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(a) 1 spp in 5D. (b) 64 spp in 5D, (c) Refocused (a). (d) Refocused (b). (e) 1 spp in 2D. (f) Reference.
drop to 1 spp in 2D.

Figure 1: Comparison of temporal light field reconstruction [Lehtinen et al. 2011] with different schemes for low discrepancy sampling.
The samples in (a) have blue-noise properties in 5D light field space, and the properties are greatly diminished in 2D image space. The
samples in (b) and (e) maintain blue-noise properties in 2D image space, which greatly enhances the rendering quality. The quality of refocus
rendering in (c) and (d) is consistent to the blue-noise properties in 2D image space. Please refer to Section 4.4 for a detailed description.

Abstract

Line segment sampling has recently been adopted in many render-
ing algorithms for better handling of a wide range of effects such
as motion blur, defocus blur and scattering media. A question nat-
urally raised is how to generate line segment samples with good
properties that can effectively reduce variance and aliasing artifacts
observed in the rendering results. This paper studies this problem
and presents a frequency analysis of line segment sampling. The
analysis shows that the frequency content of a line segment sample
is equivalent to the weighted frequency content of a point sample.
The weight introduces anisotropy that smoothly changes among
point samples, line segment samples and line samples according
to the lengths of the samples. Line segment sampling thus makes
it possible to achieve a balance between noise (point sampling) and
aliasing (line sampling) under the same sampling rate. Based on the
analysis, we propose a line segment sampling scheme to preserve
blue-noise properties of samples which can significantly reduce
noise and aliasing artifacts in reconstruction results. We demon-
strate that our sampling scheme improves the quality of depth-of-
field rendering, motion blur rendering, and temporal light field re-
construction.
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1 Introduction

Recently, line segment sampling has demonstrated substantially
higher efficiency than point sampling in terms of both storage
and computation in many rendering applications, such as motion
blur [Gribel et al. 2011], depth of field [Tzeng et al. 2012] and
scattering media [Sun et al. 2010; Novák et al. 2012b]. A line
segment samples a function continuously at an infinite number of
points along the line segment. Evaluation within the range of the
sample can be analytically or semi-analytically performed, as each
point along the line is naturally parameterized. Although the com-
putational cost of a line segment sample is often more expensive
than that of a point sample, the sampling rate of line segments can
be much lower because the evaluation result of a line segment sam-
ple is equivalent to that of numerous discretized point samples.

A question consequently raised is how to generate line segment
samples with good properties. The research on sampling [Cook
1986] has proven that samples with blue-noise properties perform
excellently in applications because of their low discrepancy and
randomness. The low discrepancy reduces variance while the ran-
domness removes aliasing. Although many algorithms have been
proposed over the past twenty years for generating blue-noise point
samples, to our knowledge there does not exist much work on anal-
ysis and sampling schemes for line segment samples. Simple uni-
form sampling, random sampling or specific sampling schemes ex-
tended from previous point sampling methods have been tried in
existing works, which sometimes work well but sometimes not.
It is thus necessary and important to perform an analysis on the
properties of line segment samples and design appropriate sampling
schemes based on the analysis.

This paper conducts a frequency analysis of line segment sampling.
One important conclusion from this analysis is that the frequency
content of a line segment sample is equivalent to the weighted fre-
quency content of a point sample. The weight introduces anisotropy
that smoothly changes among point samples, line segment samples
and line samples according to the lengths of the samples. Line seg-
ment sampling thus makes it possible to achieve a balance between
noise (point sampling) and aliasing (line sampling) under the same
sampling rate. These conclusions are drawn in the 2D space, but
can be generalized to high dimensional spaces and samples of arbi-
trary non-point shapes.
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Based on the frequency analysis, we propose a line segment sam-
pling scheme that best preserves the blue-noise properties of sam-
ples and minimizes anisotropy. We experiment with the sampling
scheme in several applications, namely image reconstruction, mo-
tion blur rendering, depth of field rendering, and temporal light field
reconstruction. The line segment samples generated by our scheme
perform better with much less variance and aliasing than other sam-
pling schemes such as uniform sampling, random sampling or some
straightforward extensions of blue-noise point sampling.

