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Boundary-Aware Multi-Domain Subspace
Deformation

Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, Baining Guo

Abstract—In this paper, we propose a novel framework for multi-domain subspace deformation using node-wise corotational
elasticity. With the proper construction of subspaces based on the knowledge of the boundary deformation, we can use the
Lagrange multiplier technique to impose coupling constraints at the boundary without over-constraining. In our deformation
algorithm, the number of constraint equations to couple two neighboring domains is not related to the number of the nodes on
the boundary but is the same as the number of the selected boundary deformation modes. The crack artifact is not present in
our simulation result and the domain decomposition with loops can be easily handled. Experimental results show that the single
core implementation of our algorithm can achieve real-time performance in simulating deformable objects with around quarter
million tetrahedral elements.

Index Terms—model reduction, domain decomposition, FEM, deformable model
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1 INTRODUCTION

MOdel reduction is an important technique for
accelerating the physics-based simulation of

deformable objects. The basic idea is to project the
high-dimensional equation of motion to a carefully
chosen low-dimensional subspace to construct a re-
duced model. Traditional global subspace methods,
however, cannot handle the object’s local deformation
behaviors well unless a large number of basis vectors
are used, which in turn would cancel out the bene-
fit of acceleration. Multi-domain subspace techniques
provide a good solution to this problem by parti-
tioning the deformable object into multiple domains
and constructing reduced models for each domain
independently. The advantages are two-fold. First,
local deformation behaviors can be well captured with
a modest number of basis vectors for each domain.
Second, local simulation of each domain can more
flexibly handle deformable objects of complex, seman-
tic geometries. Users can easily specify the number
of degrees of freedom (DOFs) and the types of bases
for each domain to accommodate hybrid simulation
results.

The key challenge in applying multi-domain sub-
space techniques to deformable object simulation is
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the seamless coupling of the neighboring domain-
s at their boundary interface. Recently, two cou-
pling methods have been developed for multi-domain
subspace deformations using the reduced nonlinear
St.Venant-Kirchhoff (StVK) deformable model. Kim
and James [1] proposed to couple the domains using
penalty (spring) forces for character skinning. With
an increasing number of basis vectors in the reduced
model, the cracks become invisible visually. However,
this method requires pre-determined motions of local
frames for each domain, and the length of the time
step is usually small due to the possible large penal-
ty forces at the boundary interface. Another multi-
domain subspace deformation method in [2] relies on
shape matching and mass lumping at the boundary
interfaces to handle the coupling issue. Nevertheless,
cracks might still be visible if the deformation goes
large and this problem can be remedied by geometric
blending operations at the post-simulation stage. This
method works well for the domain decomposition
with tree-like hierarchies and small domain interfaces.
However, seamless coupling of multi-domain sub-
space deformations with arbitrary domain decompo-
sition remains a technical challenge.

The goal of this paper is to develop a seamless cou-
pling method for multi-domain subspace deformation
in the framework of node-wise corotational elasticity.
To this end, we propose a boundary-aware mode
construction method that characterizes the deforma-
tion subspace of each domain through its boundary
deformations. Instead of posing coupling constraints
on boundary node pairs, which can easily lead to
over-constraints for large-scale meshes, our algorithm
formulates these constraints with rigid and soft bound-
ary modes, which form a compact representation of
boundary deformations. In this way, we can apply the
Lagrange multiplier technique to solve the boundary
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coupling constraints without over-constraining. The
boundary modes are computed by solving the static
equilibrium equations as in component mode synthesis
(CMS) [3]. The large deformation of each domain is
simulated using the modal warping technique [4].

With our algorithm, cracks are avoided in the sim-
ulation result and the domain decomposition with
loops can be naturally handled as well. We show the
capability of our multi-domain subspace deformation
algorithm by simulating a variety of large-scale de-
formable objects. User manipulation, such as directly
constraining the node position or the rotation of the
domain boundary, is also supported in our algorithm
to ease the animation production.

The rest of the paper is organized as follows.
Sec. 2 reviews the related work. Sec. 3 describes how
to construct deformation modes from the boundary
deformation. The deformation algorithm and direct
manipulation methods are described in Secs. 4 and
5. Experimental results and limitations are discussed
in Sec. 6. Finally, we conclude in Sec. 7.

2 RELATED WORK

Physics-based simulation of deformable objects has
been an active research topic in computer graphics
since 1980s. A comprehensive survey can be found
in [5], [6]. Terzopoulos et al. [7], [8] proposed a
fundamental framework to simulate 3D deformations
based on the theory of elasticity. The ordinary differ-
ential equations (ODEs) describing the dynamics of
deformable models can be numerically solved with
the finite element method (FEM) and generate realistic
deformations. High computational cost is a drawback
of FEM especially for the finite element meshes of
large size. In order to make deformable models more
practical for interactive applications, numerous works
have been proposed and have greatly advanced re-
lated areas. Multi-resolution [9] or adaptive simula-
tion [10], [11] uses hierarchical or adaptive bases of
the deformation to accelerate the computation. These
types of techniques use the high-level bases to repre-
sent general deformations and the low-level or refined
bases for more detailed deformations when necessary.
Similarly, embedded mesh, mesh coarsening or con-
trolling lattice [12], [13], [14], [15], [16] handle the
deformation with auxiliary coarsened grids.

Corotational elasticity and its variations are widely
used in computer graphics for fast simulation of large
scale deformations. It was first introduced by Müller
et al. [17], [18] via stiffness warping and widely adopted
in various applications [19], [20], [21], [22]. It has been
extended to thin shell [23] and meshless [24] sim-
ulation. Warp-canceling corotation has recently been
proposed to improve the approximation accuracy of
stiffness warping to element-wise corotational elas-
ticity [25]. Although the stiffness matrix can be kept
constant in node-wise corotational methods as in [4],

[17], it is still hard to directly apply it to the real-time
simulation of a large scale mesh as in our case, since
the pre-factorization of the large scale stiffness matrix
might take hours and sometimes not plausible on a
desktop PC due to the memory limitations.

