
c© ACM, 2011. This is the authors version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in ACM Transactions on Graphics, 30, 6,
December 2011. <doi.acm.org/10.1145/2024156.2024201>

Multiscale Vector Volumes

Lvdi Wang
Tsinghua University

Yizhou Yu
University of Illinois at Urbana-Champaign

The University of Hong Kong

Kun Zhou
Zhejiang University

Baining Guo
Microsoft Research Asia

Tsinghua University

(a) (b) (c)

Figure 1: A multiscale vector volume depicting a portion of human skin viewed at different scales. (b) Zoomed view of the selected area in
(a). (c) Zoomed view of the selected area in (b). This model was created from scratch with our representation and consumes 6.8 MB storage.

Abstract

We introduce multiscale vector volumes, a compact vector repre-
sentation for volumetric objects with complex internal structures
spanning a wide range of scales. With our representation, an object
is decomposed into components and each component is modeled as
an SDF tree, a novel data structure that uses multiple signed dis-
tance functions (SDFs) to further decompose the volumetric com-
ponent into regions. Multiple signed distance functions collectively
can represent non-manifold surfaces and deliver a powerful vector
representation for complex volumetric features. We use multiscale
embedding to combine object components at different scales into
one complex volumetric object. As a result, regions with dramat-
ically different scales and complexities can co-exist in an object.
To facilitate volumetric object authoring and editing, we have also
developed a scripting language and a GUI prototype. With the help
of a recursively defined spatial indexing structure, our vector repre-
sentation supports fast random access, and arbitrary cross sections
of complex volumetric objects can be visualized in real time.

Keywords: volumetric modeling, multiscale representations

Links: DL PDF WEB

1 Introduction

Most natural organisms and materials, such as the human body,
fruits and sedimentary rocks, have rich and complex volumetric
structures, patterns and color variations. Constructing high-quality

digital models for such natural organisms and materials is of vital
importance because they exist everywhere, and literally everything
we see is either a living being, a natural material or something made
from these two. Since volumetric models allow us to visualize the
internal structure of an object, they are valuable graphical contents
that can be used in biomedical research, scientific visualization as
well as educational and training activities.

Nevertheless, constructing high-quality digital models of natural or-
ganisms and materials with complex volumetric properties is an ex-
tremely challenging task. First, how can we compactly represent
volumetric structures and patterns spanning a wide range of scales?
Taking the human body as an example, it has a skeleton, organs
and tissues at the macroscopic scale, cellular structures and neu-
ronal fibers at an intermediate scale as well as proteins and genes at
the molecular scale. Second, how can we represent high-frequency
features in a resolution-independent way? Physical and appearance
properties (e.g. color) change abruptly across different materials or
volumetric components. Such discontinuities typically form thin
surface sheets, which may join or split following an irregular pat-
tern, giving rise to a non-manifold structure (Figure 2). To prevent
visual artifacts when zooming into these high-frequency structures,
a resolution-independent vector representation is desired. A volu-
metric object representation not only needs to depict complex mul-
tiscale structures, but also should be easy to use, which means it
should be easy to create novel objects and easy to view existing ob-
jects in this representation. Thus, a volumetric object representation
should have the following desired properties:

• Expressiveness: It should be able to represent volumetric
objects with spatial structures spanning a wide range of
scales and including complex non-manifold features. High-
frequency features should remain sharp during magnification.

• Ease of editing: It should be easy and intuitive to create novel
objects and edit existing ones using this representation.

• Random access: To be able to provide a timely response to
user interactions, fast visualization is required, which further
demands efficient random access to the volumetric content.

• Compactness: Given the limited memory on current graphics
cards, the representation should be as compact as possible.

http://doi.acm.org/10.1145/2024156.2024201
http://portal.acm.org/ft_gateway.cfm?id=2024201&type=pdf
http://lvdiwang.com/publications/mvv/

Voxel Procedural VST [Wang et al. 2010] DSs [Takayama et al. 2010] Our method

Expressiveness Yes Domain specific Limited (two-colorable) Limited (smooth variations) Yes
Ease of editing No Non-intuitive Limited Yes Yes
Random access Very efficient Very efficient Efficient Not efficient Efficient
Compactness No Very compact Compact Compact Compact

Table 1: Comparison among different volumetric modeling approaches.

(a) (b) (c)

Figure 2: The regions in (a) are two-colorable as they can be distin-
guished by a single binary mask (b). In (c) there are more than two
regions adjacent to each other, therefore the regions are not two-
colorable. The boundaries between regions contain non-manifold
features (e.g. T-junctions as highlighted in yellow).