In the rest of the paper, we first review some related work. In Sec-
tion 3, we present the frequency analysis and sampling schemes for
line segments, including line sampling in Section 3.1, line segment
sampling in Section 3.2, line segment jittering in Section 3.3, and
extensions to high dimensional spaces in Section 3.4 and other non-
point samples with arbitrary shapes in Section 3.5. We demonstrate
applications of our sampling method in Section 4 and conclude the
paper in Section 5.

2 Related Work

Blue-noise properties of Poisson disk sampling are critical to
a wide range of computer graphics applications including texture
mapping [Lagae and Dutré 2005], geometry processing [Nehab
and Shilane 2004; Öztireli et al. 2010] and photorealistic render-
ing [Jensen and Buhler 2002; Cheslack-Postava et al. 2008]. The
importance of sampling with blue-noise properties was highlighted
in the pioneering work of Lloyd [1983] and Cook [1986], who also
introduced the classic schemes of relaxation and dart throwing for
Poisson disk sampling. Following the same idea of Poisson disk
sampling that each sample should be away from its closest neigh-
bor as much as possible while maintaining a constant sampling rate,
many works have focused on efficient blue-noise sampling on the
fly [Dunbar and Humphreys 2006; Bridson 2007], or via precom-
putation [Cohen et al. 2003; Ostromoukhov et al. 2004; Lagae and
Dutré 2005; Kopf et al. 2006; Ostromoukhov 2007], spatial hierar-
chies [Mitchell 1987; McCool and Fiume 1992; White et al. 2007]
and parallelism [Wei 2008; Bowers et al. 2010; Ebeida et al. 2011;
Ebeida et al. 2012]. We refer readers to the excellent survey by La-
gae and Dutre [2008]. There are various directions of research
related to blue-noise point sampling, including adaptive sampling
schemes and anisotropic reconstruction [Hachisuka et al. 2008],
and statistical mechanics to enhance blue noise spectral properties
[Fattal 2011]. Blue-noise point sampling can be generalized to a
manifold with arbitrary dimensions [Öztireli et al. 2010].

Anisotropic blue-noise sampling is also useful in many applica-
tions such as importance sampling [Ostromoukhov et al. 2004],
stippling [Balzer et al. 2009] and half-toning [Pang et al. 2008].
The algorithm introduced by Li et al. [2010] can introduce orien-
tation and even place non-point shapes at sampled positions to en-
rich visual effects, but the samples are still evaluated by points,
which is fundamentally different from our line segment sampling.
Another form of heterogeneous blue-noise sampling is multi-class
blue-noise sampling [Wei 2010]. The samples are divided into a
number of classes, and each class of samples is blue-noise sampled
while their union also has blue-noise properties.

The blue-noise properties of point samples are often achieved by
preventing any pair of points from being placed too closely together.
Extending this to continuous samples like line segments is diffi-
cult because every point on a continuous line segment is counted.
Our work is inspired by the quantitative analysis of Poisson disk
sampling [Wei and Wang 2011; Zhou et al. 2012], whose explicit
and analytic frequency formulation opens the door to analyzing the
blue-noise properties of continuous samples. The concurrent work
by Öztireli and Gross [2012] analyzes blue-noise properties based
on pair correlations to incorporate an arbitrary metric space.

Line segment sampling is considered to have advantages in anti-
aliasing due to the analytical evaluation along its direction [Jones
and Perry 2000]. Recently, it has been incorporated into stochas-
tic rasterization [Akenine-Möller et al. 2007], which leads to high
quality and high performance in motion blur rendering [Gribel et al.
2010; Gribel et al. 2011] with the accompanying semi-analytical
visibility test. The rendering of defocus blur also benefits from
a similar idea by placing line samples on the camera lens [Tzeng
et al. 2012]. Global illumination rendering and volumetric scat-
tering rendering are notorious for their computational expense. To
address this issue, Havran et al. [2005] introduced line segments to
sample the lighting. Later, Jarosz et al. [2008] used line segment
samples to represent viewing rays. In recent years, many effi-
cient rendering algorithms have benefited from line segments for
sampling both lighting and viewing rays [Sun et al. 2010; Jarosz
et al. 2011a; Jarosz et al. 2011b; Novák et al. 2012b; Novák et al.
2012a]. Researchers have also begun to use line samples for hair
rendering because of their efficiency in the computationally inten-
sive and highly detailed visibility test [Barringer et al. 2012]. In
these algorithms, the computational cost of a single line segment
sample is usually much greater than that for a point sample. But
its evaluation result is equivalent to that of numerous discretized
point samples, which is why line segment sampling has significant
advantages over point sampling in general.

