
IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 1

TransCut: Interactive Rendering of Translucent Cutouts

Dongping Li∗ Xin Sun† Zhong Ren∗ Stephen Lin† Yiying Tong‡ Baining Guo† Kun Zhou∗

∗Zhejiang University †Microsoft Research Asia ‡Michigan State University

Abstract—We present TransCut, a technique for interactive rendering of translucent objects undergoing fracturing and cutting

operations. As the object is fractured or cut open, the user can directly examine and intuitively understand the complex translucent

interior, as well as edit material properties through painting on cross sections and recombining the broken pieces – all with

immediate and realistic visual feedback. This new mode of interaction with translucent volumes is made possible with two

technical contributions. The first is a novel solver for the diffusion equation (DE) over a tetrahedral mesh that produces high-

quality results comparable to the state-of-art finite element method of Arbree et al. [1] but at substantially higher speeds.

This accuracy and efficiency is obtained by computing the discrete divergences of the diffusion equation and constructing the

DE matrix using analytic formulas derived for linear finite elements. The second contribution is a multi-resolution algorithm to

significantly accelerate our DE solver while adapting to the frequent changes in topological structure of dynamic objects. The

entire multi-resolution DE solver is highly parallel and easily implemented on the GPU. We believe TransCut provides a novel

visual effect for heterogeneous translucent objects undergoing fracturing and cutting operations.

Index Terms—subsurface scattering, heterogeneous material, diffusion equation, multi-resolution.

F

1 INTRODUCTION

THE appearance of a heterogeneous translucent
object arises from complex interactions between

light and the material volume with spatially variant
optical properties. Realistic rendering of such objects
involves expensive light transport computations in-
side the object volume. As a result, it has not been
possible to quickly and realistically render a translu-
cent object when it undergoes fracturing [2], [3] and
cutting operations [4], [5] despite the fact that fractur-
ing and cutting are important in many applications
including games and films [6]. The main challenge
lies in the expensive light transport computations
that need to be repeated for the fractured pieces
and cutouts. In this work, we introduce TransCut, a
technique for accurately and interactively rendering
heterogeneous translucent objects undergoing fractur-
ing and cutting operations.

While existing algorithms for heterogeneous
translucent materials offer fast [1] or even real-
time [7] rendering performance, none of them can
efficiently handle dynamic object fracturing and
cutting operations. The finite element method of
Arbree et al. [1] produces excellent visual results
but is unsuitable for interactive applications due
to the high cost of numerical integration. In the
real-time finite difference method of Wang et al. [7],
the non-regular meshes that often result from cutting
or fracturing operations lead to much degradation in
rendering quality. Moreover, none of these methods
provide an efficient way to support multi-resolution
processing when the object topology changes,
a frequent occurrence throughout the dynamic

fracturing and cutting process.
To efficiently render dynamic translucent objects

with high visual quality, TransCut incorporates two
technical contributions. One is a new method to
solve the diffusion equation (DE) to render subsurface
scattering effects in translucent objects with hetero-
geneous scattering materials. The solver is derived
from a direct discretization of the divergence operator
based on finite elements/volumes. While producing
results comparable to the state-of-art method of Ar-
bree et al. [1], the discrete divergence based solver
moreover takes advantage of analytic formulas for
linear finite elements to efficiently construct the linear
system matrix for solving the diffusion equation. In
this way, it avoids the time-consuming numerical
integration used in Arbree et al. [1] and obtains sig-
nificantly faster performance.

To further accelerate our DE solver, we also present
a multi-resolution algorithm that efficiently adapts
to the changes in topological structure of dynamic
objects. The complete multi-resolution DE solver is
highly parallel and easily implemented on the GPU
for interactive rendering. With its performance and
visual quality, TransCut provides users with a new and
intuitive form of interaction with translucent objects.

The most important contribution of this work is
perhaps the introduction of a novel visual effect: real-
istic and interactive rendering of translucent objects
undergoing fracturing and cutting operations. This
is an important effect that cannot be achieved by
existing rendering methods. As demonstrated in the
accompanying video, our technique enables a natural
way to understand, design and interact with hetero-
geneous translucent materials.

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 2

(a) (b) (c) (d) (e)

Fig. 1. TransCut allows users to cut out portions of a heterogeneous translucent object via strokes (a) to examine

the interior of the volume (b) and to edit material properties through painting on cross sections (c), all at interactive

frame rates. It also supports interactive rendering of a translucent object fracturing (d,e).

2 RELATED WORK

Subsurface scattering in translucent objects can be
directly simulated from physical principles by Monte
Carlo path tracing [8], [9], [10] or photon mapping [11]
with offline computation. Considerable speed-ups
have been obtained for the case of homogeneous ma-
terials by employing the diffusion approximation in a
bidirectional surface scattering reflectance distribution
function (BSSRDF) [12]. This approximation has been
extended to multi-layered translucent materials [13],
[14] and modified to be accurate for highly absorbing
materials and near the point of illumination [15]. Run-
time rendering has also been accelerated with precom-
puted subsurface light transport [16], [17], but the use
of precomputation effectively limits these techniques
to fixed geometries or scattering properties, since the
precomputed data are too expensive to update at
runtime.

Multiple scattering effects have long been modeled
in participating media by the diffusion equation [18].
The diffusion equation was introduced to computer
graphics by Stam [19] for the rendering of smoke,
and was later applied to subsurface scattering in
homogeneous volumes [20].

The first use of the diffusion equation for rendering
general heterogeneous materials was presented by
Wang et al. [21]. They numerically solved the diffu-
sion equation using the finite difference (FD) method
formulated over a quasi-regular 6-connected structure
that models the volume. While this method provides
real-time rendering performance, it requires manual
construction of the grid structure and is limited to
objects with simple geometry. More recently, Wang et
al. [7] extended the FD solver to tetrahedral meshes
that can be automatically constructed and that well
represent complex geometry. However, the quality of
the FD solution highly depends on mesh uniformity.
To reduce the approximation errors of their method,
they need a mesh with nearly equilateral tetrahedra
of regular size. This is very difficult to guarantee in a
dynamic process like object cutting. Also, dynamic tri-
angulation of the new surface nodes is too expensive
for runtime processing.

