to make the oriented bounding boxes to be computed more
compact. A subtree topology is constructed from the sorted list by
recursively median partitioning the sorted list.

After the BVH topology is constructed, we perform a bottom-
up bounding and merging pass to compute the bounding hyper-
trapezoids. A bounding hyper-trapezoid is first computed for each
leaf node. Then for each inner node in the bottom-up order, the
bounding hyper-trapezoids of its child nodes are merged to gener-
ate the bounding hyper-trapezoid of this inner node. Although the
hyper-trapezoids are 4D, these two hyper-trapezoid operations can
be implemented with only 3D operations:

• To compute the bounding hyper-trapezoid of a set of micropoly-
gons, we compute two 3D OBBs with the same orientation for
the start and end poses of the moving micropolygons as the re-
spective hyper-trapezoid bases.

• To merge two hyper-trapezoids into their bounding hyper-
trapezoid, the two bases of the two input hyper-trapezoids are
separately joined into two 3D OBBs with the same orientation
that are used as the bases of the final hyper-trapezoid.

Both operations require the orientation of the resulting hyper-
trapezoid as input. Therefore, an orientation needs to be com-
puted for each node before its bounding hyper-trapezoid is com-
puted. Again, we utilize the micropolygon grid structure to effi-
ciently compute orientations that allow compact bounding boxes.
Specifically, we first compute the orientation for each micropoly-
gon grid. For each grid, a main direction for each of its two tes-
sellation directions is computed as the average of all respective mi-
cropolygon edges. The two main directions are then orthogonal-
ized and combined with the normal vector of the plane they form to
yield the per-grid orientation. We intentionally avoid PCA (Princi-
pal Component Analysis) during the main direction computation to
reduce computational cost and improve numerical stability. After
each per-grid orientation is computed, it is assigned to all nodes in
the sub-tree the grid corresponds to. The orientations are then prop-
agated bottom-up to top-level nodes. For each top-level node, two
bounding hyper-trapezoids are computed according to the orienta-
tions of its two child nodes respectively. The orientation that leads
to the bounding hyper-trapezoid with smaller surface area is chosen
as the final orientation.



3.4 Ray Generation and Organization

We generate subpixel, defocus and motion blur sampling rays us-
ing jittered stratified sampling [Cook 1986]. To generate N × N

rays for a given pixel, the three sampling domains, i.e., subpixel,
lens and time, are each divided into N × N regions of equal area.
One sample is taken from each region in each sampling domain.
All samples are randomly jittered within the corresponding regions.
Finally, one lens sample and one time sample are assigned to each
subpixel sample using two independent permutations for lens and
time. Fig. 5 illustrates the sampling domains and permutations.
Note that we use a per-pixel time permutation to eliminate the
correlation between time and lens. Such per-pixel permutation is
very challenging for rasterizers as the permutation conflicts with
assumptions required for computing tight rasterization bounding
boxes. The only rasterization method capable of handling our sam-
pling pattern is to test all samples covered by the expanded bound-
ing boxes of all micropolygons in a brute-force manner.

We generate all the random numbers required in the ray genera-
tion in parallel by repeatedly hashing the ray index using the final
avalanching step of the SuperFastHash [Hsieh 2004]. The lens per-
mutation we use is a magic square [Weisstein ] and the time per-
mutation is a shuffled version of the defocus magic square shifted
by the hash of the pixel ID. This shift is omitted if defocus is dis-
abled. For lens samples, currently we support disk and regular
polygon-shaped lenses to enable a variety of bokeh effects. We
first generate lens samples on a square and then map them to a disk
using a low distortion disk-square map [Shirley and Chiu 1997].
Polygon-shaped lenses are handled by modifying the radius in the
disk-square mapping.