Frequency analysis of light transport has yielded much insight
on how to control sampling rates adaptively for rendering [Durand
et al. 2005; Ramamoorthi et al. 2007; Soler et al. 2009]. Another
interesting result from frequency analysis is to perform sheared re-
construction from high dimensional samples with a sheared filter
instead of isotropic filters, and this has proven to be very efficient
for rendering distribution effects such as motion blur and depth of
field [Egan et al. 2009; Lehtinen et al. 2011; Egan et al. 2011;
Mehta et al. 2012]. However, it is not clear what is a good sam-
pling scheme for sheared reconstruction as previous sampling algo-
rithms are built on the assumption that the reconstruction kernel is
isotropic. Our analysis shows that sheared reconstruction of point
samples is equivalent to the traditional isotropic reconstruction of
samples with non-point shapes and thus solves the sampling prob-
lem of sheared reconstruction from another perspective.

3 Line Segment Sampling

Our goal is to generate line segment samples with blue-noise prop-
erties. This means that the low frequency content of the samples
should be near zero while the high frequency content should be like
white noise. In this section, we first analyze the frequency content
of line samples and line segment samples in 2D space. Then we ex-
tend the analysis to high dimensional spaces and non-point samples
with arbitrary shapes.

To evaluate different sampling schemes, we use image reconstruc-
tion as an example application. The benchmark image is shown
in Fig. 2 (d) accompanied by the reconstruction results of different
point sampling schemes. Some preliminaries of blue-noise prop-
erties are introduced in the appendix and in Fig. 2. We would like
to generate line segment samples with frequency content similar to
Fig. 2 (c) but without the limitations of uniform sampling in Fig. 2
(a) and random sampling in Fig. 2 (b). All images in this paper are
of resolution 512× 512 unless mentioned otherwise.

3.1 Line Samples of Infinite Length

We first consider line samples of infinite length, which is a spe-
cial case of line segment samples. A line sample traverses the
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(a) Uniform sampling. (b) Random sampling.
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(c) Blue-noise sampling. (d) Reference.

Figure 2: Point sampling and reconstruction. For subfigures (a)
(b) (c): top-left is the samples, top-right is the frequency content,
bottom-left is the power spectrum and anisotropy in blue and red
respectively, and bottom-right is the reconstructed image.

whole domain instead of just a single point, producing very differ-
ent frequency content from a point sample. In the following, we
will describe the frequency content of a single line sample.

Given a line in 2D space, each point x = (x, y)T in it satisfies

LP,Q,R (x) = {x |Px+Qy +R = 0} . (1)

Without loss of generality, we assume that the coefficients are nor-
malized, i.e., P 2 + Q2 = 1. The direction of the line is d

‖
P,Q =

(−Q,P ) and its perpendicular direction is d
⊥
P,Q = (P,Q). R is

the signed distance from the origin to the line.

A line sample can be represented as a line impulse:

δP,Q,R (x) = δ (Px+Qy +R) = δ
(

d
⊥
P,Q · x+R

)

, (2)

with δ denoting the impulse function. It can easily be derived that
the frequency content of Eq. (2) is

F (δP,Q,R (x)) = e2πiR(d⊥
P,Q·ω)δ−Q,P,0 (ω)

= e2πiRω⊥

δ
(

ω‖
)

, (3)

where F represents the Fourier transform operator, ω = (ωx, ωy)
T

represents the frequency domain, ω⊥ = d
⊥
P,Qω and ω‖ = d

‖
P,Qω.

A line is a union of all points the line covers. So Eq. (3) is deter-
mined by the integral of point samples along the line. As shown
in Eq. (3), the frequency content of a line sample is the product of

two parts. The form of the first part, e2πiRω⊥

, is very similar to the
frequency content of a point sample (Eq. (27)). The second part,

δ
(

ω‖
)

, results from the line (Eq. (1)) and determines the magni-

tude of the spectrum throughout the frequency domain.