Arbree et al. [1] solved the diffusion equation using
the finite element method (FEM). They show the FEM
approach to be more accurate than the FD solver of
Wang et al. [21]and of comparable quality to path
tracing. To assemble the linear system of the finite
element solver, a numerical integration is performed
for each pair of vertices in every tetrahedron. Though
accurate, this FEM approach does not allow for inter-
active rendering due to the high cost of the numeric
integrations. The finite element method was also used
to solve the diffusion equation in optical tomography
[22], but only for estimating the scattering properties
of a 2D homogeneous disk. We solve the diffusion
equation over a tetrahedral mesh by directly comput-
ing the discrete divergences and constructing the DE
matrix using analytic formulas derived for linear finite
elements. The resulting solver is able to produce high-
quality results comparable to the solver of Arbree et
al. [1] but at substantially higher speeds. We admit
that our solver is based on standard results from
the areas of FEM and discrete differential geometry
[23], [24], [25]. However, combining these results and
applying them to rendering, in particular solving the
diffusion equation for rendering translucent materials,
is novel and has never been tried before.

Like previous real-time techniques [21], [7], we
accelerate our diffusion equation solver using multi-
resolution methods. Unlike these techniques which re-
quire either a regular grid structure or a precomputed
hierarchy of progressively coarser tetrahedral meshes,
we need to construct a hierarchy at runtime because
the mesh topology may change frequently in our
application. Shi et al. [26] presented a fast multigrid
algorithm for interactive mesh deformation, but is
unsuitable for our application due to the different
nature of the linear system for the diffusion equation
(see the detailed analysis in Section 4).

Instead of solving the diffusion equation, an alter-
native way to simulate multiple scattering in partic-
ipating media is to use Lattice Boltzmann methods
to trace the photon transport on a discrete grid [27].
To correctly handle the light transport near detailed
boundaries of translucent objects, high resolution

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 3

grids are needed, though makes the simulation dif-
ficult to fit into limited GPU memory even for rela-
tively simple objects [28]. Recently, Bernabei et al. [29]
proposed to overcome the GPU memory limitation
by localizing the computation of Lattice Boltzmann
lighting. However, this method is not efficient in
modeling the diffusion process over relatively long
distances. To correctly capture the smoothly vary-
ing multiple scattered radiance in regions with large
changes of scattering properties, a large number of
simulation steps are needed and interactive rendering
performance may not be guaranteed.

3 DISCRETE DIFFUSION EQUATION SOLVER

FOR TETRAHEDRAL MESHES

Let the heterogeneous translucent volume be repre-
sented by a tetrahedral mesh defined by the vertex
set {x1, x2, ...}. We assume the optical properties,
namely the absorption coefficient µ and the diffusion
coefficient κ, to be piecewise constant functions, i.e.,
constant within each individual tetrahedron.

The discrete diffusion equation is used to solve for
the radiant flux φ(xi) at each vertex. We employ a
piecewise linear representation of radiant flux where
φ(x) is a linear function of point x within each tetrahe-
dron. In the following, we present a brief review of the
diffusion equation and describe our discrete solver.

3.1 Diffusion Equation Overview

Given an object Ω with boundary ∂Ω and hetero-
geneous scattering properties given by the absorp-
tion coefficient µ(x) and reduced scattering coefficient
σ′

s(x) [12], the radiant flux φ(x) within this object is
defined by the diffusion equation:

∇ · (κ(x)∇φ(x))− µ(x)φ(x) = 0, x ∈ Ω, (1)

where ∇· is the divergence operator, ∇ is the gradient
operator, and κ(x) = [3(µ(x)+σ′

s(x))]−1. The diffusive
source boundary condition [1] is given by

φ(x) + 2Aκ(x)(∇φ(x) · n(x)) =
4

1− Fdr

q(x), x ∈ ∂Ω,

(2)

where q(x) =

∫

2π

Li(x, ωi)(n(x) · ωi)Ft(ωi)dωi is the

diffused incoming light at surface point x, and Fdr

and Ft are the diffuse Fresnel reflectance and Fresnel
transmittance, respectively [12]. n(x) is the surface
normal at point x, and A = (1 + Fdr)/(1− Fdr).

The outgoing radiance on the boundary can be
computed by the query function derived by Arbree
et al. [1]:

Lo(x, ωo) =
Ft(ωo)

4π

[(

1 +
1

A

)

φ(x)−
4

1 + Fdr

q(x)

]

,

(3)
where ωo is the outgoing direction.

i

ϒ

∂ϒ
i

j k

l
i

∂ϒ∩∂Ω ∂ϒ-∂ϒ∩∂Ω θkl

Fig. 2. Illustration of the Voronoi region and its bound-

ary for an interior vertex (left) and a boundary ver-

tex (middle), and the notation used in computing the

weight of discrete divergence (right).

3.2 Our Discrete Solver

We solve the diffusion equation by directly discretiz-
ing the gradient and divergence operators in Eq. (1).

Since φ(x) is a piecewise linear function, ∇φ(x) is
constant within each tetrahedron t, and can easily be
proven to have the value:

∇φt =

4
∑

j=1

Sjφ(xj)

3Vt

nj , (4)

where Vt denotes the volume of t, and xj are the ver-
tices of t. Sj , nj are respectively the area and normal
of the face opposite to vertex xj in the tetrahedron
t, with nj pointing toward xj . Since κ(x) is constant
within each individual tetrahedron, κ(x)∇φ(x) is also
a piecewise constant vector field defined over the
tetrahedral mesh.