Another series of contributions are based on modal
analysis (MA), which is a well-developed technique
widely used in engineering areas. The MA utilizes the
eigen decomposition to project the full deformation
space to the vibrations of different frequencies [26],
[27], [28], [29], [30]. The eigenvectors associated with
low vibration energies are discarded as they are be-
lieved to have less contribution to the final defor-
mation. In order to handle rotational deformations,
Choi and Ko [4] proposed a technique called modal
warping. The curl of the linear displacement field is
used to estimate nodal rotation and warp the dis-
tortion induced by using linear modal bases. Alter-
natively, nonlinear deformation can also be captured
with modal derivatives [31] which extends the linear
deformation subspace to the parabolic subspace. On-
the-fly subspace construction [32] provides another
direction to accelerate the simulation. The subspace
bases are the recently-simulated displacements and
vary during the simulation with the extra cost of ex-
amining residual error periodically. Geometry-based
shape matching [33], [34] provides an alternative for
fast computation of soft 3D volumes. Unfortunately,
shape matching is not able to incorporate the material
properties intuitively and increasing the number of
DOFs does not necessarily lead to a more accurate
simulation.

Local subspace methods such as [1], [2], [35] can be
categorized as domain decomposition methods (DDMs).
The input mesh is decomposed into mutually disjoint
domains. The model reduction is then applied to each
domain. Because the domains are always connected
and interacted with the neighbors, the domain’s defor-
mation is not unconstrained like a single deformable
object. The key technical challenge of local subspace
methods is to impose domain coupling with low
costs when there exist a large number of boundary
DOFs. Such inter-domains constraints should be con-
sidered during the selection of deformation modes
in order to construct a reasonable local subspace at
each domain. Huang et al. [35] use node-pair position
constraints for domain coupling and a pre-computed
force-displacement matrix to accelerate matrix-vector
multiplication. Barbič and Zhao [2] adopt a passive
inter-domain deformation mechanism with rigid in-
terface fitting when the parent domain deforms. This
framework works well for domain decomposition
with tree-like hierarchies, and the pre-computation
time can be significantly reduced when a large num-
ber of domains are of the same geometry. However,
due to the rigid interface assumption, it is not suitable
for domains connected through large soft interfaces.
Kim and James [1] use spring forces to avoid the
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stiffening induced by the subspace coupling. Mean-
while, additional damping forces are also provided to
suppress boundary jigging. This coupling strategy is
effective and simple to implement. It targets character
skinning where the motion of the local frame of
each domain must be pre-determined. These DDM
techniques, unfortunately do not fully incorporate the
boundary condition during the construction of the
local subspace. As a result, the displacements at the
duplicated domain interfaces may experience slight
incompatibility and crack or interpenetration could
appear. However this problem can be easily fixed by
a simple blending treatment at post-simulation stage
as in [2].

Our algorithm complements existing methods. It is
inspired by CMS [3] to construct the modes at the
static equilibrium while we perform model reduction
geometrically at the boundary DOFs to avoid the
over-sized boundary problem. The domain coupling
constraint can be directly imposed on the reduced
coordinates without the over-constraining problem.
Boundary modes constitute the static deformation of the
domains. The extra internal vibrational deformation
is also captured with interior modes that do not par-
ticipate in the domain coupling. Domains are always
exactly coupled and the post-simulation processing is
avoided.

3 BOUNDARY-AWARE MODE CONSTRUC-
TION

The input finite element mesh (tetrahedral mesh in
this paper) is called a host mesh and is to be di-
vided into multiple sub-meshes or domains. We en-
force the face-connectivity between a pair of neigh-
boring domains such that they must share at least
one triangle face if considered connected1. The modes
are simply the pre-computed domain displacements
which serve as local subspace bases. Our boundary-
aware mode construction characterizes the deforma-
tion subspace of each domain through its bound-
ary deformation. Unlike the classic CMS method [3]
which provides complete boundary freedom by as-
signing each boundary DOF an individual mode,
we reduce the boundary freedom with the use of
geometrically-constructed bases. After that, the corre-
sponding boundary modes of the domain are comput-
ed through solving the static equilibrium with linear
elasticity. Besides boundary modes, internal modes
are also incorporated for enriched local deformation.

1. The face-connectivity avoids the singularity of the sub-stiffness
corresponding to internal DOFs, during the mode computation.
Because the interface’s displacement is always constrained during
the computation of domain modes, as long as interface is able to
determine the rigid body motion of the domain, the internal sub
matrix is always non-singular.

3.1 DOF Classification
A domain with n nodes has total of 3n DOFs
as each node has independent freedoms along x,
y and z . The DOFs that are shared with neigh-
boring domains are called boundary DOFs denot-
ed by set B. All the other DOFs are called in-
ternal DOFs (even they may be located at the
surface of the mesh) and are denoted by set I.

Fig. 1. A three-domain bar.

A DOF is either in B
or in I and cannot be
in B and I at the same
time. If a domain has k
neighboring domains, B
is further grouped into
k subsets, B1, B2,...Bk.
Each subset holds DOFs
that are shared with the
same neighbor and is
called an interface. Fig. 1
shows an illustrative 2D
example of a bar model.
The middle domain has
the boundary with two
interfaces. Let Φ denote the modes of a single domain.
According to the DOF types, it can be decomposed
into two parts Φ = [Φ>I |Φ>B ]>. As illustrated in Tab.1,
in the following sections where the detailed mode
computation is explained, we use subscript to denote
the DOF type and superscript for mode type.

.

Φ Mode matrix
ΦR Rigid (R) boundary mode matrix (Sec. 3.2)
ΦS Soft (S) boundary mode matrix (Sec. 3.2)
ΦN Normal (N) mode matrix (Sec. 3.3)
ΦI Inertia (I) mode matrix (Sec. 3.3)
ΦI Mode submatrix corresponding to internal (I) DOFs
ΦB Mode submatrix corresponding to boundary (B) DOFs
ΦBk

Mode submatrix corresponding to DOFs on interface Bk

TABLE 1
Matrix notation used in the mode computation.

3.2 Boundary Modes
The boundary modes are the domain’s displacement
at static equilibrium status when it is imposed to
external boundary displacements (e.g., displacement
at B). Such equilibrium can be expressed in the form
of Ku = f , where the domain’s stiffness matrix is
denoted by K. u and f represent the displacement
and forces of the domain. The unknown responding
deformation at I is computed by solving the follow-
ing equilibrium:

KII KIB1
... KIBk

KB1I KB1B1 ... KB1Bk

...
KBkI KBkB1 ... KBkBk


[

ΦI
ΦB

]
=

[
0
FB

]
.