Frequency content of line impulses. Because of the line im-

pulse δ
(

ω‖
)

in Eq. (3), the frequency content of a line sample

in the spatial domain also lies on a line in the frequency domain,
perpendicular to the original line (Eq. (1)) and passing through the
origin. So in the frequency domain, line samples with different di-
rections can only meet at the origin, while parallel line samples will
accumulate on the same line impulse. In other words, the frequency
content at any point ω (except the origin) is only determined by line
samples with the same direction d

‖
P,Q that satisfies ω‖ = 0.

According to Eq. (3), a line sample’s frequency value along the line
impulse δ−Q,P,0 (ω) is a Fourier basis function with parameter ω⊥

and frequency R. According to the frequency analysis for 1D point
sampling in the appendix1, we can draw the conclusion that the
frequency content of parallel line samples is equivalent to that of
point samples in the 1D space with parameter ω⊥, and the position
of a point sample is given by −R.

Consequently, the frequency properties of parallel line samples are
determined by the distribution of −R only. If −R is sampled uni-
formly, there are periodic impulses along δ−Q,P,0 (ω), producing
aliasing artifacts as in Fig. 3 (a). The randomly sampled −R gen-
erates white noise and large variations in reconstruction as shown
in Fig. 3 (b). To achieve blue-noise properties along the line im-
pulse δ−Q,P,0 (ω), we need to generate the distribution of −R as
1D Poisson disk samples as shown in Fig. 3 (c). These observations
are in accord with common knowledge about point sampling.

Anisotropy. A problem with line sampling is its strong
anisotropy. The frequency content of parallel line samples lies on
a single line impulse. The low frequency noise in the reconstruc-
tion also lies on the same line impulse and remains zero everywhere
away from the line, which results in angular aliasing as shown in the
right image of Fig. 3 (c). The best way to eliminate angular aliasing
is to distribute the low frequency noise along all directions in the
frequency domain, which is unfortunately difficult because a finite
number of line samples cannot continuously cover all directions.
An approximate solution is to sample a few groups of lines, each
of which has a different direction. Then the angular aliasing can be
greatly reduced because the low frequency noise will be distributed
among more than one direction in the power spectrum as shown in
Fig. 3 (f). Sampling of multiple directions can help uniform sam-
pling (Fig. 3 (d)) and random sampling (Fig. 3 (e)) of −R.

Line sampling scheme. We note that a key factor for line sam-
pling with blue-noise properties is perfect directional alignment.
We first sample line directions {Pi, Qi}. For each sampled direc-
tion, we generate a group of parallel line samples. The sampling
rate of each group should be high enough to achieve blue-noise
properties along the corresponding line impulse δ−Qi,Pi,0 (ω).
Within a group of line samples, their direction should be exactly the
same without any jittering or perturbation. Otherwise the frequency
content becomes close to white noise (Fig. 3 (g)). Multiple direc-
tion sampling would also not help in this case (Fig. 3 (h)), since its
frequency properties are similar to randomly sampled lines (Fig. 3
(i)) with very minor improvements.

1The readers can refer to the appendix and the supplementary material
for preliminaries on point sampling, including aliasing artifacts and noise,
and the frequency content of a point sample. Conclusions about Poisson
disk sampling are also presented, such as the minimum distance r (Poisson
disk distance) between two point samples and the corresponding Nyquist
limit νN =

1

r
, the ideal Poisson disk sampling (Eq. (28)) and the resulting

quantitative measurements (Eq. (29)).



(a) Uniform sampling. (b) Random sampling. (c) Blue-noise sampling.

(d) Uniform sampling. (e) Random sampling. (f) Blue-noise sampling.

(g) Blue-noise sampling with jittering. (h) Blue-noise sampling with jittering. (i) Random sampling.

Figure 3: Different line sampling schemes with respect to R. Top row and (g) sample one direction. Middle row and (h) sample eight evenly
distributed directions. (i) randomly sampled directions. For each scheme, 800 samples are used and we show the samples, power spectrum
and reconstructed image from left to right. For blue-noise sampling, we set the Poisson disk radius r to 0.001 and 0.005 for single and
multiple directions, respectively. The sample images show only about 10% of the samples for better visualization.

3.2 Line Segment Samples

A line segment sample is a part of a line sample. So the frequency
content of a line sample introduced in Section 3.1 should be modi-
fied by the position and length of the line segment.