In the continuous case, the divergence of a vector
field ξ at a point p is defined to be:

∇ · (ξ(p)) = lim
Ψ→{p}

∫

∂Ψ

ξ(s) · n(s)

|Ψ|
ds, (5)

where Ψ is a 3D region surrounding p, with boundary
∂Ψ. |Ψ| is the volume of Ψ, and n(s) is the outward
unit normal of the boundary surface.

The discrete divergence (denoted as Div) of a piece-
wise constant vector field at a vertex i is defined to
be the spatial average of the integral around xi. By
using finite element/volume methods [23], [24], it can
be efficiently computed as the spatial average of the
integral on the boundary faces of the Voronoi region
surrounding xi:

(∇ · (κ∇φ))(xi) ≈ (Div(κ∇φ))(xi) (6)

≡
1

|Υ|

∫

∂Υ

κ(s)(∇φ(s) · n(s))ds,(7)

where Υ is the Voronoi region surrounding xi, with
boundary ∂Υ. Note that ∂Υ is composed of a set of
Voronoi faces. |Υ| is the volume of Υ, which can be
precisely calculated for each vertex. In practice Vi/4
provides a good estimation, where Vi is the sum of
the volumes of all tetrahedra that share vertex i.

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 4

Interior Vertices: For each interior vertex i,
the Voronoi region and Voronoi faces surrounding
it lie completely within the tetrahedral mesh (see
Fig. 2(left) for a 2D illustration). The integral in Eq. (7)
can be easily computed by making use of the one-
ring neighborhood information of i. Following [25],
we have

(Div(κ∇φ))(xi) =
1

|Υ|

∑

t∈N(i)

−Vt∇βit · (κt∇φt), (8)

where N(i) is the one-ring neighborhood of vertex
i, and βit is a piecewise-linear basis function with a
value of 1 at vertex xi and 0 at other vertices inside
tetrahedron t. According to the proof in the Appendix,
this discrete divergence can be analytically computed
as

(Div(κ∇φ))(xi) =
1

|Υ|

∑

j∈N(i)

wij(φ(xi)− φ(xj)), (9)

where wij is calculated as

wij = −
∑

t={i,j,k,l}

1

6
κt|kl| cot θkl, (10)

where t = {i, j, k, l} denotes all tetrahedra containing
edge {xi, xj}, with xk, xl as the other two vertices. θkl

is the dihedral angle opposite the edge {xi, xj} in t,
and |kl| is the edge length of {xk, xl} (see Fig. 2(right)).

Boundary Vertices: For each boundary vertex i,
some of the Voronoi faces lie on the boundary of
the tetrahedral mesh (see Fig. 2(middle) for a 2D
illustration). We divide the integral in Eq. (7) into two
parts,

(Div(κ∇φ))(xi) = I1 + I2,

where

I1 =
1

|Υ|

∫

∂Υ−∂Υ∩∂Ω

κ(s)(∇φ(s) · n(s))ds,

I2 =
1

|Υ|

∫

∂Υ∩∂Ω

κ(s)(∇φ(s) · n(s))ds.

I1 corresponds to the integral on the Voronoi faces
located inside the mesh, and can be analytically com-
puted using Eq. (9) and Eq. (10).

I2 corresponds to the integral on the Voronoi faces
located on the mesh boundary and cannot be directly
computed. By taking the integral on both sides of the
boundary condition (Eq. (2)), it can be computed as:

I2 =
1

2A|Υ|

∫

∂Υ∩∂Ω

(−φ(s) +
4

1− Fdr

q(s))ds.

Note that the above integral is actually computed
on the Voronoi cell surrounding vertex xi on the
boundary mesh of the tetrahedral mesh. By taking the
average value of the integrand as the function value
at xi, I2 can be approximated as

I2 ≈
1

2A|Υ|
(−φ(xi) +

4

1− Fdr

q(xi))|∂Υ ∩ ∂Ω|, (11)

where |∂Υ ∩ ∂Ω| is the area of the Voronoi cell sur-
rounding vertex xi, which can be approximated as
Si/3. Si is the sum of the areas of all the boundary
triangles sharing xi.

Linear System: Let Φ = (φ(x1), φ(x2), ...)
T be the

vector of unknowns to be solved. We can construct a
linear system MΦ = b by multiplying both sides of
Eq. (9) and Eq. (11) by −Vi (i.e., −4|Υ|) and rearrang-
ing terms. The vector b has the following formula:

bi =

{

0, if i is an interior vertex,
8Si

3A(1−Fdr)q(xi), if i is a boundary vertex.
.

(12)
M is a sparse matrix. For each row i, only the

diagonal element and the elements corresponding to
xi’s one-ring neighboring vertices are non-zero. The
diagonal element is computed as

Mii=

{

−4
∑

j∈N(i) wij + Viµ(xi), if i is interior,

−4
∑

j∈N(i) wij + Viµ(xi) + 2Si

3A
, if i is boundary,

(13)
and the other non-zero elements have a simple form:

Mij = 4wij . (14)

M is easily proved to be symmetric and positive
definite. The linear system can thus be efficiently
solved using conjugate gradient algorithms.

Discussion: Our linear system for the diffusion
equation employs two approximations, namely the
discrete divergence and the approximated integral in
Eq. (11). These approximations are less significant
than those required in the FDM of [7], particularly
their need for nearly equilateral tetrahedra of regular
size. The resulting differences in rendering quality are
exemplified in Sec. 6. The algorithm of [1] obtains the
FEM solution without approximation and produces
highly accurate diffusion results. Our approximations
are generally close to the FEM values except for
tetrahedra with very poor aspect ratios, where the
calculation of the weight in Eq. (10) may have nu-
merical problems. For high quality, we need to avoid
tetrahedra with very poor aspect ratios during user
interaction, as described in Sec. 5. In Sec. 6 and the
supplementary material, the results of our solver are
shown to closely resemble the FEM solutions of [1].