(1)
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The domain’s stiffness matrix is grouped and ordered
corresponding to the classification of DOFs (e.g.,
boundary or internal DOFs) and it is constant under
linear elasticity. fB is the external force applied at the
boundary to drive the boundary displacement. If a
domain has more than one interface (e.g., k > 1), the
modes are computed independently for each interface
such that the imposed boundary displacement has
nonzero values only at one interface each time and
all the other interfaces are fixed. Consequently, let ΦBi

be the nonzero interface displacement for Bi, and ΦB
has the block-diagonal-like form as:

ΦB =


ΦB1

ΦB2

. . .
ΦBk

 .
Rigid boundary modes The rigid boundary modes,
denoted by ΦR, represent the domain’s deformation
when its interfaces only have rigid body motion.
Correspondingly, ΦR

Bi
has six columns, where the

first three columns in ΦR
Bi

represent three linearly
independent translational displacement fields over
Bi. A natural choice is to use unit displacements
along each axis as x = [1, 0, 0]>, y = [0, 1, 0]> and
z = [0, 0, 1]> for each interface node. The other three
columns are the rotational modes constructed by as-
signing each interface node the displacements along
the tangent directions of the rotations around three
linearly independent rotation axes (i.e. x, y and z).
We set the centroid of the interface ci as the rotation
pivot. Such tangential rotation modes are only able
to represent infinitesimal rotations for linear elasticity.
We later show in Sec. 5 that they can also represent
large rotations with the help of modal warping. For
an interface node p whose rest position is p, the
corresponding 3 × 6 block in ΦR

Bi
has the structure

like:

ΦR
p,p∈Bi

= [x|y|z|(p−ci)×x|(p−ci)×y|(p−ci)×z]. (2)

By expanding the first line of Eq. 1 (which correspond-
s to the internal DOFs of the domain) and substituting
ΦBi with ΦR

Bi
, ΦR
I can be computed through:

ΦR
I = −K−1II [KIB1

ΦR
B1
|KIB2

ΦR
B2
| . . . |KIBk

ΦR
Bk

]. (3)

Stacking ΦR
I and ΦR

B yields the rigid boundary
modes:

ΦR =

[
ΦR
I

ΦR
B

]
. (4)

The number of rigid boundary modes is 6k which on-
ly depends on the number of neighbor domains. The
rigid boundary modes represent the general deforma-
tion of the domain and they are always chosen as the
domain’s subspace bases in our implementation.
Soft boundary modes Soft boundary modes com-
plement the rigid boundary modes by incorporating

the deformations that are induced by non-rigid in-
terface displacements. Assigning each boundary DOF
an individual boundary mode will lead to a very
big system if there are many boundary nodes. This
compromises the original purpose of using model
reduction. Instead, the soft boundary modes are de-
signed to only capture the most notable interface
geometry, which is similar to regular modal analysis
of deformable model. For each interface, we compute
its manifold harmonic bases [36] (denoted by H), by
solving the generalized eigen problem of the Laplacian
matrix of the interface: −QH = ΛBH, where Q,B
are square symmetric matrices with size nBi , the
number of nodes on interface Bi. Elements in Q,B
are computed with:{

Qa,b =
cot(βa,b)+cot(β

′
a,b)

2
Qa,a =

∑
bQa,b

and

{
Ba,b =

|t|+|t′|
12

Ba,a =
∑

t∈St(a) |t|
6

,

where t, t′ are two triangles that share the edge (a, b)
with area |t| and |t′|. βa,b and β′a,b denote the two
angles opposite to the edge (a, b) in t and t′. St(a)
stands for the set of triangles incident to a.

Each Harmonics basis is a vector of size nBi
. It is

spanned to to represent the interface displacements in
x, y and z directions respectively as:

ΦS
Bi

= H⊗ I, (5)

where ⊗ denotes the Kronecker product and I ∈ R3×3

is the identity matrix. The complete set of harmonic
bases spans the full space of the interface displace-
ment and the harmonic bases corresponding to the
large eigenvalues can be discarded to reduce the
number of interface freedoms since they represent
the detailed geometry features of the interface. Such
property of harmonics is also utilized for mesh defor-
mation with model reduction [37], [38].

Redundant bases could be induced if an inter-
face displacement represented with harmonic bases
is close to rigid. Therefore, for a given harmonic-
spanned interface displacement φSBi

∈ R3nBi
×1, we

check the residual error of projecting φSBi
onto the

existing rigid interface subspace spanned by ΦR
Bi

:

e =
‖ [ΦR

Bi
]([ΦR

Bi
]>[ΦR

Bi
])−1[ΦR

Bi
]>φSBi

− φSBi
‖

‖ φSBi
‖

. (6)

If the error e is small enough (e.g., < 1% in our im-
plementation), it indicates that a certain combination
of the existing rigid interface displacements is able to
represent φSBi

well, and φSBi
is opt out. It is noteworthy

that the first harmonic basis has zero eigenvalue. The
corresponding three bases computed by Eq. 5 are
identical to the three translational modes. As a result,
they are always excluded.