Consider a line segment sample with a center position xc =

(xc, yc)
T and finite length l:

δP,Q,R,xc,l (x) = δP,Q,R (x)H

(

l

2
−
∣

∣

∣
d
‖
P,Q (x− xc)

∣

∣

∣

)

(4)

where H is the Heaviside step function. The corresponding fre-
quency content of Eq. (4) exists throughout the frequency domain
and is not an impulse. It can be thought of as the weighted fre-
quency content of point samples according to Eq. (27):

F (δP,Q,R,xc,l (x)) = F (δ (x− xc))w
(

l, ω‖
)

w
(

l, ω‖
)

= l sinc
(

lω‖
)

(5)

where sinc(x) = sin(πx)/(πx).

Similar to Eq. (3), there are two parts of Eq. (5). The first part,
F (δ (x− xc)) , is exactly the frequency content of a point sam-

ple. The key difference comes from the second part , w
(

l, ω‖
)

,

which is not an impulse anymore. And the length of the line seg-
ment also determines the frequency content. Consequently, the fre-
quency content of a line segment sample is more complex than a
line sample.

Weighted frequency content of point samples. According to
Eq. (5), the magnitude of the frequency content of line segment

samples is mainly affected by the weight w
(

l, ω‖
)

, which is in-

variant along the direction d
⊥
P,Q. The weight is of largest magni-

tude on the line L−Q,P,0 (ω) and decreases from l to 0 with an
increasing distance from the line (i.e., |ω‖|).
Note that the weight varies throughout the frequency domain, but
with more than 90% of the power concentrated within the range

|ω‖| < 1

l
. Thus the line segment sample’s frequency content

mainly lies within a band. The position and direction of the band is
the same as that of the line sample (Eq. (3)). The difference is that
the band has a non-zero width of 2

l
.

Within the frequency band, the variation of frequency content along
the direction d

⊥
P,Q is mainly determined by the center positions xc

of line segment samples. Given a group of parallel line segment
samples with the same length l, the distribution of sample centers
xc determines the frequency properties within the frequency band
according to Eq. (5). Without exception, uniform sampling (Fig. 4
(a)) and random sampling (Fig. 4 (b)) of xc show impulses and
white noise in the frequency content respectively, and produce ob-
vious aliasing and noise in the reconstructions. If the center posi-
tion xc is a Poisson disk sampled according to Eq. (28), the power

spectrum is the 2D version of Eq. (29) with a weight of w
(

l, ω‖
)

,

which has blue-noise properties on the band along d⊥P,Q (Fig. 4 (c)).

The width of the frequency band is determined by the line segment
length l, which controls not only the value range but also the level
of anisotropy. For a small segment length l, the weight changes
smoothly as shown in Fig. 4 (h), while a large l leads to sharp falloff
as shown in Fig. 4 (g). We can see the different levels of aliasing
and noise in the reconstructions in the right images of Fig. 4 (g)(h).

Relationships among point, line and line segment sampling.

The frequency content of point samples, line samples and line seg-
ment samples are different only in the magnitude and anisotropy

of the weight w
(

l, ω‖
)

, which is determined by the directions and

lengths of samples (Eq. (5)). A line sample is a special case of
a line segment sample with infinite length. Intuitively, increasing
l leads to steeper variation and a higher peak value in the weight

ω
(

l, ω‖
)

, and the band becomes narrowed and converges to a line

impulse. Formally, the weak limit of the weight is the line impulse
for an infinitely large length l. The frequency content on the line
impulse is also consistent with the line sample:

lim
l→∞

w
(

l, ω‖
)

= δ−Q,P,0 (ω) = δ
(

ω‖
)

(6)

ωxc = −Rω⊥,ω ∈ L−Q,P,0 (ω) . (7)
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(a) Uniform sampling. (b) Random sampling. (c) Blue-noise sampling.
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(d) Uniform sampling. (e) Random sampling. (f) M-C blue-noise sampling.