Our discrete solver adopts the boundary condition
derived by Arbree et al. [1], as we directly compare
our results with those in [1]. Note that it is possible to
use the boundary condition derived from the recent
quantized-diffusion (QD) model [15], which will not
affect the performance of our solver. The QD model
is more accurate for high-frequency illumination and
highly absorbing materials. In both cases, very dense
tetrahedral meshes with tetrahedron sizes smaller
than the mean free path of light are required to
reflect the increased accuracy of the QD model. It
is thus expensive for methods based on per-vertex
shading, such as ours and those of [1], [7], to take

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 5

full advantage of the QD model and render high-
frequency details of comparable size to the mean free
path.

4 PARALLEL MULTI-RESOLUTION SOLVER

To represent complex shapes and inhomogeneous ma-
terials, we need dense tetrahedral meshes that may
contain hundreds of thousands of vertices and tetra-
hedra. Directly solving the discrete diffusion equation
as described in the last section is still slow for such
meshes. In this section, we describe a GPU-based
parallel multi-resolution algorithm to accelerate the
discrete DE solver.

The algorithm constructs a hierarchy of progres-
sively coarser representations for the tetrahedral
mesh, solves a linear system at the coarsest level, and
uses this solution as the starting point for iteratively
solving the finer levels. Suppose G0 = (P 0, E0) is
a graph formed by the vertices and edges of the
original tetrahedral mesh. To build the hierarchy Gl =
(P l, El), l = 1, 2, . . ., we determine the vertices using
a simple independent set procedure designed to take
advantage of GPU parallelization, and add edges in
a manner similar to [26]. Note that we only need a
hierarchy of progressively coarser graph representa-
tions, not a hierarchy of high-quality tetrahedral meshes
as in [7], which is computationally too expensive to
construct on the fly.

4.1 Hierarchy Construction

Suppose G0 = (P 0, E0) is a graph formed by the ver-
tices and edges of the original tetrahedral mesh. We
build a coarser graph Gl+1 from Gl using a two-step
approach. The first step computes an independent
vertex set of P l, in which no two vertices are adjacent.
The second step enhances the obtained vertex set and
constructs the edges connecting the vertices in the set.

Independent Vertex Set: Our independent set
algorithm initializes P l+1 with NULL and copies P l

to an intermediate set Ql+1, then iteratively removes
vertices from Ql+1 and adds them to P l+1. It first
generates a random number for each vertex i ∈ Ql+1

using the hashing algorithm described in [30], and
computes a 32-bit code hi by packing the random
number and the index i with the random number as
the higher-order bits. During each iteration, for each
vertex i ∈ Ql+1, let Γ(i) = N l(i)∩Ql+1 be the set of 1-
ring neighboring vertices of i at level l that are also in
Ql+1. If the code value hi of i is smaller than the code
values of all vertices in Γ(i), we add i to P l+1, and
remove i and Γ(i) from Ql+1. The process is repeated
until Ql+1 becomes empty. Note that the random
number is introduced to break potential patterns in
the original vertex indices, and the original indices
are used to ensure a unique ordering of vertices.

It is easy to prove that for every vertex i in P l−P l+1,
there is at least one vertex in N l(i) that is also in P l+1.

j 0i 0 i 2
i 1 j 1 j 2j 3 j 4 i 3v e r t e x i n P l + 1v e r t e x i n P l P l + 1

Fig. 3. Depiction of hierarchy construction.

This ensures that the interpolation from a coarser
level, as will be described below, can be correctly
performed. Each pair of vertices selected into P l+1 are
not adjacent in Gl. This guarantees that this procedure
can be easily parallelized and race conditions are
avoided – concurrent threads are guaranteed to make
consistent decisions on selecting or dropping a vertex.

Edge Set: As in Shi et al. [26], the edge set El+1

at level l + 1 can be constructed by adding an edge
between two vertices in P l+1 if they are in the 2-ring
neighborhood of each other in Gl. This can be easily
performed in the following way. For each vertex i ∈
P l − P l+1, processed in parallel, if any two vertices
in i’s 1-ring neighborhood are retained in P l+1, we
add an edge El+1 that connects them. Fig. 3 gives
a simple example. The three vertices i0, i1, i2 in P l+1

that are 1-ring neighbors of j0 are connected by edges
in Gl+1. Redundant edges are removed by first sorting
all added edges and then removing the edges that are
identical to the preceding one.

Enhancing the Graph: A potential problem with
the above edge formulation is that vertices in the 3-
ring neighborhood of each other in Gl may be retained
in Gl+1 but become unconnected. Fig. 3 shows such an
example. Though the vertices i1, i3 are 3-ring neigh-
bors at level l, their connectivity is lost in Gl+1 because
all their 1-ring neighbors j1, j2, j3, j4 are dropped at
level l + 1.

This problem can be solved by either directly
adding an edge to connect i1 and i3, or inserting some
of the vertices j1, j2, j3, j4 into P l+1 to enhance the
graph. We choose to insert vertices since it ensures
that only 2-ring neighbors need to be considered when
interpolating solutions from a coarse level to a finer
level.

For each edge in El whose two vertices i, j are in
P l−P l+1, if N l(i)∩N l(j)∩P l+1 is empty, we mark i
and j since this edge connection will not be reflected
at level l + 1. All marked vertices then form a new
candidate set Ql+1, and the above independent set
algorithm is used to select and add new vertices to
P l+1. This process is repeated until no more vertices
are marked.

Note that by enhancing the graph, P l+1 is not
necessarily an independent set of P l anymore. Besides
adding an edge to El+1 to connect two vertices in

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 6

P l+1 that are in the 2-ring neighborhood of each other
in Gl, if any two vertices in P l+1 are connected by an
edge in Gl, the edge is also added to the edge set
El+1.