In this paper, we introduce multiscale vector volumes, a compact
vector representation for volumetric objects with complex internal
structures spanning a wide range of scales.

The key idea is to decompose a complex object into individ-
ual volumetric components with respect to its multiscale struc-
ture, and preserve the boundary shape of each component in
a resolution-independent way. This is achieved by hierarchi-
cally dividing an entire volumetric object into multiple non-
overlapping regions using multiple continuous signed distance
functions (SDFs). These continuous SDFs collectively deliver a
powerful resolution-independent vector representation for complex
region boundary surfaces that contain non-manifold structures and
non-differentiable features such as creases and corners. The hierar-
chical decomposition organizes all resulting regions as leaf nodes
of a binary tree, which we call an SDF tree. SDF trees support fast
random access because signed distance functions can determine re-
gion memberships efficiently. We further introduce object embed-
ding and instancing in our vector representation to compactly rep-
resent internal structures with a wide range of scales. Volumetric
objects at smaller scales can be embedded into the regions of those
at larger scales by linking together their respective SDF trees.

Such an explicit definition of individual volumetric components of-
fers a few advantages. First, each region in a volumetric object
can define its own color function. Changes made to one region do
not affect others and the boundaries between regions remain sharp
during magnification. Second, it allows a user to define a complex
volumetric object by identifying representative components at each
scale, modeling such components as standalone objects, and finally
linking them together through embedding and/or instancing. It also
greatly improves the reusability of existing volumetric components.

To facilitate volumetric object authoring and interactive editing, we
have also provided both a scripting language and a GUI prototype.
With the help of a recursively defined spatial indexing structure, we
demonstrate that antialiased visualizations of arbitrary cross sec-
tions of a complex volumetric object can be generated in real time.

In Table 1 we compare our volumetric object representation against
existing ones, such as voxel grids, procedural methods, vector solid
textures (VST) [Wang et al. 2010], and diffusion surfaces (DSs)
[Takayama et al. 2010], with respect to four criteria, including ex-

pressiveness, ease of editing, random-access performance and com-
pactness. These criteria are consistent with the aforementioned de-
sired properties of volumetric representations. In summary, our rep-
resentation compares favorably in all of these criteria.

2 Related Work

Procedural noises are capable of generating solid textures as well
as object boundaries [Perlin and Hoffert 1989] in a very compact
form. However they are domain specific and it can be difficult to
control the generation process precisely, and thus not sufficient to
create generic volumetric objects with deterministic and semanti-
cally meaningful structures.

Implicit surfaces are an important geometric modeling tool.
Ricci [1974] organizes multiple implicit surfaces into a CSG tree
to construct complex solid geometries from simpler primitives.
Frisken et al. [2000] develops adaptively-sampled distance fields
(ADFs) which encode an SDF using an adaptive space partition
scheme, such as an octree, so that geometric features with vary-
ing scales can be represented efficiently. Perry and Frisken [2006]
extended ADFs to support multiple SDFs combined using Boolean
operators within each octree cell to represent non-differentiable fea-
tures such as corners. However, the above methods are designed for
representing solids with a single region or multiple two-colorable
regions. They are unable to represent objects with non-manifold
structures. Differences among CSG, ADFs and our method will be
further elaborated in Section 3.1.3.

Example-based methods allow the user to generate a solid tex-
ture that visually resembles one or more smaller exemplars [Kopf
et al. 2007; Dong et al. 2008]. These methods are typically built
upon the Markov Random Field assumption, which limits the result
to patterns with relatively short-range correlations. Of particular
interest among these methods is the multiscale texture synthesis al-
gorithm developed in [Han et al. 2008], where an exemplar-graph
is introduced to link together multiple 2D texture exemplars at dif-
ferent scales. The exemplar-graph is, however, neither volumet-
ric nor resolution-independent. Takayama et al. [2008] provide a
method for volumetric modeling by pasting solid texture exemplars
repeatedly within a solid object with respect to a spatially-varying
tensor field. Although their method grants the user with consider-
able controllability, the voxel-based nature makes it difficult to de-
scribe the global structures in an object in a resolution independent
way. Wang et al. [2010] propose a resolution-independent repre-
sentation for solid textures by decomposing a texture into individ-
ual regions whose boundaries correspond to the original sharp fea-
tures and are represented by an SDF. Their method can only model
two-colorable regions due to the use of a single SDF. In addition,
the feature resolution is strictly limited by the SDF and region la-
bel pair structure, preventing their method from modeling general
multiscale volumes.