The unknown internal displacement ΦS
I with re-

spect to the interface harmonics can be computed
similar to Eq. 3:

ΦS
I = −K−1II [KIB1

ΦS
B1
|KIB2

ΦS
B2
| . . . |KIBk

ΦS
Bk

]. (7)
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By stacking boundary and internal parts computed
in Eq. 5 and Eq. 7, the soft boundary modes are
assembled as:

ΦS =

[
ΦS
I

ΦS
B

]
. (8)

3.3 Internal Vibrational Modes
Boundary modes are suitable for capturing static
deformation driven by the un-accelerated boundary
displacement. Enriched deformation at internal DOFs
is necessary when the inertia force associated with
boundary displacement is considered. Following an
idea similar to [29], we include additional internal
vibrational modes in the framework for detailed local
deformation at internal DOFs (I). Internal vibrational
modes always have zero values at the boundary D-
OFs. Therefore, they are not responsible for domain
coupling.
Normal modes A natural choice for computing the
vibrational mode is via solving the generalized eigen
problem of internal DOFs (so the modes look like
fixed at the boundary):{

(KII −ΛMII)Φ
N
I = 0

ΦN
B = 0

, (9)

Eq. 9 is actually performing the linear mode analysis
(LMA) over I. It can be understood as choosing the
deformation modes that increase the system’s energy
least [39] with the additional imposed constraints that
the boundary DOFs are fixed.
Inertia modes Using normal modes is a good choice
when there is no clue about what internal deforma-
tion is going to happen. However, in multi-domain
deformation, the internal deformation occurs most
likely as the consequence of the accelerated bound-
ary movement. To better account for such boundary-
triggered internal deformation, we pre-compute the
corresponding internal deformation based on the
knowledge of the boundary displacements (which
are defined with boundary modes) and the resulting
deformation modes are called inertia modes. They
are called so because inertia modes are computed
by solving the equilibrium with inertia forces that
correspond to the boundary acceleration:[

KII KIB
KBI KBB

] [
ΦI
I(1)
0

]
= MΦR +

[
0

FIB

]
, (10)

where, ΦR represents the acceleration along the di-
rections of the rigid boundary modes. Soft boundary
modes can also be included in Eq. 10. However, from
our experience, the inertia forces associated with soft
boundary modes are often much smaller than the
forces associated with rigid boundary modes. So they
are discarded for model reduction. The first order of
inertia modes is computed as:

ΦI
(1) =

[
ΦI
I(1)
0

]
=

[
K−1IIMIIΦ

R
I

0

]
. (11)

Similarly, if the acceleration associated with displace-
ment ΦI

(1) is not neglected, another set of deformation
can be computed with the same form of equilibrium
as in Eq. 10. Successive blocks of higher order inertia
modes are built with following recurrence relation-
ship:

ΦI
(k+1) =

[
ΦI
I(k+1)

0

]
=

[
K−1IIMIIΦ

I
I(k)

0

]
. (12)

When the size of inertia subspace is close to full space
size, the inertia modes could bring redundancy to the
subspace bases. However, high order inertia deforma-
tion has a much less contribution to the final internal
deformation. Accordingly, the high order inertia mode
are discarded. For the sake of stability, one may apply
a mass-based Gram-Schmidt orthonormalization over
the inertia modes after each block iteration. Never-
theless, in our experiment, the system is stable even
without mass-orthonormalization.

Another advantage of inertia mode is its faster pre-
computation: the inverse of KII is shared in the
computation of boundary modes (e.g., Eq. 3 and 7).
In fact, inertia mode ΦI

I spans a block Krylov subspace:

ΦI
I = [AΦR

I |A2ΦR
I |A3ΦR

I | . . .], (13)

where A = K−1IIMII . Krylov subspace is a well-
known numerical method to compute the generalized
eigen problem as defined in Eq. 9. We start the power
iteration from the rigid boundary modes. From this
point of view, inertia modes can be understood as a
tuned version of normal modes as the inertia forces
are pre-known and boundary-driven. In practice, we
choose to use inertia modes instead of normal modes
because they can be computed more efficiently than
normal modes.

Fig. 2. The assumption of rigid interface [2] induces
artifact when the interface is wide and the neighbor
domains are soft. Using our soft modes yields smooth
and natural deformation. Same number of modes (30
per domain) are used in the comparison while 5 soft
boundary modes are used to capture the boundary
deformation. The external force is shown as an arrow.
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3.4 Discussion

Rigid interface vs. soft interface When the interface
is small, a rigid body motion can well approximate
its displacement. In this case, it is reasonable to make
the assumption of the interface rigidity as in [2]. Such
approximation can be achieved in our framework by
only adopting rigid boundary modes and internal
vibrational modes. However, in some situations where
domains share broad and flexible interfaces, such
assumption of interface rigidity could induce visual
artifacts because pure rigid interface is not sufficient
for propagating enough deformation across domains.
As shown in Fig. 2, the rigid interface fitting used
in [2] leads to the discontinuous shape while soft
boundary modes generates much smoother deforma-
tion across the host mesh and the sharp edges of
the cube remain continuous. It may be possible to
use higher order blending to smooth the deformation
but it requires extra post-simulation computation like
moving least square (MLS) embedding [40].

Fig. 3. Subspaces spanned by different types of
modes constitute the layered deformation. Final de-
formation of the domain can be understood as the
superposition of deformations from each subspace.
Complete set of modes span the full space.

Layered subspaces In our boundary-aware mode
construction framework, the local domain’s deforma-
tion organized in layers. For each domain, we can
consider its final deformation as the superposition of
three subspace deformations as shown in Fig. 3. First,
we slowly move the interface without changing its
shape. Necessary domain deformation is generated in
order to keep the domain coupled with its neighbors.
This portion of deformation is represented with rigid
boundary modes. After that, some non-rigid interface
displacements are further generated to better accom-
modate the deformed boundary with soft boundary
modes. Finally, internal vibrational modes capture
additional local internal deformation. Complete set
of boundary modes and internal vibrational modes
constitute the full space of the domain’s deformation.

Low-rank2 boundary modes capture dominate inter-
face displacements and low-rank internal vibrational
modes describe majority internal vibrations with fixed
boundary condition. From this figure, we can see that
our boundary-aware mode construction strategy care-
fully performs model reduction on boundary modes
and internal vibrational modes separately. By doing
so, neighbor domains always have consistent low
dimensional interface displacement which is purely
decided by the geometry feature of the interface (via
computing its harmonic bases and rigid motion). We
will see in Sec. 4.2 that such mechanism facilitates the
subspace domain coupling so that the interface con-
straint can be directly enforced over the generalized
reduced coordinate.
Our method vs. free vibrational LMA LMA provides
the most natural deformation bases of the uncon-
strained vibration space in the case that the domain’s
deformation is completely unknown [39]. It is done by
solving a generalized eigen problem (KΦ = ΛMΦ)
defined over the entire domain [26]. Many model
reduction techniques construct subspaces based on
this method [4], [31], [41]. However, simply choos-
ing the low frequency LMA modes may not be the
best solution for the multi-domain deformable object,
because domains are always coupled and not sim-
ple unconstrained free deformable bodies. Boundary
modes are specially designed for the subspace domain
coupling and in general, they are not always the
domain’s vibrations of lowest frequency. In Fig. 4, we
plot the frequency distribution of three types of modes
mentioned above over the spectrum of the domain’s
free vibration. The y axis in the plots is the projection
of the modes onto the LMA bases of different frequen-
cy. We can see in the figure that the rigid boundary
modes have more low frequency components. How-
ever, some higher frequency components still exist.
On the other hand, soft boundary modes have a wider
distributed spectrum which means that they have
more high frequency vibrational components. Simi-
larly, internal vibrational modes have fixed boundary.
As a result, they also have wide distribution over the
free vibrational spectrum.