4.2 Constructing and Solving the Linear System

We then construct the linear system at each level
and interpolate solutions from coarser to finer levels.
Suppose vertex i has the following linear equation at
level l:

M
l
iiφ

l(xi) +
∑

j∈N l(i) M
l
ijφ

l(xj) = b
l
i. (15)

Note that the linear system at level 0 is given by
Eqs. (12)-(14), i.e., M

0 = M, b
0 = b.

We make use of the following formula to interpolate
the solution from level l + 1 to l:

φl(xi)=

{

φl+1(xi), if i ∈ P l+1,
∑

j∈Rl(i)
λijφl+1(xj)

λi
, if i ∈ P l − P l+1,

(16)

where Rl(i) = N l(i) ∩ P l+1 is the set of i’s 1-ring
neighbors at level l that are retained at level l + 1. λij

are the interpolation weights, and λi =
∑

j∈Rl(i) λij .
Currently we use the reciprocal of edge length as
weights, i.e., λij = 1/|xi − xj |.

The implication of the above interpolation is as
follows. If i is retained at level l + 1, its value at level
l + 1 is directly used as its initial value at level l.
Otherwise, i’s initial value at level l is computed as
the weighted average of its 1-ring neighbors at level
l that are retained at level l + 1. According to our
graph construction process, if i is not in P l+1, at least
one of its 1-ring neighbors is in P l+1, which ensures
that Rl(i) is not empty and the interpolation can be
conducted.

By substituting Eq. (16) into Eq. (15), we obtain the
equation for vertex i at level l + 1:

M
l
iiφ

l+1(xi) +
∑

j∈Rl(i) M
l
ijφ

l+1(xj)+
∑

j∈Kl(i)

∑

k∈Rl(j)

M
l

ijλjkφl+1(xk)

λj
= b

l
i,

(17)

where Kl(i) = N l(i) − Rl(i) is the set of i’s 1-ring
neighbors at level l that are not retained at level l+1.

The above equation (Eq. (17)) can be reformulated
into the same form as Eq. (15), with

b
l+1
i = b

l
i,

M
l+1
ii = M

l
ii +

∑

j∈Kl(i)

M
l

ijλji

λj
,

M
l+1
ij =

∑

k∈Kl(i)∩N l(j)
M

l

ikλkj

λk
, if j ∈ N l+1(i)−Rl(i),

M
l
ij +

∑

k∈Kl(i)∩N l(j)
M

l

ikλkj

λk
, if j ∈ Rl(i).

The matrices constructed at coarse levels are no
longer symmetric. We use biconjugate gradient meth-
ods to solve the linear systems at all levels except at
level 0. Note that we cannot guarantee that matrices
at coarse levels are invertible. In cases where the
solution at a coarse level does not converge after

several iterations, we could move to the next finer
level. However, this problem was never encountered
in any of our experiments.

We note that the multigrid solver proposed by Shi
et al. [26] is unsuitable for our task. The reason is
that the non-diagonal elements (Mij) in our matrix at
the finest level (Eq. (10)) may take both negative and
positive values. If we directly construct the interpo-
lation (or prolongation) operator as in [26] (Eq. (14)
in their paper), the denominator may be very close
to zero or even equal to zero, resulting in extremely
large elements in matrices at coarse levels. [26] does
not have this problem because their elements (wij)
are always equal to 1. While it is possible to use
our current interpolation operator to develop a full
multigrid solver, we found that our simple multi-
resolution approach works well for all of our test data.

5 IMPLEMENTATION DETAILS

Cutting Interaction: We currently allow users to
cut translucent objects into pieces. The cutting oper-
ation is performed on the CPU using an approach
similar to Nienhuys and van der Stappen [31]. After
the user draws a stroke on the screen, all tetrahedra
whose four vertices are located on the left side of
the stroke are deleted. If the 1-ring tetrahedra around
a vertex are all deleted, the vertex is also deleted.
The remaining vertices and tetrahedra form the new
tetrahedral mesh. To facilitate the painting interaction
described below, we record the original tetrahedron
ID for each tetrahedron of the new mesh. Then we
move the remaining vertices on the left side of the
stroke toward the cross-section as follows. Suppose xi

is a vertex to be moved. We compute x′
i, the uniformly

weighted average of xi’s 1-ring neighboring vertices.
xi is moved toward x′

i by a small step size, i.e.,
xi ← xi + ρ(x′

i − xi), where ρ is set to 0.1 in our
implementation, unless it would move to the right
side of the stroke or result in degenerated tetrahedra
among xi’s 1-ring neighbors. The above process is
performed for all movable vertices and is repeated
for a user-specified number of iterations or until no
vertices can be moved.

Painting Interaction: We allow users to directly
paint on the surface of the cutout tetrahedral mesh
to modify the material properties of tetrahedra in the
original mesh. For each stroke painted by the user, we
compute the 3D positions of its points from screen
coordinates and the depth of their projections onto
the surface. Then for each tetrahedron of the original
mesh, the distance between its center and each 3D
stroke point is evaluated. The painting operation is
applied to the tetrahedron according to an influence
weight determined by the distance of the closest point
and a user-specified Gauss function. By adjusting
the Gauss function parameter, the user can control
the amount of stroke diffusion through the original

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 7

(a) ours (b) Arbree et al. [1]

(c) reference (d) 4× diff.

Fig. 4. Comparison with [1], including a photon map-

ping reference and a plot of the relative radiant flux

error of our method with respect to [1]. The model is

lit by two directional light sources, one from the top-

front and the other from the back. The inhomogeneous

scattering material is generated according to the de-

scription in [1].

mesh for volumetric editing. Unlike cutting opera-
tions which recompute the entire linear system for
the resulting mesh, painting operations often change
material properties locally and require updating of
only a few rows in the diffusion equation matrix.
Specifically, we only update the rows corresponding
to the vertices of tetrahedra that are affected by the
painting operation.