As pointed out by Aila and Laine [2009], SIMD efficiency is crit-
ical for GPU ray traversal performance. Therefore, we group to-
gether rays that are likely to yield similar branch decisions during
traversal to improve the SIMD efficiency. First, we generate rays
in 16 × 16 tiles in the image space. Within each tile, the 256 rays
are organized in a Z-order curve [Morton 1966]. If motion blur is
enabled, the rays are sorted by the 4-bit quantized motion time us-
ing a stable-sort. If defocus is enabled, the rays are sorted by the x
and y components (each quantized to 4 bits) of ray direction vectors
using a stable-sort. If both motion blur and defocus are enabled, the
defocus sort is performed after the motion blur sort as maintaining
coherence in defocus rays is more significant performance-wise.

3.5 BVH Traversal

Our BVH ray traversal algorithm follows the per-ray persistent
while-while traversal algorithm [Aila and Laine 2009]. The main
challenge in designing the algorithm is the intersection tests.
Namely, we need to intersect motion rays with the 4D space-time
hyper-trapezoids and moving micropolygons. Note that a space-
time hyper-trapezoid may be interpreted as a moving OBB. Inter-
secting a motion ray with a hyper-trapezoid is thus equivalent to in-
tersecting the ray with the corresponding OBB at the ray’s assigned
time. The same scheme can be applied to moving micropolygons.
The problems are thus converted to intersecting rays with OBBs
and micropolygons in the 3D spatial dimensions.

We convert oriented box intersection tests to axis-aligned box inter-
section tests by transforming rays into the per-box local frame. An
advantage of our constructed BVH is that the box orientations do
not change frequently during top-down hierarchy traversal. There-
fore, ray transformation is performed less frequently than box in-
tersections and does not introduce significant overhead compared
to pure axis-aligned BVH traversal.

The micropolygon intersection test is more complicated. From a
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Figure 5: Example ray generation for 3 × 3 supersampling.

mathematical point of view, the 3D geometry of micropolygons
is inherently ill-defined. The four vertices of a micropolygon are
typically not coplanar. The edges may be concave or degenerate.
It is difficult, if not impossible, to define an intersection-friendly
3D geometry for an arbitrary micropolygon. Therefore, we use a
rasterization-like method to compute pseudo-intersections for mi-
cropolygons. The four vertices of the micropolygon to be tested
and the ray termination point are first perspectively projected to 2D
space along the z-axis as in a rasterizer. A 2D quad is constructed by
connecting pairs of projected vertices that correspond to the orig-
inal micropolygon edges. An even-odd rule 2D point-in-polygon
test between the projected ray termination point and the 2D quad
is then performed. If the point-in-polygon test returns positive, a
potential intersection point is computed by bilinearly interpolating
the z component of the four micropolygon vertices and inverse-
projecting the projected ray termination point with the computed
z. The selection of interpolation weights is insignificant as long as
all weights are valid, i.e., the sum of the four weights is 1 and all
weights are non-negative. If the minimum and maximum z of mi-
cropolygon vertices and the minimum and maximum z of the ray
overlap, the intersection test returns positive and the potential in-
tersection point is returned. Otherwise the intersection test returns
negative.

The use of the projection-based pseudo-intersection test guarantees
two important properties of our algorithm. First, our micropoly-
gon intersection test is equivalent to a coverage test in a raster-
izer. Therefore, our algorithm produces no visual artifacts other
than those produced by rasterization. Second, despite that our inter-
section test does not correspond to any well-defined 3D geometry,
adding a bounding volume intersection test before the micropoly-
gon intersection test does not result in cracks. The reason is as
follows. All bounding volumes in our BVH are convex and bound
all vertices of the contained micropolygons. Pseudo-intersection
points inside the convex hull of the micropolygon vertices are never
pruned by bounding volumes, and the potential pseudo-intersection
points still form a water-tight shape.

3.6 Reyes Pipeline Integration

Our micropolygon ray tracer can be used in the sampling and com-
position stages in a Reyes pipeline. The ray tracer takes the shaded
micropolygon grids from the preceding shading stage, constructs a
BVH for the micropolygons, traces rays and returns a set of sub-
pixel sample colors to the subsequent filtering stage.