Structured authoring of volumetric objects is pioneered by Cut-
ler et al. [2002]. Their method allows the user to define layers in
an object each of which can be assigned a different material. They

have also used multiple SDFs to define the layers. However, their
method essentially organizes SDFs in a CSG tree using Boolean
operators to create the boundary of a single solid object, while we
organize the SDFs in a so-called SDF tree that allows for simulta-
neous modeling of multiple regions and a wide range of scales.

Takayama et al. [2010] present diffusion surfaces as a primitive to
model featured colors in a volume. The color of any location is
then computed by diffusion from nearby surfaces. Together with a
sketch-based GUI, they have demonstrated that various volumetric
objects can be created rapidly. By duplicating a diffusion surface
into two slightly apart sheets, their method can also achieve the
effect of blurred color transitions, which is an advantage over our
method. However, diffusion surfaces are meshes, not a true vector
representation, and it is also unclear how to add region-based high-
frequency and multiscale details. In addition, their representation
does not support fast random access as the color of every vertex on
a cross section needs to be calculated in a separate rendering pass
whenever the cross section is changed.

3 Volumetric Object Representation

A multiscale vector volume has an explicit definition of the indi-
vidual volumetric components within. Here a component may refer
to either a physical material such as the stone chips inside a ter-
razzo, or a semantically meaningful concept such as a cell of an
organ. Since the internal structures and contents of the objects we
intend to model span a wide range of scales, we have developed
two methods to describe them. In the following, we first introduce
a novel data structure called SDF tree that hierarchically divides
a volumetric object into non-overlapping regions with arbitrarily
complex boundary shapes and defines the attributes of each region
independently. Then we discuss how to represent a complete multi-
scale object by linking together multiple vector volumetric objects.

3.1 SDF Trees

To represent a volumetric object or component with a single scale,
an intuitive way is to decompose it into multiple semantically mean-
ingful but simpler regions, and represent the region boundaries and
contents separately. We decide to use signed distance functions
(SDFs) to represent region boundaries because they are implicit
functions suitable for representing volumetric regions.

An important limitation of a single signed distance function is that
it can only divide a volume into two-colorable regions [Wang et al.
2010]. This limitation can be overcome by increasing the number
of SDFs. For example, two SDFs can already divide a volume into
four-colorable regions. Thus, multiple SDFs have the capability of
representing non-manifold structures, where more than two regions
are simultaneously adjacent to each other.

Given n overlapping SDFs, their zero isosurfaces divide the vol-
ume into multiple physical regions, each of which can be uniquely
identified by the signs of the n SDFs. We organize the SDFs into
a binary tree called an SDF tree. Each intermediate node of this
tree is associated with an SDF and thus denoted as an SDF node.
Since the zero isosurface of an SDF partitions a space into two half
spaces, an SDF node can also have two children. Having another
SDF node as a child means one of the half spaces is further parti-
tioned by the zero isosurface of that SDF. A leaf node is also called
a region node as it corresponds to one of the physical regions in
the volumetric object. In practice, we may need to merge multiple
physical regions to define a semantically meaningful logical region.
In an SDF tree, this is achieved by mapping multiple leaf nodes to
the same logical region.

D1

D2

D1

D2

+ -

-+

D1

D2

D1

D2 D2

+ -

-- ++

D1

D2

D1

D2 D2

+ -

-- ++

Figure 3: By organizing two SDFs differently in an SDF tree, vari-
ous region layouts can be achieved.

Note that we allow the same SDF to appear in multiple SDF nodes
as long as these nodes do not lie on the same tree path. As a re-
sult, the same set of SDFs can be organized differently in an SDF
tree, giving rise to different region layouts. Figure 3 shows a 2D
illustration. To determine the region membership of a 3D location
p, one simply traverses the SDF tree by taking the child branch cor-
responding to the sign of the SDF associated with the current SDF
node until a region node is reached.

3.1.1 SDF Nodes

SDF nodes need to be implemented to achieve both fast random
access and compactness. Similar to [Wang et al. 2010], our SDFs
are stored on voxel grids and evaluated using fast tricubic interpola-
tion [Sigg and Hadwiger 2005] for efficient random access during
rendering. Due to its voxel-based nature, the smallest feature de-
tails an SDF can represent are limited by the grid resolution. To
compactly represent small or elongated regions, we enclose each
SDF with an oriented bounding box (OBB) and allow this OBB to
be scaled, rotated, and positioned anywhere in a volume. We use
the term SDF instance to denote an SDF with an associated OBB
whose affine transformation is represented by M.