GPU Implementation: The entire algorithm ex-
cept for the mesh cutting procedure is implemented
on the GPU using NVIDIA CUDA 3.2. We use the
newly released cusparse library in our solver for
sparse matrix multiplication with vectors. The parallel
primitives scan, sort and compact [32] are used in
computing the 1-ring neighborhood information and
the hierarchy representation required by the multi-
resolution algorithm.

6 EXPERIMENTAL RESULTS

We implemented our algorithm on a PC with a
2.3GHz Intel quad-core CPU and an NVIDIA GeForce
GTX 480 graphics card. All images are rendered at
640×480 with 16× anti-aliasing. Since the majority of
computations are conducted on vertices/tetrahedra,

TABLE 1

Test data statistics.

#Tet † #Level Tb(ms) Tm(ms) Ts(ms)
Bunny 511,019 3 72 26 49
Tweety 1,011,863 4 213 67 57
Horse 1,020,554 4 218 65 72
Feline 1,024,674 4 219 67 121
Gargoyle 687,724 3 166 47 49

† #Tet is the number of tetrahedra, #Level is the number of multi-
resolution hierarchy levels, Tb is the time for building the vertex
neighborhood and multi-resolution hierarchy, Tm is the time for
constructing the DE matrix, and Ts is the time for solving the DE
(initialized with zeros). All timings are in milliseconds.

(a) ours (b) Wang et al. [7]

Fig. 5. Comparison with [7], on a tetrahedral mesh

cutout of the Stanford bunny. The model is lit mostly

from behind, and also with some frontal lighting.

anti-aliasing is obtained nearly for free. Surface shad-
ing is added to all results using the Cook-Torrance
BRDF model.

Test Data Statistics: The statistics of the test data
used in our paper are listed in Table 1. All tetrahedral
meshes are generated using Tetgen [33]. Interactive
rendering performance is achieved for all models,
with tetrahedra counts ranging from 500K to 1M.
Cutting is the most expensive operation since it is
executed on the CPU and uses an iterative process
to move vertices to cross sections. It also requires re-
building of the vertex neighborhood, multi-resolution
hierarchy and diffusion equation matrices. Neverthe-
less, it can be finished in less than three seconds for
all examples in the paper and accompanying video.
Painting and relighting can be done in real time on the
GPU (over 10 fps) since they do not change the mesh
and thus do not need geometric operations or matrix
rebuilding. They can also initialize the current frame
with the solution of the previous frame to expedite
convergence.

Comparisons: Fig. 4 shows a comparison be-
tween our algorithm, implemented on the GPU, and
that of [1], implemented on a 4-core CPU. The results
are visually identical, with a maximum relative error
of about 2%. A 4× magnified difference image be-
tween our method and the photon mapping reference
is also shown. Visible differences can be observed near
the object silhouettes since the diffusion approxima-

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 8

(a) (b) (c)

Fig. 6. Comparing our algorithm (a) with Arbree et

al.’s [1] (b) and Wang et al.’s [7] (c).

tion is less accurate in these optically thinner parts
when lit from behind. Nonetheless, our result is still
visually similar to the photon mapping reference. In
Fig. 5, we also compare our method to the state-of-
art interactive technique for rendering heterogenous
translucent objects [7]. Their method is based on finite
differences and requires a high quality tetrahedral
mesh. Rendering the cut mesh with their method
results in severe artifacts that are especially visible at
the cut interface. Though artifacts could be reduced
with careful optimization of mesh geometry, this is
not practical for interactive applications. Even for
the original mesh before cutting, their method still
generates visible artifacts since the mesh generated by
Tetgen is not well optimized. As shown in Fig. 6, the
result of [7] (Fig. 6(c)) suffers from flux discontinuity,
which is especially obvious in some regions where
scattering is significant. By contrast, our solver always
generates high-quality results comparable to those
produced by Arbree et al.’s solver. Fig. 11 shows
more comparisons with [1] using different tetrahedral
meshes and materials.

According to our experiments, our solver achieves
performance similar to Wang et al.’s method on the
GPU. Their matrix construction is much simpler than
ours, but the size of their matrix (determined by the
number of tetrahedra plus the number of boundary
triangles) is much larger than ours (determined by
the number of vertices). In our implementation of
Arbree et al.’s method, construction of the diffusion
equation matrix is parallelized on our 4-core CPU
and takes about 24 seconds to build the matrix. By
contrast, the matrix construction in our method takes
only about 1 second on the 4-core CPU. Note that once
we construct the matrix using Arbree et al.’s method,
it can be solved using our multi-resolution solver so
no comparison of rendering performance is given.

As reported in Table 1, our parallel hierarchy con-
struction method typically runs at less than 220ms
on the GPU for the examples in the paper. This
performance is about 2× faster than the CPU method
of Shi et al. [26]. Note that hierarchy construction is
not the bottleneck of our multi-resolution algorithm,
where the cutting operation requires approximately
two seconds. To minimize time-consuming data trans-
fer between CPU and GPU, we perform the hierarchy

Fig. 7. Multi-resolution acceleration.

Fig. 8. Cutting a translucent object through gestures.

construction on the GPU where the other algorithm
components (e.g., build mesh connectivity, construct
matrix and direct rendering) are computed.

In Fig. 7, we show a plot of the relative errors versus
execution time of our method with and without the
multi-resolution method. With relative errors below
1% the rendering results are visually indistinguish-
able. At a relative error of 1%, the acceleration ratio
achieved by the multi-resolution method is 73%. This
proves that our parallel multi-resolution solver can
achieve speedups comparable to Wang et al.’s multi-
resolution acceleration [7]. Moreover, while Wang et
al. need to precompute a hierarchy of high-quality
tetrahedral meshes, which is unaffordable at runtime,
our approach builds the multi-resolution hierarchy
from scratch at interactive rates. This makes our ap-
proach very suitable for geometry interaction such as
cutting.