We have implemented the described BVH construction and traver-
sal algorithms on GPUs using the BSGP language [Hou et al. 2008].
Since most operations in our algorithms (e.g., SAH-based splitting
and ray traversal) have available GPU implementations in previous
publications [Zhou et al. 2008; Lauterbach et al. 2009], implement-
ing our ray tracer on the GPU is straightforward. We also integrated
the ray tracer into RenderAnts [Zhou et al. 2009], an open source
GPU-based Reyes renderer. We removed their original accumu-
lation buffer based defocus and motion blur implementation and
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Figure 6: Render quality comparison. The small images in the bottom rows are close-up views for the boxes in the top. All large images
shown here are generated by our ray tracer. Images are rendered at 1280 × 720 with 13 × 13 supersampling.

modified their pipeline to call our ray tracer.

4 Extensions

In this section, we describe several extensions of our micropolygon
ray tracing algorithm.

Secondary Rays An obvious extension is to use our ray tracer
to compute secondary ray effects like hard shadow, reflection and
refraction. However, directly tracing secondary rays on Reyes-
generated micropolygons would yield incorrect results as Reyes
micropolygons are generated using view-dependent tessellation.
Therefore, we first generate a secondary ray friendly micropolygon
representation of the scene using non-culled view-independent tes-
sellation. Ray tracing interfaces on this representation are then pro-
vided to shaders. We currently provide two ray tracing interfaces,
one only tests whether there is an intersection and one computes
shading at the intersection point. Using these interfaces, we im-
plemented ray-traced hard shadow, reflection and refraction. These
effects are rendered in our fur ball and car scenes shown in Fig. 1
and Fig. 7(a).

The geometric precision for secondary intersections with paramet-
ric surfaces are limited by the available memory because we cur-
rently do not support out-of-core BVH traversal. For strongly en-
larging reflection/refraction effects, parametric surface silhouettes
may not be very smooth. On the other hand, shading quality for
reflection/refraction is less affected by this limitation as we recom-
pute surface parameters for parametric surfaces at secondary ray hit
points during shading. In practice, we find that our secondary effect
quality is acceptable for near-flat reflective/refractive surfaces and
for hard shadows at non-extreme angles.

Ray-micropolygon intersection for secondary rays has a minor dif-
ference with primary ray intersection. Instead of projecting microp-
olygons along the z axis, we project micropolygons along the axis
on which the ray direction has the maximum absolute value.

Transparency Memory-bounded transparency and layer-limited
transparency can be conveniently implemented using ray tracing.
One important property of ray tracing is that it can start at any
point, and can return the nearest m intersections instead of just
one. This allows us to process transparency in multiple passes in
the front-to-back order and only compute a limited number of lay-

ers in one pass. For memory-bounded transparency, we restrict the
total number of transparent layers processed in one pass according
to the available memory. After each pass, all generated layers are
accumulated to the final image and all memory used during the pass
is freed. This property guarantees that the algorithm never fails due
to out-of-memory errors, even in extreme cases where the transpar-
ent layers on a single subpixel sample cannot fit in memory. For
layer-limited transparency, we simply ignore all transparent sam-
ples beyond the nearest m layers, where m is a user-specified value.
With a proper m, rendering of hair/fur scenes may be significantly
accelerated without introducing visible artifacts. Our fur ball scene
shown in Fig. 7(a) requires memory-bounded transparency to cor-
rectly render in-core, and its number of transparent layers is limited
to five to accelerate rendering.

Culling Ray tracing can be also used as a visibility testing tool
for pre-shading culling. Prior to shading, we detect visible microp-
olygon grids by tracing a few primary rays on random points of
each grid and only shade the grids that are hit by at least one ray.
Other grids are only shaded when they are intersected during the
subsequent sampling stage. In our experiments, the culling may re-
duce shading workload by approximately 40%. However, the par-
allelism during the shading stage becomes fragmented and the GPU
becomes under-utilized. Although we do not observe any accelera-
tion in our test scenes, we expect that such culling would be more
effective for film production scenes with more complicated shaders.

5 Experimental Results

In this section, we evaluate the described ray tracing algorithm us-
ing several scenes on a machine with one NVIDIA GTX 285 GPU.
Our evaluation consists of two parts. Rendering performance and
quality comparisons are reported in Section 5.1, and statistical data
obtained through controlled study are analyzed in Section 5.2.