The boundary modes (both rigid and soft) are com-
puted for each interface independently. That is, when
imposing a certain displacement to an interface, we
keep other domain interfaces fixed. This strategy has
two advantages: 1) it guarantees that the subsets of
boundary modes corresponding to different interfaces
are linearly independent to each other and; 2) the dis-
placement of an interface of the domain is determined
only by the modes associated with the interface. The
internal vibrational modes have vanishing values at

2. We say low-rank which typically refers to the modes that are
selected with high priority, such as rigid boundary modes and soft
boundary modes associated with low frequency harmonics. For
internal vibrational modes, it means low-order inertia modes or
normal modes with small eigenvalues.
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Fig. 4. The shapes of each type of warped modes associated with right interface of the domain. The left interface
is assigned with zero displacements.

the interfaces and only contribute to the deformation
at I. Thus they are always linearly independent to the
boundary modes and do not participate in the domain
coupling.

4 DEFORMATION ALGORITHM

In this section, we briefly describe the reduced Euler-
Lagrange formulation for multi-domain deformable
bodies and the subspace domain coupling. Then we
introduce how to generalize the reduced node-wise
corotational elasticity [4] for multi-domain deforma-
tion.

4.1 Equation of Motion
For a single domain i, the Euler-Lagrange equation on
the reduced coordinate [q]i can be written as:

[Mq]
i[q̈]i + [Cq]

i[q̇]i + [Kq]
i[q]i = [fq]

i, (14)

where [Mq]
i, [Cq]

i and [Kq]
i are the reduced mass,

damping and stiffness matrices. They are constant
under linear elasticity. For the case of the commonly-
used Rayleigh damping, [Cq]

i is a linear combination
of [Mq]

i and [Kq]
i. [fq]i is the reduced external force.

Domain displacements [u]i and reduced coordinate
[q]i are related by the equation: [u]i = [Φ]i[q]i, where
[Φ]i contains the selected modes of the domain. It is
noteworthy that since we are not using the regular
eigenvectors as local subspace bases, the reduced
equations are not decoupled and need to be solved
using direct linear solver.

For a dynamic system with multiple domains, the
global reduced mass, damping and stiffness matri-
ces are block-diagonal: Mq = diag([Mq]

i), Cq =
diag([Cq]

i) and Kq = diag([Kq]
i). Similarly, the global

mode matrix Φ also has block-diagonal-like structure

Fig. 5. The structures of global mode matrix and its
nonzero diagonal submatrix at an individual domain.
Shadowed blocks are nonzero submatrices.

as shown in Fig. 5. The global reduced displacemen-
t/velocity/acceleration q/q̇/q̈ is the column vector
stacking [q]i/[q̇]i/[q̈]i at all domains. We do not apply
mass-orthogonalization to the modes as done in [31]
because the boundary modes have clearly-specified
geometric properties which can be further utilized
for interactive manipulation. We do not experience
any stability issues in our experiment (with time step
1/30 sec and implicit Newmark intergration).

4.2 Boundary Coupling

The locking issue and over-constraining problem are
well resolved in our framework. First, neighboring
subspaces are always compatible because the modes
are computed based on the pre-defined boundary dis-
placements, and the possible interface displacements
at each subspace are the same. Second, the interface
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displacement is no longer a high dimensional variable
as it is expressed with a set of reduced geometric
bases. Without loss of generality, assuming there are
two domains α and β sharing an interface, a valid
domain coupling requires keeping the duplicated in-
terface DOFs at both domains overlaping during the
simulation. Let [Φ]α and [Φ]β denote the modes su-
perset at the domains. Then the interface constraint
can be expressed as:

[ΦBi ]
α[q]α − [ΦBi ]

β [q]β = 0, (15)

where [q]α and [q]β are the reduced modal displace-
ment in domains. In general, the local interface index
is different from a domain to another. To simplify the
notation, we just use subscript Bi

for both domains
which can be considered as a global index of the
interfaces on the host mesh.

Eq. 15 indicates that an interface displacement must
be able to be represented with the reduced coordi-
nates at both domains. In other words, the interface
displacement has to be within the intersection of
the subspaces spanned by [ΦBi

]α and [ΦBi
]β . If the

intersection is only a small portion of the original
subspaces, the regions nearby the boundary may ap-
pear to be “locking” as some deformations are filtered
by the neighboring subspace. Time-varying subspace
construction [32] may alleviate such an effect but does
not guarantee eliminating it. In order to have a natural
deformation across the interface, the subspaces at the
domains should be compatible at the interface DOFs.
That is, any subspace interface displacements of α can
also be represented within the subspace at β. Another
problem of using Eq. 15 lies in the fact that the number
of boundary constraints depends on the number of the
domain’s boundary DOFs. For a host mesh of large
scale, a high dimensional boundary constraint could
easily turn the system into an over-constrained one.

In our framework, each interface is clearly asso-
ciated with a subset of boundary modes and the
displacement of the interface is only determined by
the corresponding reduced coordinates. Suppose do-
main d0 neighbors to k domains (d1, d2, ... dk, k ≥ 1)
at interfaces B1,B2, ...Bk, the boundary constraint for
inter-domain coupling can be directly enforced at the
reduced domain coordinates that correspond to the
interfaces for each pair of neighbor domains:


[qB1 ]

d0 − [qB1 ]
d1 = 0

[qB2 ]
d0 − [qB2 ]

d2 = 0
...