Interaction: The results of various interactions
such as cutting, relighting, and material editing are
exhibited in Fig. 1 and Fig. 10. High frame rates and
realistic appearance are obtained for these complex
objects with many tetrahedra. We also integrated this
technique with the Microsoft Kinect sensor system,
to expand user interactivity with virtual translucent
objects by enabling cutout through gestures. Fig. 8
shows two frames of a cutting interaction. For live
action clips of the interaction system, please see the
accompanying video.

LIMITATIONS

Our technique has two main limitations. First, since
cutout operations often expose the object interior, we
need dense sampling throughout the object volume,
resulting in large meshes. Also, we cannot make use
of the adaptive mesh refinement employed in [1] due

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 9

(a) (b) (c) (d) (e) (f)

Fig. 10. Additional interaction results. (a)(b) From relighting. (c)(d) From mesh cutting. (e)(f) From painting.

(a) (b) (c)

Fig. 9. (a) Illustration of numerical instability at tetrahe-

dra with very poor aspect ratios. (b) Greater stability of

numerical integration used in [1]. (c) Result by avoiding

vertex moves that generate poorly-shaped tetrahedra.

to the high computational cost. Therefore, if the mean
free path in a material approaches the size of tetra-
hedra, our algorithm cannot capture the subsurface
details. Second, our discrete divergence computation
needs to evaluate the cotangent of dihedral angles
formed by the faces of tetrahedra (Eq. (10)). As we
perform single precision computation on the GPU,
tetrahedra with very poor aspect ratios may result
in very large cotangent values and cause numerical
problems, introducing artifacts in the final rendering.
Fig. 9(a) shows such an example, where we force
the vertices to move to the cross-sections without
considering the shape quality of the resulting tetra-
hedra. The numerical integration method used in [1]
is more stable in this case, and can generate artifact-
free results even with single precision computation
(Fig. 9(b)). We presently address this problem by
forbidding any vertex to move if the move will result
in poorly-shaped tetrahedra (Fig. 9(c)). In our cur-
rent implementation, we define a tetrahedron whose
minimal dihedral angle is less than 0.5 degree to be
poorly-shaped. A side effect of this scheme is that in
some situations the generated cross-sections may not
smoothly conform to the user-specified cutting stroke.

One possible solution for adaptive mesh refinement
is to use isosurface stuffing [34] for tetrahedra gener-
ation. As the tetrahedra can be created according to
specific gradings, we would be able to distribute more
tetrahedra in regions with more significant variation
of scattering properties. Furthermore, as the graded
tetrahedral background grid is created from an octree,
local refinement should be easy with good runtime

(a) ours (b) Arbree et al. [1] (c) 32× diff.

Fig. 11. Additional comparisons with Arbree et al.’s

method [1]. From top to bottom, the RMS errors are

3.5%, 2.4%, 4.9% and 8.4%, respectively.

performance. On the other hand, cut interfaces need
special treatment, since the original algorithm does
not guarantee preservation of sharp edges or corners.

7 CONCLUSION

We presented a technique for realistic and interactive
rendering of translucent objects undergoing fracturing
and cutting operations, supported by a novel DE
solver with multi-resolution acceleration. This tech-
nique offers users a natural way to interact with and
edit translucent volumes. In future work, we plan
to augment our user interface with more advanced

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 10

cutting and fracturing tools, including those that can
be used to simulate a real-world carving process. We
would also like to improve the scalability of our tech-
nique by investigating efficient and robust adaptive
mesh refinement algorithms.

APPENDIX

Below, we derive the discrete divergence formula for
each interior vertex i (Eq. (9) and Eq. (10)) from Eq. (8).

Let t be a tetrahedron in i’s 1-ring neighborhood.
Since βit is a piecewise linear function, ∇βit is con-
stant and can be computed according to Eq. (4):

∇βit =
Si

3Vt

ni.

Therefore, we have

Vt∇βit · (κt∇φt) = Vt

Si

3Vt

ni ·
∑

j∈t

κt

Sjφ(xj)

3Vt

nj

=
∑

j∈t

wijtφ(xj),

where

wijt =
κtSiSj

9Vt

(ni · nj).

In cases that j 6= i, with k, l denoting the other two
vertices of t, we have

wijt =
−κtSiSj cos θkl

9Vt

=
−κtSj cos θkl

3hi

= −
1

6
κt|kl| cot θkl,

where hi is height from vertex i to its opposite face.
In cases that j = i, we can easily prove that

wiit =
κtSiSi

9Vt

= −(wijt + wikt + wilt)

because Si = −(Sj(ni · nj) + Sk(ni · nk) + Sl(ni · nl)).
Based on the above derivations, we have

(Div(κ∇φ))(xi) =
1

|Υ|

∑

t∈N(i)

−Vt∇βit · (κt∇φt)

=
1

|Υ|

∑

j∈N(i)

wij(φ(xi)− φ(xj)),

where

wij =
∑

t={i,j,k,l}

wijt = −
∑

t={i,j,k,l}

1

6
κt|kl| cot θkl.

ACKNOWLEDGEMENTS

We wish to thank Tianyi Cui for his help on the Kinect
demo. The work is partially supported by the NSF of
China (No. 60825201 and No. 61003048).

REFERENCES

[1] A. Arbree, B. Walter, and K. Bala, “Heterogeneous subsurface
scattering using the finite element method,” IEEE Comp. Graph.
& Appl., vol. 17, no. 7, pp. 956–969, 2011.

[2] J. F. O’Brien and J. K. Hodgins, “Graphical modeling and
animation of brittle fracture,” in ACM SIGGRAPH, 1999, pp.
137–146.

[3] J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins, “Graphical
modeling and animation of ductile fracture,” in ACM SIG-
GRAPH, 2002, pp. 291–294.

[4] S. Owada, F. Nielsen, M. Okabe, and T. Igarashi, “Volumetric
illustration: Designing 3d models with internal textures,” ACM
Trans. Graph., vol. 23, pp. 322–328, 2004.

[5] K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi, “Volu-
metric modeling with diffusion surfaces,” ACM Trans. Graph.,
vol. 29, no. 6, pp. 180:1–180:8, 2010.