Sometimes the shape of a complex region can be assembled to-
gether from a number of parts, each of which is defined by its
own signed distance function, such as the blood vessels in Figure 1
which consist of many similar branches. In such cases we can de-
fine a composite SDF in a tree node from a set of primitive SDF
instances, {Di,Mi}mi=0 as follows:

D̃(p) = min
i

Di(p ·Mi), p ∈ R3 (1)

which essentially means that the shape defined by the composite
SDF is the union of the shapes defined by the primitive SDF in-
stances. Note that multiple instances can point to the same SDF.

3.1.2 Region Nodes

We define the color attribute inside each region as a 3D function.
Once we know which region a 3D location p belongs to through
SDF tree traversal, we can use the coordinates of p to evaluate the
specific color function associated with that region to yield the final
color at p. In our current implementation, the color function can be
defined in one of the following three modes: solid color, solid tex-
tures, and radial basis functions. Note that a region can be declared
as empty. Empty regions do not have color functions and can be
used to define the exterior of a volumetric object.

D1

D2

D1

D2

D1

D2 D2

+ -

-- ++
D1 D2

U

(a) SDF tree (b) CSG tree (c) ADF

Figure 4: The same shape (shaded) represented by (a) an SDF
tree, (b) a CSG tree, and (c) an ADF respectively. Note that in
addition to the shape boundary, our SDF tree also defines three
internal regions.

D1

D2

D1

D2

D1 D2

D1

D2

D1 D2 D2 D1

CSG tree 1 CSG tree 2 CSG tree 3

Figure 5: A standalone CSG tree (or ADF) is needed to represent
each region defined in Figure 4(a), while a single SDF tree is capa-
ble of representing all of them simultaneously.

3.1.3 Comparison with Existing Methods

SDFs have been widely used in volumetric modeling. In this sec-
tion we compare our vector representation with several SDF-related
methods, especially those also involving a tree structure.

Constructive solid geometry. An SDF tree is a more powerful
structure than constructive solid geometry (CSG) for implicit sur-
faces [Ricci 1974] even though the latter also has a hierarchical tree
structure. In a CSG tree, individual implicit surfaces are associated
with leaf nodes, which are merged bottom-up using Boolean oper-
ators to represent the single solid object associated with the root. In
an SDF tree, individual implicit surfaces are associated with inter-
mediate tree nodes, which recursively subdivide an inhomogeneous
volume associated with the root into multiple simpler regions de-
fined as the leaf nodes. Therefore, a CSG tree essentially defines
one single solid, while an SDF tree is capable of defining multi-
ple mutually adjacent solid regions which are not two-colorable. In
fact, each region defined by an SDF tree can also be represented by
a standalone CSG tree whose leaf nodes correspond to a subset of
the signed distance functions in the SDF tree (Figure 5). Moreover,
the time complexity for determining whether a point belongs to a
certain region represented by a CSG tree is usually between O(n)
and O(n2) [Hable and Rossignac 2005], while in an SDF tree, the
complexity is only O(logn), with n being the number of SDFs in
both cases.

Adaptively-sampled distance fields. In a common implemen-
tation of ADFs, a volume is recursively subdivided by an octree
where each cell contains a set of distance samples from which a

Object A

Object B

Object C Object D

(a)

(b)

(c) (d)

pA

p
B

pC pD

D1

D2

D3 D4

D5

D6 D7

D8 D9

Figure 6: Object embedding. Object A is constructed by recursive
embedding of object B, C, and D. The SDF trees of the four objects
are shown in (a)-(d) respectively. The bold arrows illustrate the
traversal path to evaluate the color at location pA, whose coordi-
nates are transformed to pB , pC , pD in each embedded instance’s
local frame respectively during the process. A crossed square indi-
cates an empty region.

partial implicit surface can be reconstructed. In order to represent
sharp features more efficiently without excessive subdivision, Perry
and Frisken [2006] allows an octree cell to contain more than one
partial implicit surfaces whose Boolean combination results in one
partial surface with sharp features. Nevertheless, similar to CSG,
an ADF as a whole still defines one single solid that might consist
of multiple two-colorable regions. It is unclear how ADFs can be
extended to represent non-manifold structures, where at least three
regions are mutually adjacent, which on the other hand can be con-
veniently represented with an SDF tree. Figure 4 shows the same
shape represented by CSG, ADF, and our SDF tree respectively.

Binary space partitioning. In the sense of region partitioning,
an SDF tree can be considered as a generalization of a binary space
partitioning (BSP) tree. A partition surface in a BSP tree is typically
a plane while a partition surface in an SDF tree is the zero isosurface
of an implicit function capable of defining an arbitrary shape.