[qBk
]d0 − [qBk

]dk = 0

, (16)

where the notation like [qB1
]d0 stands for the subset

of the reduced displacement at domain d0 that corre-
sponds to interface B1.

4.3 Large Scale Deformation
The linear elasticity based model reduction described
above is not able to simulate large deformations.
This is because 1) the Cauchy’s strain tensor used is
a linear strain tensor which generates inappropriate
strain under rotations; and 2) the linear combination
of the modes is not able to represent the intermediate
rotational displacement. As a result, the rotational
deformation must be specially handled. We adopt a
node-wise corotational formulation with model reduc-
tion as in [4].

The curl of the linear deformation field is used to
approximate the local rotation at each node. For finite
elements with a linear shape function, it can be pre-
computed with the subspace modes. At each time
step, we assemble a block-diagonal warping matrix R̃.
Each 3× 3 diagonal block of R̃ represents the current
nodal warping. We refer the reader to the literature [4]
for a detailed derivation of R̃. Because of the domain
decomposition, interface nodes are duplicated at the
neighbor domains. This means that the number of
rows of the global mode matrix Φ is larger than the
number of DOFs on the host mesh. Accordingly, we
assemble an auxiliary elementary matrix E, such that
the rows of Φ corresponding to the duplicated bound-
ary nodes are picked only once. This operation implies
that the computation of the curl at the interface node
takes all the neighbor domains into account, which
ensures the smoothness of the warped deformation
ũ:

ũ = R̃EΦq. (17)

E is fixed when the domain decomposition is done
and the product of EΦ can be pre-computed. The
update of nodal displacements is “local” as modes
from other domains do not contribute to the final
displacement of the node3. Accordingly, in real im-
plementation, only local matrix-vector products are
necessary to compute the displacement of the nodes.

5 DIRECT MANIPULATION

Manipulation of deformable objects is important for
user interactivity and animation production. Our sys-
tem enables the user to manipulate the deformable
object through applying constraints to the nodes or
the interfaces.

If a node p is constrained to a specified position.
The corresponding position constraint equation is:
R̃pΦpq = c, where R̃p and Φp represent the warping
matrix and three-row mode matrix at the constrained
node. c is the desired node position. R̃p is a time

3. Each three-row block in the global mode matrix (Φ) that
corresponds to a node on the FE mesh is sparse (as shown in Fig. 5).
If it is an internal node, the block has nonzeros at the columns
corresponding to the domain that owns this node. If it is a boundary
node, the block has nonzeros at the columns corresponding to its
neighbor domains. In either case, the update only needs the reduced
coordinates of related domains instead of the entire global q.
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Fig. 6. Enforcing anchor nodes on the left end of the
bar model using the Lagrange multiplier method: we
can clearly see the locking region without using PC
modes. Both bars are simulated with 100 modes in
total.

varying matrix and we use the warping matrix in the
previous time step to approximate the current warp-
ing matrix. Therefore, a linear constraint equation can
be used:

Φpq− R̃−1p c = 0. (18)

For subspace dynamics, the system could become
over-constrained if multiple nodes are constrained by
the user for interactive manipulation as each con-
strained node consumes 3 DOFs from the system.
Therefore, a mechanism is needed to prevent the
system from being over-constrained while keeping the
system size small. In addition, subspace displacement
may not be able to represent all the user-specified
positions of the nodes, which could also lead to the
locking problem.

In order to solve this issue, we design a new type
of mode called the position constraint (PC) mode. The
desired PC mode should be 1) linearly independent to
the existing modes included at the domain and 2) able
to represent any displacements for the constrained
nodes. The latter requirement ensures the compensat-
ing PC modes alone are able to fulfill the constraints
so that other existing modes do not need to sacrifice
their own freedom. We denote the constrained DOFs
with set C. Any DOFs in I, if chosen in C are removed
from I. Imposing a unit displacement to each DOF in
C while keeping the remaining DOFs in C as well as
the ones in B fixed yields: KII KIC KIB

KCI KCC KCB
KBI KBC KBB

 ΦPC
I

IPCC
0

 =

 0
FPCC
FPCB

 , (19)

and PC modes ΦPC can be computed through:

ΦPC =

 ΦPC
I

IPCC
0

 =

 −K−1IIKIC
IPCC
0

 , (20)

where IPCC is the identity matrix standing for the unit
displacement added at C. The PC modes maintain
the size of the subspace by introducing compensating
modes to the system to preclude the system’s DOFs
from being “drained out” by the user constraints. It

effectively resolves the locking problem induced by
the position-constrained nodes (Fig. 6).

Our framework also supports direct manipulation
of the interface by specifying its orientation. Such kind
of manipulation enables the user to adjust the relative
orientation among domains with deformation. Let R
be the user specified rotation for a boundary Bi and
its axis-angle representation is (a, θ). p denotes the
relative position of an interface node p with respect
to the rotation pivot (e.g., the interface centroid). The
corresponding reduced coordinate qrotBi

∈ R3×1 on
the three tangential rotational modes is qrotBi

= θa
and the unwarped displacement is u = Φrot

p qrotBi
=

θ[a]×p, where [a]× is the skew-symmetric matrix of a.
With Rodrigues’s formulation, the desired displacement
(Rp− p) and the warped displacement (R̃pu) can be
written as:

Rp− p = ([a]2× + sin(θ)[a]× − cos(θ)[a]2×)p, (21)

and

R̃pu = (I + [a]2× + [a]×
1−cos(θ)

θ − [a]2×
sin(θ)
θ )u

= ([a]2× − cos(θ)[a]2× − sin(θ)[a]3×)p ,
(22)

respectively. Note that [a]× = −[a]3× holds for skew-
symmetric matrix [a]×. Therefore, the left hand sides
of Eq. 21 and Eq. 22 are essentially equivalent to each
other such as:

Rp− p = R̃pΦ
rot
p qrotBi

. (23)

This means that, for the rotation R with axis-angle
representation as (a, θ), as long as qrotBi

= θa, we can
always have the desired rotational displacement with
warping. Hence, the corresponding interface orienta-
tion constraint simply becomes:

qrotBi
= θa. (24)

All the constraints including boundary constraint
(Eq. 16), position constraint (Eq. 18) and interface
constraint (Eq. 24) are imposed through Lagrange
multiplier method. The constraint equations form a
constraint matrix, which is a constant if the con-
strained DOFs are not changed during the simula-
tion. Using Newmark integration, the reduced Euler-
Largange equations of all the domains can also be
converted to a linear system which is solved at each
time step based on the imposed constraint [42].