0 50 100 150 200 250
0

1

2

3

4

5

x 10
−3

|ω|

p
o
w
e
r

0 50 100 150 200 250
−10

0

10

20

30

40

50

|ω|

a
n
is
o
tr
o
p
y

0 50 100 150 200 250
0

1

2

3

4

5

x 10
−3

|ω|

p
o
w
e
r

0 50 100 150 200 250
−10

0

10

20

30

40

50

|ω|

a
n
is
o
tr
o
p
y

0 50 100 150 200 250
0

1

2

3

4

5

x 10
−3

|ω|

p
o
w
e
r

0 50 100 150 200 250
−10

0

10

20

30

40

50

|ω|

a
n
is
o
tr
o
p
y

(g) l = 0.3, M-C blue-noise sampling. (h) l = 0.05, M-C blue-noise sampling. (i) Blue-noise sampling w/o M-C scheme.

Figure 4: Different line segment sampling schemes with respect to xc. M-C means multi-class scheme. Top row samples one direction and
the others sample eight evenly distributed directions. Within each group are the samples, Fourier spectrum, reconstruction image, radial
mean of power spectrum and anisotropy. All cases contain about 10000 samples. r is 0.007 and 0.008 for blue-noise sampling with and
without the multi-class scheme. The sample images show about 5% of the samples for better visualization. l = 0.1 unless otherwise noted.

A point sample is also a special case of a line segment sample when

the length l goes to zero. With decreasing l, the weight w
(

l, ω‖
)

is

smoothed from a band toward being flat throughout the whole fre-
quency domain, and the integral of the line impulse also converges
to 0 accordingly. To match the integral of a point impulse (1), we

scale the weight w
(

l, ω‖
)

by 1

l
. The weight then converges to 1:

lim
l→0

1

l
w
(

l, ω‖
)

= 1. (8)

Therefore, the frequency content of a line segment sample lies on
the transition from a point sample to a line sample. Short line seg-
ment samples act like point samples with minor anisotropy while
long line segment samples introduce strong anisotropy similar to
line samples. When comparing blue noise sampling with point
samples (Fig. 2 (d)), line samples (Fig. 3 (f)) and line segment sam-
ples (Fig. 4 (f)), we can see that point sampling is aliasing-free but
with more noise than line sampling, which exhibits angular alias-
ing. Line segment samples show effects that are in between them.

Multi-class blue-noise sampling among different directions.

Similar to line samples, the limited number of directions of line
segment samples in the frequency domain also introduces angular
aliasing, which can be similarly alleviated by using multiple groups
of line segment samples with different directions as shown in Fig. 4
(f). The same multiple-direction scheme can be applied to uniform
sampling (Fig. 4 (b)) and random sampling (Fig. 4 (d)).

An important difference between line sampling and line segment
sampling is that the segment centers xc in groups with different
directions should be multi-class blue-noise sampled [Wei 2010].

The multi-class scheme can keep the blue-noise properties for ev-
ery group and their union. This is because the overlapping parts
of line segment samples from different groups cover non-zero ar-
eas besides the origin in the frequency domain. The independently
generated blue-noise samples from different groups will cause sig-
nificant offsets toward white noise in the low frequency area around
the origin (Fig. 4 (i)). The Poisson disk distance r of the union can
be different from the value of individual groups. The reported r in
this paper is for the union of all groups. Within a group, the Poisson
disk distance is scaled to r

√
nc, where nc is the number of groups.

The scaling factor of
√
nc can be changed to a different factor by

the user [Wei 2010].

Line segment sampling scheme. The line segment samples are
generated in a way similar to line samples. The first step is to sam-
ple directions. Then a set of line segment samples are generated for
each direction to achieve blue-noise properties within the frequency
bands. The difference is that we should perform Poisson disk sam-
pling on the centers of line segment samples xc instead of on −R.
Furthermore, the multi-class scheme is required to maintain blue-
noise properties in the low frequency area around the origin.

As the frequency bands of line segment samples with different di-
rections cover non-zero areas around the origin, the samples within
the same group can be jittered in direction to reduce aliasing arti-
facts. An analysis and discussion of this will be presented next.