3.2 Multiscale Embedding

Real-world volumetric objects often contain many volumetric com-
ponents with dramatically different scales. Each component can
also be considered as a standalone volumetric object and contain
smaller-scale components recursively. We extend our volumetric
representation to include object embedding, which allows one vol-
umetric object to be embedded into a region of another object.

Without loss of generality, we assume that all vector volumetric
objects are initially defined in a unit cuboid, [0, 1]3. Similar to SDF
instances, we define an object instance by associating a volumetric
object with an affine transformation. To embed an instance of object
A into region `B of another object B, we connect the SDF tree
for A with the region node for `B in the SDF tree for B. When
an SDF tree traversal reaches region `B , the 3D location p is first

transformed into the local frame for the instance of object A and
then used to traverse the SDF tree of A to decide which region p
belongs to. If however p falls into an empty region of A, its final
color is determined by the color function of background region `B .

We can also embed multiple object instances into the same region.
Since multiple instances may overlap in space, we use the embed-
ding order to resolve the ambiguity in region membership. An il-
lustration of object embedding and the corresponding traversal pro-
cedure is shown in Figure 6.

Many volumetric objects contain multiple similar but smaller-scale
elements, such as cells in an organ. Modeling every individual el-
ement separately would be a tedious task and also requires a sig-
nificant amount of storage. By embedding multiple instances that
point to the same object but with different transformations, we con-
siderably save both storage and modeling effort.

4 Volumetric Object Markup Language

We have discussed that SDFs can be used together to represent com-
plex volumetric objects by partitioning the volume into regions that
can be defined independently and recursively. We therefore intro-
duce a descriptive language called Volumetric Object Markup Lan-
guage (VOML) based on XML that allows a user to design the re-
gion configuration of a volumetric object.

Defining SDF Tree Structure. Listing 1 shows part of the
VOML source code for the volumetric object in Figure 6. Basi-
cally, in a VOML source file, the region configuration is defined
by organizing SDF nodes and region nodes into a binary tree. Each
SDF node has two children nodes, corresponding to the subvolumes
where the SDF is positive and negative, respectively. Either of the
two nodes can map to a region by adding a region node as its child,
or can be further subdivided by adding another SDF node as its
child. A region node must be a leaf node in the tree and cannot
have any children nodes.

<OBJECT name="skin">
|<SDF name="D1" file="1.sdf">
||<POSITIVE>
|||<SDF name="D2" file="2.sdf">
||||<POSITIVE>
|||||<SDF name="D3" file="3.sdf">
||||||<POSITIVE region="empty"/>
||||||<NEGATIVE region="epidermis"/>
||||<NEGATIVE>
|||||<SDF name="D4" file="4.sdf">
||||||<POSITIVE region="dermis"/>
||||||<NEGATIVE region="hypodermis"/>
||<NEGATIVE region="hair"/>

Listing 1: VOML code for Object A in Figure 6. The end-tags are
omitted to save space.

Once a volumetric object has been loaded from a file, a parser an-
alyzes the region configuration defined in VOML and generates all
necessary shader resources for rendering.

Region Content. Region content can be directly defined in the
VOML source. For example, the following code defines two re-
gions, filled by a solid color and a solid texture respectively.

<REGION name="color_reg" rgb="1 0.8 0.5"/>
<REGION name="texture_reg" bitmap="dermis_solid.png"/>

Regions that contain instances of other volumetric objects can be
defined as:

<REGION name="dermis" rgb="0.8 0.3 0.3">
|<EMBEDDED object="fat_cell" instances="fat.txt"/>
|<EMBEDDED object="arteriole"/>
|<EMBEDDED object="venule"/>
</REGION>

The “instances” property points to an external text file containing
the transformations of each instance. More details about VOML
can be found in the supplemental materials.

5 Content Creation

Since our multiscale vector representation decomposes a volumet-
ric object in a semantically meaningful way, this decomposition
provides a natural guidance to the workflow one needs to follow
when creating a digital volumetric object in our representation. The
content creation process can be divided into a planning stage and
a creation stage. During the planning stage, a user needs to rely
on his/her prior knowledge of the object to be modeled to concep-
tually decompose the object in a hierarchical way. The following
questions need to be answered.

• How many scales does the object have? Which representative
components does the object have at each scale?

• What kind of features and regions does each component have?
How are these regions organized? What is inside each region?

During the creation stage, the user needs to actually create the
“building-blocks” of an object, such as SDF instances and region
definitions, and then assemble them together into linked SDF trees.