6 EXPERIMENT RESULTS

Accuracy analysis We first show a comparative ex-
periment of simulating a bar model which is dropping
under gravity (−9.8 m/s2) with one end fixed. As
shown in Fig. 7(a), from right to left the simulators
used are nonlinear full space (single domain StVK,
the ground truth), nonlinear single domain subspace
integration with modal derivative [31], deformation
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(a)

(b)

Fig. 7. Comparative simulation among various simula-
tors.

substructuring [2] (nonlinear multi-domain simula-
tor), modal warping [4] (single domain, linear simu-
lator with deformation warping) and our framework
with and without soft boundary modes. The model is
evenly divided into three domains for multi-domain
simulators. All the simulators use the same material
parameters (e.g., Young’s Modulus and Poisson’s Ra-
tio). In order to ensure the accuracy of the nonlinear
simulator, we did not limit the maximum iteration
number at each time step, and the threshold is set as
1e−6. The mass and stiffness damping coefficients are
set as 0.5 and 0.08 respectively. The time step interval
is 0.01 sec and the average implicit Newmark time
integration [43] is used for all simulators. The average
vertical displacements of vertices at the free end of the
model are recorded and shown in Fig. 7(b). All the
subspace simulators have the same number of bases
(55 bases). The relative L2 error for each simulator
w.r.t. ground truth is 7.36% for modal derivative,
13.21% for modal warping, 13.04% for substructuring
(the displacements from duplicated boundary DOFs
are averaged), and 10.35% and 8.45% for our method
(without and with soft boundary modes). Inducing
interface flexibility to the system with soft boundary
modes increases the accuracy of the simulation.
Coupling comparison With corotational displace-
ment correction, we can produce a similar deforma-
tion to other state-of-art nonlinear methods. One ad-
vantage of our method is that the multiplier-enforced
coupling always guarantees a seamless domain con-
nection while the boundary-driven subspace avoid-

s the locking and over-constraint problem. Fig. 8
illustrates the coupling effect using our algorithm
and the penalty force based method [1]. The elbow
joint of the arm is a one DOF joint and rotating
with angular velocity 0.2 rad/sec. Both quasi-static
nonlinear modes and modal derivatives are used for
nonlinear subspace bases. The cracks at the elbow
vanish when increasing the number of modes to 40.
The simulation time step has to be limited to small
values (e.g., 0.01 sec) because of the usage of highly
stiff springs. On the other hand, our method excels
with the larger time step (0.3 sec) and smaller size of
subspace without any cracks or stability issue. p

Another comparison is with deformation substruc-
turing using rigid interface fitting [2] (Fig. 9). In this
comparison, the tyrannosaurus model is decomposed
into 17 domains and the rank for each domain is 30
(modal derivatives for substructuring and rigid/soft
boundary modes for our method). We notice that
near-rigid fitting used in substructuring [2] could
also induce cracks at the domain interfaces as the
deformation and interface region goes large imme-
diately after the simulation. Post-simulation process-
ing with interface blending is able to relieve this
artifact [2]. With soft boundary modes, our method
avoids this problem and does not need any extra post-
simulation amendments. More importantly, simple
blending could still introduce artifacts of discontinuity
as shown in Fig. 2 which requires more advanced
geometrical blending at post-simulation stage in each
time step.

Our method is essentially using linear elasticity and
the system matrix is constant during the simulation.
The runtime performance is faster than nonlinear
simulators: in the first comparison shown in Fig. 8,
the overall frame per second (FPS) is 172 using our
method and 89 using implicit springs [1]; in the
second comparison as in Fig. 9, our overall FPS is
34 compared to 18 using substructuring [2]. In the
implementation of [2], we perform three Newton-
Raphson iterations at each time step. If we reduce this
number to one, the FPS for the tyrannosaurus model
increases to 28 with higher residual error.
Simulation with manipulation Large deformations
are well handled in our framework. Fig. 11 shows a
sunflower model with 47, 164 elements and 13 do-
mains. We apply external forces at the top of the
flower. Large deformations are generated at the stalk
and the leaves have relatively smaller local vibrational
deformations. Unlike deformation substructuring [2],
our framework does not rely on hierarchical domain
decomposition. Deformable objects with looped do-
main connection can be simulated with our method
naturally. Fig. 10 shows the result of simulating a
sailboat model with seven loops and 253,998 elements.
We apply scripted forces at the masts and the body
of the boat. Inertia modes of order two are assigned
to the canvases to have enriched local deformation
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Fig. 8. Coupling comparison between our method and nonlinear multi-domain with penalty method [1].

Fig. 9. Coupling comparison between our method and deformation substructuring using rigid interface fitting [2].

effects with the applied wind field. Domain loop can
also be handled with spring coupling [1]. However,
for looped multi-domain deformation using substruc-
turing [2], using implicit penalty force between do-
mains could break the sequential simulation order of
domains and bring more complexity to the system.

Supporting manipulations is straightforward with
constraints in our framework. In Fig. 12, the fish mod-
el consists of 111, 196 elements and ten domains. It is
manipulated by the user in real-time. One constrained
node is used to control the body motion of the fish,
while the orientations of the interfaces connecting the
rear fin and fish head are also manipulated. In our
implementation, a damped constraint equation [44] is
used in order to avoid sharp impulse-like constraint
forces and increase the stability of the system.