3.3 Jittering of Line Segment Samples

The non-zero width of the frequency band makes a crucial differ-
ence between line sampling and line segment sampling. The fre-



quency content of line segment samples with different directions
can overlap in non-zero areas besides the origin. Based on this ob-
servation, we propose to jitter the directions of line segment sam-
ples within the same group. The frequency content Eq. (5) of line
segment samples can be evaluated as the expectation of the jittering:

F (δP,Q,R,xc,l (x)) = F (δ (x− xc)) w̃ (l,ω,Ω)

w̃ (l,ω,Ω) = l

∫

Ω

sinc
(

ld‖
ω

)

ρ
(

d
‖
)

dd‖, (9)

where d
‖ ∈ Ω is the range of jittering and ρ

(

d
‖
)

is the nor-

malized pdf (probability density function) of d
‖ in jittering. As

shown in Fig. 5 (a), the frequency bands will cover more direc-
tions after jittering, which can significantly reduce aliasing artifacts
in reconstruction when combined with multiple direction sampling.
However, a side effect brought by jittering is the degradation of
blue-noise properties. So we analyze the corresponding changes of
frequency content.

Power spectrum bounding for jittering. Jittering will change
the power spectrum of the line segment samples. A large power
spectrum magnitude may introduce more aliasing and noise in the
reconstruction. However, we can control the range of jittering to
bound the increase of the power spectrum magnitude.

Suppose we have N line segment samples with center positions at
{xi}, and the same length l and direction d

‖. Their power spectrum
according to Eq. (5) is:

P
(

N
∑

i=1

F (δP,Q,R,xi,l (x))

)

= P
(

N
∑

i=1

F (δ (xi))

)(

N
∑

i=1

w
(

l, ω‖
)2

)

, (10)

where P is the power spectrum operator. After jittering, we have
the samples of {LPi,Qi,Ri

(x)} with lengths of {li}. Their power
spectrum is bounded according to the Cauchy-Schwarz inequality:

P
(

N
∑

i=1

F (δPi,Qi,Ri,xi,li (x))

)

≤ P
(

N
∑

i=1

F (δ (xi))

)(

N
∑

i=1

w
(

li, ω
‖
i

)2

)

. (11)

There is equality in this relationship iff ∀i,d‖
Pi,Qi

= d
‖
P,Q, li = l,

and the jittering is zero or a constant. With fixed positions xc, the
term F (δ (xi)) is not changed by jittering. By subtracting Eq. (10)
from Eq. (11), we find that the increase of the power spectrum mag-

nitude from jittering is bounded by w
(

li, ω
‖
i

)

.

The change of w from jittering is composed of two parts, ǫli and

ǫd
‖

i , corresponding to the lengths and directions respectively:

ǫi =
∣

∣

∣
w
(

li, ω
‖
i

)

− w
(

l, ω‖
)∣

∣

∣
≤ ǫli + ǫd

‖

i . (12)

ǫli is the upper bound with respect to the change from l to li :

ǫli =
∣

∣

∣
w
(

li, ω
‖
i

)

− w
(

l, ω
‖
i

)∣

∣

∣
≤ εli, (13)

where εli is the deviation of segment length |li − l|. The bound of

the weight is linearly dependent on the change in length. ǫω
‖

i is

related to the change from direction d
‖
P,Q to d

‖
Pi,Qi

:

ǫd
‖

i =
∣

∣

∣
w
(

l, ω
‖
i

)

− w
(

l, ω‖
)∣

∣

∣
= min

(

πl2 |ω| εdi , l +
l

π

)

εdi =

√

1−
(

d
‖
Pi,Qi

(

d
‖
P,Q

)T
)2

. (14)

If |ω| is small, ǫω
‖

i is bounded by πl2 |ω| εdi , which is linearly de-
pendent on the change from d

‖
P,Q to d

‖
Pi,Qi

. This is in accord with
intuition and experiments which show that greater jittering leads to

greater changes. If |ω| is large, ǫω
‖

i is always less than l + l
π

. In
general, the upper bound of the power spectrum can be controlled
by the range of jittering. There will not be any frequency impulses
introduced by jittering.

Benefits of jittering. Jittering line directions helps to reduce an-
gular aliasing, but also reduces blue-noise properties. Our analy-
sis above (Eq. (14)) reveals the relationship between jittering and
power spectrum bounding. The bounding proposed in Eq. (14)

is conservative without any assumption on the pdf of ρ
(

d
‖
)

in

Eq. (9). Usually we perform jittering uniformly in the range with a

constant value of ρ
(

d
‖
)

.

If we want to cover all directions in the frequency domain by jitter-
ing, much higher sampling rates are needed as shown in Fig. 5 (g),
otherwise the frequency properties are close to white noise. The jit-
tering should be used together with the multiple direction scheme.
Without multiple direction sampling, jittering is equivalent to ran-
dom direction sampling as shown in Fig. 5 (h), where the blue-noise
properties are greatly weakened. Even high sampling rates can help
very little, as shown in Fig. 5 (i).