In order to create SDFs for highly structured region boundaries, we
have built a tool to convert a polygonal mesh to an SDF [Jones
1995]. To facilitate a continuous workflow, we have integrated
this tool as a plug-in for the open-source 3D modeling software,
Blender. In addition to SDFs converted from meshes, we have also
implemented several procedural algorithms for efficiently synthe-
sizing stochastic SDFs [Kopf et al. 2007] or adding randomness to
existing SDFs [Perlin and Hoffert 1989].

As for region contents, there exist three options:

1. The user can assign a solid color, a solid texture, or a set of
color radial basis functions to fill the region.

2. A region can be further divided by replacing the original re-
gion node in the SDF tree by a subtree containing more re-
gions and SDF nodes.

3. A region can contain instances of other volumetric compo-
nents. For example, the hypodermis region of skin contains
many fat cells. A user could embed a volumetric object for
the fat cell into the skin’s hypodermis by object instancing.

For relatively simple volumetric objects, the user can construct SDF
trees and perform object instancing by directly editing a VOML file.
For more complex objects, we provide a GUI that allows the user
to organize an intricate SDF tree by drag-and-dropping different
nodes intuitively on the screen.

There exist various techniques to generate a spatial distribution of
instances as well as the affine transformations associated with the
instances. We have adopted three strategies for different scenarios:
physical simulation for densely packed objects, adaptive blue-noise
sampling [Wei 2008] for elements whose density and local proper-
ties vary according to a user-provided control map, and interactive
placement of individual instances via the GUI we provide.

Figure 7: The color in the above images represents the 3D coor-
dinates of each pixel in the local frame of the deepest embedded
object instance.

Because our vector representation clearly defines the individual vol-
umetric components of an object and organizes them into a hierar-
chical structure, the user is able to choose a highly flexible and iter-
ative workflow during content creation. For example, a user could
follow a top-down approach by first defining large-scale regions
and then adding more details by subdivision or object embedding,
or a bottom-up approach by first creating all low-level components
and then organizing them into a complete multiscale object. At any
time during the process, the user can also iteratively modify a single
component without affecting other parts of the object. A live demo
is given in the supplemental video.

6 Rendering

Efficient rendering is critical for interactive content creation. Fur-
thermore, rendering arbitrary cross sections of a volumetric object
is an important way to visualize its internal content. Given a 3D
location p, the rendering process traverses the SDF tree from the
root until it reaches a region node. The color of p is then decided
by evaluating the color function defined in that region. Appendix A
shows simplified pseudo code for this process.

The coordinates p is transformed whenever the traversal enters a
new embedded object (i.e. another SDF tree associated with an
affine transformation), so that once the final region is reached, p
may have been transformed multiple times, as shown in Figure 7.

Spatial Indexing for Embedded Objects. Embedded SDFs and
objects have compact oriented bounding boxes to define their spa-
tial extent. But these bounding boxes negatively impact random
access performance since an additional step is required to decide
which SDF/object a position belongs to. To overcome this problem,
we build a spatial indexing structure for each region that contains
embedded volumetric components or SDFs. The indexing structure
simply divides the region into a uniform grid and records pointers
to the objects and SDFs that overlap with each grid cell. Note that
the indexing structure itself can be embedded and instanced along
with its parent object, effectively making the entire volumetric ob-
ject adaptively indexed.

Texture Packing. In our representation, a volumetric object may
use many 3D textures. However, 3D textures cannot be dynami-
cally indexed in the current graphics hardware. We have to pack
all 3D textures of the same type into one large texture (similar to a
texture “atlas” in 3D). Finding an efficient packing for a given set
of textures can be considered as a 3D singular bin-packing prob-
lem where a set of boxes with different sizes are arranged in a way
to minimize wasted space. Finding an optimal packing for a non-
trivial input is NP-hard. We use a heuristic algorithm [Corcoran
and Wainwright 1992] which strikes a balance between speed and
packing efficiency.

Figure 8: Rendering without (left) and with (right) antialiasing.

Antialiasing. Antialiasing is crucial for high-quality rendering
of vector graphics. We have implemented antialiasing as a post-
processing step in a similar way as in many deferred shading sys-
tems (e.g. [Shishkovtsov 2005]). In the first rendering pass, the
shader writes the minimum signed distance and the region ID as
well as the evaluated color of each pixel to the render targets. In the
second pass, the region ID of each pixel is compared with those of
its neighbor pixels to decide if this pixel is on a region boundary. If
it is, the pixel shader calculates a weighted average of the colors in
the 3×3 neighborhood. Otherwise the pixel color is left unchanged
to avoid undesired blurring of textures within a region. This method
is efficient and provides reasonably good quality (see Figure 8).