[6] E. G. Parker and J. F. O’Brien, “Real-time deformation and
fracture in a game environment,” in Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
Aug. 2009, pp. 156–166.

[7] Y. Wang, J. Wang, N. Holzschuch, K. Subr, J.-H. Yong, and
B. Guo, “Real-time rendering of heterogeneous translucent ob-
jects with arbitrary shapes,” Computer Graphics Forum, vol. 29,
no. 2, pp. 497–506, 2010.

[8] J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. K.
Pedersen, “Modeling and rendering of weathered stone,” in
ACM SIGGRAPH, 1999, pp. 225–234.

[9] M. Pharr and P. Hanrahan, “Monte carlo evaluation of non-
linear scattering equations for subsurface reflection,” in ACM
SIGGRAPH, 2000, pp. 75–84.

[10] H. Li, F. Pellacini, and K. E. Torrance, “A hybrid monte carlo
method for accurate and efficient subsurface scattering,” in
Eurogr. Symposium on Rendering, 2005, pp. 283–290.

[11] H. W. Jensen and P. H. Christensen, “Efficient simulation
of light transport in scences with participating media using
photon maps,” in ACM SIGGRAPH, 1998, pp. 311–320.

[12] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan,
“A practical model for subsurface light transport,” in ACM
SIGGRAPH, 2001, pp. 511–518.

[13] C. Donner and H. W. Jensen, “Light diffusion in multi-layered
translucent materials,” ACM Trans. Graph., vol. 24, no. 3, pp.
1032–1039, 2005.

[14] C. Donner, T. Weyrich, E. d’Eon, R. Ramamoorthi, and
S. Rusinkiewicz, “A layered, heterogeneous reflectance model
for acquiring and rendering human skin,” ACM Trans. Graph.,
vol. 27, no. 5, pp. 140:1–140:12, 2008.

[15] E. d’Eon and G. Irving, “A quantized-diffusion model for
rendering translucent materials,” ACM Trans. Graph., vol. 30,
no. 4, pp. 56:1–56:14, 2011.

[16] X. Hao and A. Varshney, “Real-time rendering of translucent
meshes,” ACM Trans. Graph., vol. 23, no. 2, pp. 120–142, 2004.

[17] R. Wang, J. Tran, and D. Luebke, “All-frequency interactive
relighting of translucent objects with single and multiple
scattering,” ACM Trans. Graph., vol. 24, no. 3, pp. 1202–1207,
2005.

[18] A. Ishimaru, Wave Propagation and Scattering in Random Media.
Academic Press, 1978.

[19] J. Stam, “Multiple scattering as a diffusion process,” in Eurogr.
Workshop on Rendering, 1995, pp. 41–50.

[20] T. Haber, T. Mertens, P. Bekaert, and F. Van Reeth, “A com-
putational approach to simulate light diffusion in arbitrarily
shaped objects,” in Proc. Graphics Interface, 2005, pp. 79–85.

[21] J. Wang, S. Zhao, X. Tong, S. Lin, Z. Lin, Y. Dong, B. Guo,
and H.-Y. Shum, “Modeling and rendering of heterogeneous
translucent materials using the diffusion equation,” ACM
Trans. Graph., vol. 27, no. 1, pp. 1–18, 2008.

[22] A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent ad-
vances in diffuse optical imaging,” Physics in Medicine and
Biology, vol. 50, no. 4, pp. R1–R43, 2005.

[23] K. Polthier and E. Preuss, “Identifying vector field singularities
using a discrete hodge decomposition,” in Proc. VisMath, 2002,
pp. 112–134.

[24] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete
differential-geometry operators for triangulated 2-manifolds,”
in Proc. VisMath, 2003, pp. 35–57.

IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 11

[25] Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun, “Discrete
multiscale vector field decomposition,” ACM Trans. Graph.,
vol. 22, no. 3, pp. 445–452, 2003.

[26] L. Shi, Y. Yu, N. Bell, and W.-W. Feng, “A fast multigrid
algorithm for mesh deformation,” ACM Trans. Graph., vol. 25,
no. 3, pp. 1108–1117, 2006.

[27] R. Geist, K. Rasche, J. Westall, and R. J. Schalkoff, “Lattice-
boltzmann lighting,” in Eurogr. Symposium on Rendering, 2004,
pp. 355–362.

[28] R. Geist and J. Westall, GPU Computing GEMS Emerald Edition.
Morgan Kaufmann, 2011, ch. 25.

[29] D. Bernabei, A. Hakke Patil, F. Banterle, M. Di Benedetto,
F. Ganovelli, S. Pattanaik, and R. Scopigno, “A parallel ar-
chitecture for interactively rendering scattering and refraction
effects,” IEEE Trans. Vis. Comp. Graph., vol. 32, no. 2, pp. 34–43,
2012.

[30] S. Tzeng and L.-Y. Wei, “Parallel white noise generation on a
GPU via cryptographic hash,” in ACM SIGGRAPH Symp. I3D,
2008, pp. 79–87.

[31] H.-W. Nienhuys and A. F. van der Stappen, “A surgery
simulation supporting cuts and finite element deformation,”
in Proc. MICCAI, 2001, pp. 145–152.

[32] S. Sengupta, M. Harris, Y. Zhang, and J. Owens, “CUDPPA
project homepage,” 2010, http://code.google.com/p/cudpp/.

[33] H. Si and K. Gaertner, “Meshing piecewise linear complexes
by constrained delaunay tetrahedralizations,” in Proc. Interna-
tional Meshing Roundtable, 2005, pp. 147–163.

[34] F. Labelle and J. R. Shewchuk, “Isosurface stuffing: fast
tetrahedral meshes with good dihedral angles,” ACM
Trans. Graph., vol. 26, July 2007. [Online]. Available:
http://doi.acm.org/10.1145/1276377.1276448