We compare our algorithm with the INTERVAL and INTER-

LEAVEUVT rasterizers described in Fatahalian et al. [2009]. Code-
optimized GPU implementations of the rasterizers are used in the
comparisons. The rasterizers do not perform any occlusion culling,
as GPU occlusion culling in the presence of defocus and motion
blur is a challenging problem in itself. Note that both rasteriz-
ers make performance/quality tradeoffs. The INTERVAL rasterizer
splits the sampling domain to S intervals and uses jittered stratified



(a) Furball Family, defocus (b) Ladybug, defocus (c) Fairy, defocus + motion blur

17.6M mpolys, 1280× 960 (13× 13) 24.1M mpolys, 1280× 960 (23× 23) 5.96M mpolys, 1280× 720 (13× 13)

14.3 mpolys per pixel 19.6 mpolys per pixel 6.47 mpolys per pixel

Figure 7: Images and statistics of several test scenes. “mpolys” is the total number of micropolygons in the scene.

DOF (a) MB (b) DOF + MB (c)

Our RAYTRACE 10.5 13.2 17.2

INTERVAL 42.9 18.6 91.9

INTERLEAVEUVT, k = 2 77.1 68.7 80.7

INTERLEAVEUVT, k = 4 261.3 227.8 266.8

Table 1: Render time (in seconds) for all method/effect combina-
tions shown in Fig. 6.

sampling to generate a subpixel sample in each interval. We set S

to be the same as our super-sampling rate. Jittering allows alias-
free rendering of individual effects. However, INTERVAL always
pairs the same time region with the same lens region. This pairing
creates correlation between defocus and motion blur and may re-
sult in aliasing if both effects are combined. The INTERLEAVEUVT

rasterizer disables jittering and uses a fixed number of subpixel-
lens-motion tuples in the entire screen while allowing each pixel
to contain a different set of tuples. The lack of jittering produces
aliasing and the algorithm hides aliasing by permutating tuple-pixel
assignments. The amount of subpixel-lens-motion tuples is con-
trolled by a parameter called tile size. In the following we use the
letter k to represent tile sizes. Increasing k improves quality while
also increasing render time.

Four test scenes are used in our evaluation:

• Furball Family shown in Fig. 7(a). A static scene of two fur
balls rendered with only defocus. The scene contains 495K
transparent hairs. The marble floor is reflective.

• Ladybug shown in Fig. 7(b). A flower field with a ladybug and a
few dewdrops. The scene has multiple layers of grass and flow-
ers. Out-of-focus dewdrop highlights produce hexagonal bokeh
effects. Some mild HDR glow effects are added as a postprocess.

• Fairy shown in Fig. 7(c). We exported 189 frames of the Fairy
animation in the Utah Animation Repository. The scene con-
tains a dancing fairy, a dragonfly flying in and out of focus and a
moving camera.

• Car shown in Fig. 1. A car driving in a tunnel. The defocus
blur of distant and bright traffic lights requires very high super-
sampling to render smoothly. The body of the car is reflective.
The scene contains ambient occlusion rendered using a GPU im-
plementation of the point-based approximate color bleeding al-
gorithm [Christensen 2008]. HDR glow effects are added as a
postprocess.

Furball Ladybug Fairy Car

Our RAYTRACE 52.7 44.4 10.9 28.2

INTERVAL 119.3 163.4 32.3 178.0

INTERLEAVEUVT, k = 2 57.5 148.1 20.2 214.4

INTERLEAVEUVT, k = 4 155.9 484.4 64.2 710.6

Table 2: Sampling time (in seconds) for all test scenes. For ani-
mations, only the statistics of the frame shown in Fig. 7 or Fig. 1 is
reported.

Furball Ladybug Fairy Car

Tessellation 1.4 2.6 0.1 1.1

Shading 8.1 81.0 7.7 213.2

Sampling 52.7 44.4 10.9 28.2

Composition 158.8 5.5 44.6 15.9

Total 221.0 133.5 63.3 258.4

Table 3: Total render time and per-stage time of our rendering
system for all test scenes. All timings are in seconds.