7 Results and Discussions

We have generated several volumetric objects of different types us-
ing our method, as shown in Figure 1 and 10. The overall author-
ing time ranges from a couple of minutes to several hours, most
of which is spent on modeling the polygonal meshes for the SDFs.
In addition to creating SDFs manually, we can also utilize existing
data, such as scanned medical data. In Figure 10 (d), a medical
scan of a human brain is segmented into regions, from which we
can build an SDF tree with multiple SDFs automatically. Once all
the SDFs and instancing transformations are known, it usually takes
only minutes to design and construct a corresponding SDF tree.

We have tested our method on an NVidia GeForce GTX460. For
the objects in this paper the rendering performances within our GUI
prototype ranges from 60 to over 500 fps in an 800 by 600 window
with antialiasing. In addition, we have also implemented a naı̈ve
offline renderer featuring ray-marching for translucent regions. The
rendering of Figure 1 takes about two minutes at a resolution of
40962 with 4× 4 supersampling.

Comparison with vector solid textures. Our work was partially
inspired by vector solid textures [Wang et al. 2010]. Nevertheless,
there exist significant differences between SDF trees and VSTs.

• SDF trees can represent non-manifold features, whereas VST
cannot. The regions in a VST must be two-colorable due to
the use of a single SDF. Although there is a two-scale result
(Figure 9(g) in [Wang et al. 2010]), which has non-manifold
features, the regions in each scale is still two-colorable and it
cannot be applied to more general objects.

• The feature resolution in a VST is limited by the resolu-
tion of its SDF and region label pairs. On the other hand,

Figure 9: Comparison between VST (left) and our vector represen-
tation (right). For a similar texture-like volume, VST consumes 1.17
MB while our representation delivers richer details but only needs
0.7 MB. Both are rendered at approx. 200 fps with antialiasing.

our linked SDF trees can represent unlimited details at small
scales through object instancing and embedding while main-
taining very compact storage.

• VST uses a regularly-sampled region label-pair structure to
identify individual regions. When there exist n SDFs, each
label-pair would become a 2n-sized label array, causing pro-
hibitive storage overhead. In contrast, an SDF tree completely
eliminates explicit region labeling and encodes region labels
implicitly into different SDF tree paths.

Figure 9 demonstrates two texture-like volumetric objects created
by VST and our method respectively. In comparison, our method
provides richer details while consuming less storage and rendering
more efficiently.

Limitations Currently each instance is only associated with an
affine transformation and our representation does not support non-
linear transformations of object instances. In addition to transfor-
mations, it should be useful in certain scenarios to add other per-
instance data such as color variations. Supporting blurred region
boundaries would be challenging since the neighborhood informa-
tion of a region is not directly accessible.

8 Conclusions

In this paper, we have introduced a compact multiscale vector rep-
resentation for volumetric objects with complex internal structures
spanning a wide range of scales. Our representation relies on a bi-
nary SDF tree to hierarchically decompose an entire volumetric ob-
ject into multiple regions while maximally aligning sharp features
with region boundaries. By linking together multiple SDF trees,
a complex volumetric object can be constructed from simpler volu-
metric objects at different scales. SDF and object instancing further
utilize the substantial repetition of similar elements or volumetric
features in an object and reduce the storage cost significantly. To
facilitate authoring and editing, we have also provided both a script-
ing language and a GUI prototype. Results show that volumetric
objects with highly complex structures and resolution-independent
features can be easily created from scratch using our method. These
vector volumetric objects have compact storage and, with the help
of a recursively defined spatial index, can be rendered in real time
with antialiasing.

Figure 10: Various volumetric objects created using our method.
The first three are generated from scratch, while the last one is
based on an existing segmentation result of captured medical data.
The respective numbers of SDF cells, SDFs, regions, and instances,
as well as storage are shown below each result.

(a) (b) (c) (d)

Figure 11: Zoomed views of the volumetric objects in Figure 10.
Note the ubiquitous non-manifold structures.

In our current implementation, a polygonal mesh is used to define
the outmost boundary surface where the color of a volumetric object
should be evaluated. An intriguing idea is to get rid of any mesh and
decide the evaluation locations by directly ray-casting [Hadwiger
et al. 2005] the implicit region boundaries in our representation.

Acknowledgments

We would like to thank all the reviewers for their valuable feedbacks. Yu-
gang Liu provided the brain model in Figure 10(d). Yizhou Yu was partially
supported by NSF (IIS 09-14631) and The University of Hong Kong. Kun
Zhou was partially supported by NSFC (No. 60825201) and the 973 pro-
gram of China (No. 2009CB320801).