Performance Detailed time performances can be
found in Tab. 2. Our system is implemented with a
Windows 7 PC equipped with a 2.26GHz Intel Xeon
CPU (only a single core is used for simulation) and
12GB RAM. Because the domains are coupled with
hard constraints, we must solve the system entirely
(similar to coupling with implicit penalty forces as

Fig. 11. Simulation of a sunflower model with large
deformation.

in [1]) instead of sequentially solving each domain
individually [2]. However, linear elasticity with a con-
stant system matrix needs only to be pre-conditioned
once before simulation, and solving the system is not
the bottleneck of the framework. For example in our
sailboat model, solving the pre-factorized linear sys-
tem takes less than 1ms which is only 5% computation
time of one time step. The global mode matrix Φ has a
block-diagonal structure and the run-time nodal dis-
placement updates (e.g., using Eq. 17 to compute the
nodal displacement on the mesh) are actually “local”
as it only depends on the number of modes in the do-
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Fig. 10. Simulation of a sailboat model with 253,998 elements, 24 domains and seven loops (highlighted with
red circles) in real-time (21 FPS). The total number of modes used is 830. The domains corresponding to the
masts and the body of the boat have stiffer material while the canvases have softer material. We applied scripted
forces at the masts and the body of the boat and the wind force field at the canvases (shown as arrows in the
figure).

Model statistics Domains Precomputation Runtime Performance
Model

# elements # vertices # r # domains boundary inertia conditioning system disp. FPS

Sunflower 47, 164 12, 659 260 13 3.46 s 0.3 s 0.03 s 0.06 ms 8 ms 67

Fish 111, 196 27, 075 340 10 11.76 s 6.3 s 0.03 s 0.08 ms 18 ms 41

Tyrannosaurus 121, 976 32, 009 510 17 15.3 s 9.4 s 0.14 s 0.14 ms 25 ms 34

Sailboat 253, 998 48, 998 830 24 43.5 s 6.2 s 0.17 s 0.6 ms 30 ms 21

TABLE 2
Time performance. # r : total number of modes; boundary : pre-computation time for boundary modes (rigid and
soft ones); inertia: pre-computation time for inertia modes; conditioning: time for preconditioning linear system;
system: time for solving reduced linear system at each time step; disp: time for computing displacement from

reduced coordinates; FPS: overall frame per second.

Fig. 12. Interactive manipulation on the fish model.

main rather than the global subspace size. Hence our
framework is on average d times faster than modal
warping [4] where d is the number of domains. In
terms of pre-computation, our method is significantly
faster than global subspace method which generally
requires solving a very large eigen problem. It could
take up to several hours and consume considerable
amount of memory, while local subspace bases pre-

computation is orders of magnitude faster and can be
finished within seconds. In the table, we record the
pre-computation time for “fresh” computation of each
type of mode including calculating the inverse the
internal stiffness matrix (KII), which is the most time-
consuming part in the mode computation. In fact, this
only needs to be done once for each domain (if inertia
modes are used). As a result we can pre-factorize KII
before mode computation and the pre-computation
for domain modes can be further shortened.

7 CONCLUSION

We have developed a seamless coupling method for
multi-domain subspace deformation in the framework
of node-wise corotational elasticity. With boundary-
aware mode construction method, the boundary cou-
pling constraints can be directly imposed on the
reduced coordinates, efficiently avoiding the over-
constraining problem. Our algorithm can achieve real-
time simulation performance for large-scale meshes
and can support direct manipulation of deformable
objects.
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Limitation When there are many boundary interfaces
in the domain decomposition, the number of bound-
ary deformation modes can be large. This leads to
linear growth in the required number of multipliers
and accordingly the dimension of the system matrix.
It can be handled by separating the variables in the
linear constraint equations into independent and de-
pendent variables, and constructing the system matrix
only using the independent variables to avoid explicit
use of Lagrange multipliers. Node-wise corotational
formulation produces ghost forces if the domains are
unconstrained when local displacement at each node
is warped. Fortunately, such effect is not seen in our
experiment because constraints always exist in the
framework (e.g., interface constraints or position con-
straints). The hard constraints suppress such artifact
and the results are physically plausible.

In subspace deformation techniques, the time for
system resolving is small. We found that the displace-
ment warping step, i.e. the estimation of rotation at
each node, costs more than 50% of the time in one
simulation step. We plan to reduce the time through
adaptive rotation estimation. It can be done by only
estimating the rotations of sparsely sampled nodes
and checking whether the rotations can be directly
used at the remaining nodes.

Unconstrained deformable object is only partially
supported with this framework. Because of the linear
elasticity used, the underlying rigid body motions
of the domains are only the first order approxima-
tion of the real rigid body dynamics. Fortunately,
modal warping is able to correct the distorted rotation.
Another method is following the similar strategy as
in [31], [45] to explicitly couple the rigid body motion
and the deformation of the domains.
Future work An interesting research direction is
to investigate a way to apply the boundary-driven
mode construction method to the coupling of multi-
domain subspace deformations using nonlinear StVK
deformable model in the spirit of modal derivative
framework. It is possible to construct a first or higher
order approximation of the change of boundary de-
formation modes using Eq. 1.

We also plan to investigate a parallel multi-domain
subspace deformation algorithms. This calls for cou-
pling constraints to be handled in each domain sepa-
rately. Another interesting research direction is to ap-
ply the multi-domain subspace deformation technique
to other application areas, such as fabrication-aware
design, to provide fast simulation results when the
user edits the geometry model.
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topology and elasticity for embedded deformable models,” in
SIGGRAPH ’09, pp. 1–9.

[16] P. Kaufmann, S. Martin, M. Botsch, and M. Gross, “Flexible
simulation of deformable models using discontinuous galerkin
fem,” Graph. Models, vol. 71, no. 4, pp. 153–167, Jul. 2009.

[17] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler,
“Stable real-time deformations,” in Symposium on Computer
animation, 2002, pp. 49–54.

[18] M. Müller and M. Gross, “Interactive virtual materials,” in
Proc. of Graphics Interface ’04, 2004, pp. 239–246.

[19] O. Etzmuss, M. Keckeisen, and W. Strasser, “A fast finite
element solution for cloth modelling,” in Computer Graphics
and Applications, 2003. Proceedings. 11th Pacific Conference on,
oct. 2003, pp. 244 – 251.

[20] Y. Zhu, E. Sifakis, J. Teran, and A. Brandt, “An efficient
multigrid method for the simulation of high-resolution elastic
solids,” ACM Trans. Graph., vol. 29, no. 2, pp. 16:1–16:18, Apr.
2010.

[21] S. Martin, P. Kaufmann, M. Botsch, E. Grinspun, and M. Gross,
“Unified simulation of elastic rods, shells, and solids,” SIG-
GRAPH, vol. 29, no. 4.
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