5.1 Quality and Performance

Fig. 6 illustrates the rendering quality of our method and the
rasterization-based approaches under different effect combinations
in the Car scene. Render time for the images in Fig. 6 is provided in
Table 1. Our method consistently achieves higher performance than
the rasterization-based approaches. Compared with INTERVAL, our
method does not produce aliasing artifacts for combined defocus
and motion blur effects and achieves higher performance. For rel-
atively mild, non-combined effects, our method and INTERVAL are
comparable. Compared with INTERLEAVEUVT, our method pro-
duces less noise and achieves significantly higher performance than
high-quality settings of INTERLEAVEUVT.

Table 2 shows the sampling time for the test scenes. All scenes are
rendered within a few minutes at supersampling rates above 11×11,
PRMan’s “production” preset. As illustrated, our method is up to
an order of magnitude faster than INTERLEAVEUVT with k = 4

and several times faster than INTERVAL. The total render time and
per-stage time of our rendering system are also reported in Table 3.

We evaluate the efficiency of our OBB hyper-trapezoid BVH by
comparing with alternative acceleration structures, including a sim-
ple 4D AABB BVH, an AABB-based hyper-trapezoid BVH and a
greedy SAH BVH. The topology of all BVHs are the same. Table 4
shows the comparison results. As illustrated, the hyper-trapezoid
is orders of magnitude more efficient than simple 4D AABBs. Up
to 200× traversal speedups have been observed for high-motion



Furball Ladybug Fairy Car

Ours
Build 5.0 6.7 0.8 4.6
Trace 47.6 38.2 10.0 23.5

AABB Hyper.
Build - - 0.7 3.6
Trace - - 13.5 60.0

3D/4D AABB
Build 4.4 5.6 0.7 3.7
Trace 62.3 79.2 16.9 5077.4

No parametric Build 51.5 67.8 8.2 104.3
-space split Trace 60.9 84.0 10.0 53.0

No orientation Build 5.1 6.8 0.8 4.7
-aware split Trace 47.6 42.9 10.0 23.5

No orientation Build 5.1 6.6 0.7 4.3
propagation Trace 43.6 57.2 10.3 26.7

No ray sort Trace 51.2 38.1 10.2 23.3

Table 4: Build and trace time comparison for our OBB hyper-
trapezoid BVH, AABB hyper-trapezoid BVH, 3D/4D AABB BVH
and several other alternative build/trace schemes. All timings are
in seconds. For defocus-only scenes, our approach falls back to
OBBs and we only compare with 3D AABB BVH. For motion blur
scenes, we compare with 4D AABB BVH.

scenes like Car. OBB hyper-trapezoids also achieve significant
traversal speedups compared with AABB hyper-trapezoids. The
construction time for all other BVHs only takes a small fraction of
the total rendering time and the difference in construction time is
negligible with respect to the choice of bounding shapes.

We also evaluate the performance impact of several algorithmic op-
timizations by comparing build/trace time with individual optimiza-
tions disabled. As illustrated in Table 4, the parametric-space split
is the most critical part of our algorithm. Without it, the BVH con-
struction time is significantly increased and ray tracing time is also
increased. The orientation propagation helps traversal performance
considerably for most scenes. The orientation-aware split is mainly
a fallback for special cases and it only helped the Ladybug scene.
The performance impact of ray pre-sorting depends on the percent-
age of blurry pixels and blur radius. In some cases (e.g., Ladybug
and Car) the cost of sorting rays may cancel out the benefit of co-
herence improvement.

The peak memory consumption of our algorithm is about 10 bytes
per micropolygon during BVH construction and 650 bytes per ray
during ray traversal with the input data allocated by the Reyes
pipeline excluded. Assuming 100MB GPU memory is available
in the sampling stage, we are able to process millions of microp-
olygons and hundreds of thousands of rays in parallel, which is
sufficient for full utilization of modern GPUs.