References

CORCORAN, A. L., AND WAINWRIGHT, R. L. 1992. A genetic
algorithm for packing in three dimensions. In Proceedings of
ACM/SIGAPP Symposium on Applied Computing, 1021–1030.

CUTLER, B., DORSEY, J., MCMILLAN, L., MÜLLER, M., AND
JAGNOW, R. 2002. A procedural approach to authoring solid
models. ACM Trans. Graph. 21, 3, 302–311.

DONG, Y., LEFEBVRE, S., TONG, X., AND DRETTAKIS, G. 2008.
Lazy solid texture synthesis. Computer Graphics Forum 27, 4,
1165–1174.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: a general rep-
resentation of shape for computer graphics. In Proceedings of
SIGGRAPH 2000, 249–254.

HABLE, J., AND ROSSIGNAC, J. 2005. Blister: GPU-based render-
ing of Boolean combinations of free-form triangulated shapes.
ACM Trans. Graph. 24, 3, 1024–1031.

HADWIGER, M., SIGG, C., SCHARSACH, H., BÜHLER, K., AND
GROSS, M. 2005. Real-time ray-casting and advanced shading
of discrete isosurfaces. Computer Graphics Forum 24, 3, 303–
312.

HAN, C., RISSER, E., RAMAMOORTHI, R., AND GRINSPUN, E.
2008. Multiscale texture synthesis. ACM Trans. Graph. 27, 3,
51:1–51:8.

JONES, M. W. 1995. 3D distance from a point to a triangle. Tech.
Rep. CSR-5-95, University of Wales Swansea.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2D exemplars. ACM Trans. Graph. 26, 3, 2:1–2:9.

PERLIN, K., AND HOFFERT, E. M. 1989. Hypertexture. In Pro-
ceedings of SIGGRAPH ’89, 253–262.

PERRY, R. N., AND FRISKEN, S. F. 2006. Method for generating
a two-dimensional distance field within a cell associated with a
corner of a two-dimensional object. US Patent No. US 7,034,830.

RICCI, A. 1974. A constructive geometry for computer graphics.
Computer Journal 16, 2, 157–160.

SHISHKOVTSOV, O. 2005. Deferred shading in S.T.A.L.K.E.R. In
GPU Gems 2. ch. 9, 143–166.

SIGG, C., AND HADWIGER, M. 2005. Fast third-order texture
filtering. In GPU Gems 2. ch. 20, 313–329.

TAKAYAMA, K., OKABE, M., IJIRI, T., AND IGARASHI, T. 2008.
Lapped solid textures: filling a model with anisotropic textures.
ACM Trans. Graph. 27, 5, 53:1–53:9.

TAKAYAMA, K., SORKINE, O., NEALEN, A., AND IGARASHI, T.
2010. Volumetric modeling with diffusion surfaces. ACM Trans.
Graph. 29, 5, 180:1–180:8.

WANG, L., ZHOU, K., YU, Y., AND GUO, B. 2010. Vector solid
textures. ACM Trans. Graph. 29, 4, 86:1–86:8.

WEI, L.-Y. 2008. Parallel Poisson disk sampling. ACM Trans.
Graph. 27, 3, 20:1–20:9.

A Pseudo-HLSL Code for Rendering

float4 SDFTreeTraversal(float3 p)
{

int i = 0;
Instance inst = g_Instances[i]; // Object instance
SDFNode node = g_SDFTree[inst.rootNodeID];
float4 color = float4(0,0,0,0);
float3 oldP = p;

while (inst.isEmpty == false) {
if (IsCoordValid(p) == false) {

// p not inside current instance, try next
inst = g_Instances[++i];
node = g_SDFTree[inst.rootNodeID];
p = Transform(oldP, inst.transformID);
continue;

}
if (g_SDF[node.sdfID].Sample(p) > 0)

node = g_SDFTree[node.positiveChild];
else

node = g_SDFTree[node.negativeChild];

if (node.isLeaf) {
Region region = g_Regions[node.regionID];
if (region.type == REGTYPE_NORMAL)

return EvaluateColor(region, p);
else if (region.type == REGTYPE_EMBEDDED) {

// Region contains embedded objects
color = EvaluateColor(region, p);
i = region.firstInstID;
inst = g_Instances[i];
node = g_SDFTree[inst.rootNodeID];
oldP = p; // Cache p in current region
p = Transform(p, inst.transformID);

}
else if (region.type == REGTYPE_EMPTY) {

// Empty region, try next instance
inst = g_Instances[++i];
node = g_SDFTree[inst.rootNodeID];
p = Transform(oldP, inst.transformID);

}
} // end if (node.isLeaf)

} // end while
return color;

}