Note that all algorithms implemented in this paper consume all
available GPU memory to process as many micropolygons and
rays as possible in parallel to maximize the rendering performance.
We utilize the dynamic scheduling system described in Render-
Ants [Zhou et al. 2009] to recursively subdivide the rendering re-
gion until the memory required by an algorithm is less than the
available GPU memory. As a result, the memory consumption dif-
ferences between the algorithms are converted to execution time
differences.

Our algorithm is designed for off-line software rendering and it
does not necessarily perform well under real-time level parameter
settings. One important reason is that the BVH construction be-
comes a major bottleneck at lower sampling rates. Table 5 shows
the ray-tracing/rasterization performance comparison for several
scenes at various polygon sizes (controlled via shading rates) and
sampling rates. As illustrated, INTERLEAVEUVT becomes faster
than ray tracing at lower sampling rates. However, our ray tracing

Furball 1×1 4×4 8×8 Ref SR×4 SR×16

RAYTRACE 5.2 10.2 24.9 52.7 64.4 153.4

INTERVAL 18.7 34.6 65.2 119.3 74.0 71.6

UVT-2 0.6 5.6 21.9 57.5 33.3 31.6

UVT-4 1.2 15.0 59.1 155.9 70.2 52.2

Ladybug 1×1 4×4 8×8 Ref SR×4 SR×16

RAYTRACE 3.0 4.2 7.9 44.4 40.7 38.1

INTERVAL 7.2 15.8 32.9 163.4 137.3 52.3

UVT-2 0.5 4.6 17.9 148.1 124.4 35.0

UVT-4 1.1 15.0 59.4 484.4 406.9 74.6

Fairy 1×1 4×4 8×8 Ref SR×4 SR×16

RAYTRACE 1.0 1.9 4.5 10.9 8.4 7.7

INTERVAL 3.6 7.9 16.5 32.3 15.6 11.3

UVT-2 0.2 1.9 7.7 20.2 9.3 5.7

UVT-4 0.4 6.1 24.3 64.2 23.9 11.7

Car 1×1 4×4 8×8 Ref SR×4 SR×16

RAYTRACE 4.4 5.3 7.5 28.2 24.3 24.7

INTERVAL 13.5 9.3 24.4 178.0 57.0 27.8

UVT-2 0.8 6.8 26.0 214.4 53.2 28.3

UVT-4 1.7 21.6 85.2 710.6 177.7 72.5

Table 5: Performance comparison at different sampling rates and
shading rates (i.e., polygon sizes). The 1×1, 4×4, 8×8 numbers
are sampling rates. SR×4 means 4× polygon size, i.e., 4× coarser
shading rate. SR×16 means 16× polygon size. The “Ref” column
contains the reference performance data where sampling/shading
rate settings are the same as the measurements in Table 2. The
detailed shading rate assignment is: Furball (0.8), Ladybug (1 for
grass and sky, 0.1 for ladybug, flowers and dewdrops), Fairy (0.3),
Car (0.2).

remains faster than INTERVAL as low sampling rates lead to fewer
intervals and more bloated bounding boxes.

Polygon sizes have different impacts on ray tracing and rasteriz-
ers. For ray tracing, polygon sizes take effect indirectly by affect-
ing the memory access coherence during BVH traversal. Larger
polygons make ray-micropolygon intersection tests more coherent.
However, they are more likely to overlap and harder to separate dur-
ing BVH construction, decreasing the BVH quality. Furball is an
extreme example of BVH quality degradation for larger polygons.
Rasterizers are significantly more efficient for larger and coarser
polygons. It should be noted that the shading rates in our scenes
are manually tweaked by our artist. Specifically, as Reyes only
computes shading at micropolygon vertices, the artist purposefully
over-tessellated reflective/bumpy objects to improve shading anti-
aliasing. At the coarser shading rates where rasterizers become ef-
ficient, bumpy faces look flat and the reflections/refractions contain
severe aliasing artifacts. Therefore, such settings are not suitable
for off-line rendering.

5.2 Controlled Study

Our controlled studies are performed in a stand-alone program us-
ing a simple test scene shown in Fig. 8 in order to minimize the
influence of external factors. The simple scene does not require the
various scheduling operations in a Reyes pipeline to render and its
motion and defocus scales may be easily controlled.

To evaluate the SAH approximation accuracy of the parametric
space split algorithm in our bottom-level BVH construction, we
tested the algorithm on the micropolygon grids in the halberd scene.
For each grid, we compute the relative difference in SAH cost be-
tween our approximation and the greedy SAH optimization in Wald



(a) Perfect focus (b) Defocus + Motion blur

Figure 8: The simple scene used for controlled study.
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Figure 9: Relative SAH difference distribution in SAH approxima-
tion evaluation. A negative value indicates our method has smaller
SAH costs.

et al. [2007]. Since the original greedy optimization only consid-
ers axis-aligned splits, we modify it to consider splits aligned with
each grid’s final bounding box orientation to make the comparison
fair. For simplicity, the comparison is performed in 3D without
regarding motion blur. Fig. 9 illustrates the distribution of the rela-
tive differences. Negative values indicate that our method produces
smaller SAH costs. The average difference is −7.4%. We outper-
form the greedy SAH optimization in 75% of the cases, and per-
form no worse than 20% in 94% of the cases. The minimum and
maximum differences are −76% and +101% respectively. This
comparison demonstrates that our parametric space split performs
competitively to the greedy SAH optimization, and may achieve
better results in certain cases.

Theoretically, the time complexity of our ray tracing algorithm
stays constant with respect to motion and defocus scales. In prac-
tice, however, our GPU implementation suffers from decreased
control flow and memory coherence as the motion and defocus scale
increases. To evaluate such behaviors, we plot the render time of IN-

TERVAL, INTERLEAVEUVT (k = 4) and our algorithm at different
motion and defocus scales. The render times are for the halberd
scene at motions of 0 − 190 pixels and 0 − 9.5× defocus scales.
Larger defocus scales correspond to larger circles of confusion. As
illustrated in Fig. 10, compared with INTERVAL, the render time
of our method is significantly less sensitive to the defocus scale
and we are able to achieve higher speedups for large defocus blurs.
Compared with INTERLEAVEUVT (k = 4), our method is more
sensitive to motion and defocus scales. Nevertheless, our render
time does not degrade in an unbounded manner like INTERVAL and
our method remains faster than INTERLEAVEUVT even at extreme
motion and defocus scales.
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Figure 10: Render time at different motion and defocus scales.
Top: fixed defocus scale and varied motion scale. Bottom: fixed
motion scale and varied defocus scale.

6 Conclusion and Future Work

We have presented a micropolygon ray tracing algorithm that is
more efficient than existing rasterization-based methods for render-
ing high quality defocus and motion blur effects. To the best of
our knowledge, this is the first ray tracing algorithm with on-the-
fly acceleration structure construction that outperforms the state-
of-the-art rasterization methods under certain circumstances (i.e.,
high quality defocus and motion blur). We are able to eliminate the
quality-performance tradeoff in defocus and motion blur rendering
and provide maximum quality with superior performance.

Although our tracing algorithm greatly accelerates the sampling
stage, the speedup in overall rendering time may not be significant
if rendering cost is dominated by very complicated shaders, as is
typically the case in off-line movie rendering systems. But for sim-
pler shaders, the speed-ups can be significant. In both cases, our ray
tracing algorithm serves as a competitive alternative to rasterization
and can fundamentally dictate the design of the remainder of these
systems.

One limitation of our algorithm is the inefficiency of transparency
handling. While our algorithm is able to process large sets of
transparent samples in-core, our cost of processing each transparent
sample is higher than rasterizers. The BVH becomes considerably
less efficient in pruning intersection tests when tracing rays inside
objects. Improving ray tracing performance for transparent scenes
is an interesting direction for future work.

There are a number of future work directions in addition to improv-
ing transparency efficiency. First, we are interested in combining
recent adaptive sampling techniques [Hachisuka et al. 2008; Over-
beck et al. 2009] with our ray tracing pipeline. Such combination
would combine the strengths of adaptive sampling and shading-
sampling decoupling in micropolygon pipelines to further acceler-
ate the rendering. Second, faster micropolygon BVH construction
suitable for realtime ray tracing is also an interesting research di-
rection.
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