We have also discussed power spectrum bounding according to the
jittering of line segment lengths l. Note that sometimes we cannot
generate samples with the same length. For example, if we use mo-
tion vectors as line segment samples to reconstruct rendered images
of motion blur, the length of the vectors cannot be the same every-
where. Fortunately, the linear dependency between the weight and
length as indicated in Eq. (13) tells us that smooth changes of line
segment lengths can still provide good blue-noise properties locally.

Power spectrum fall-off in high frequency areas. It is ob-
served in Fig. 4 and Fig. 5 that the power spectrum from non-
uniform sampling always falls off in high frequency areas, while
the anisotropy goes up at the same time. That is because the fre-
quency band of the weight in Eq. (5) maintains a constant width
throughout the domain. The frequency band must cross the origin
and not diverge in high frequency areas, which makes it difficult for
the accumulated frequency content of line segment samples to con-
verge to a non-zero constant. That is a significant difference from
point samples, which have a constant magnitude over the entire fre-
quency domain as shown in Eq. (27).

Consequently, there is always a peak before the power spectrum
falls off. The blue-noise properties of line segment sampling can be
evaluated by the position and magnitude of the peak. Usually re-
ducing anisotropy can degrade blue-noise properties. Jittering is an
effective scheme because its influence on the power spectrum and
anisotropy is different. From the comparisons in Fig. 4 (f) and Fig. 5
(b)(d), we find that jittering can significantly reduce anisotropy with
only a minor loss of blue-noise properties.

Line segment sampling scheme with jittering. We first gen-
erate a set of parallel line segment samples for each group as de-



scribed in Section 3.2, from which we determine the range of jit-
tering. Then the directions of all line segment samples are jittered
with a constant probability in the range. The jittering range con-
trols the balance between aliasing and noise under a fixed number
of samples. To reconstruct signals with low frequencies, a small
jittering range is often used for its low variance. Otherwise, a large
jittering range is better because it is aliasing free. As we mainly
focus on the frequency content of line segment samples in the spa-
tial domain, we leave a thorough analysis in the angular domain for
future work. In this paper, we uniformly sample several directions
and choose the range of jittering manually. We can see the im-
provement brought by the jittering scheme, but a solid quantitative
analysis still requires much more theoretical work.

3.4 Extensions to High Dimensional Spaces

Our analysis on line sampling (Section 3.1) and line segment sam-
pling (Section 3.2 and Section 3.3) in the 2D space can be gener-
alized to high dimensional spaces as mD affine subspace sampling
and m-Ball sampling, respectively. Similar conclusions about blue-
noise sampling can be determined accordingly.

Affine subspace sampling. In the nD space, an mD affine sub-
space m ≤ n can be defined as

Ld⊥,R (x) =
{

x

∣

∣

∣
|d⊥

x+R| = 0
}

, (15)

where d
⊥ is a matrix of dimensions (n−m)× n, and R is a vec-

tor with a dimension of (n−m) × 1. It will degenerate to point
sampling when m = 0. The samples have non-zero area in the nD
space when m = n. Without loss of generality, we assume d

⊥ is

normalized: d⊥
d
⊥T

= I, where I is the identity matrix. A sample
in Ld⊥,R (x) is an mD impulse

δd⊥,R (x) =

{

δ
(

d
⊥
x+R

)

, m < n

1, m = n,
(16)

whose Fourier transform is

F
(

δd⊥,R (x)
)

= e
2πi

(

(d⊥
ω)TR

)

δ
d‖,0 (ω) , (17)

where d
‖ is a matrix of dimensions m × n satisfying d

‖
d
‖T = I

and d
⊥
d
‖T = 0 .

The form of Eq. (17) is consistent with Eq. (3). It is composed
of the product of an exponential function and an impulse function.
The line samples analyzed in Section 3.1 are spectial case of affine
subspace sampling in high dimensional space. When n = 2 and
m = 1, Eq. (17) is reduced to Eq. (3). The frequency features
we introduced for line samples in Section 3.1 also hold true for this
generalization based on the same analysis. As shown in Eq. (16),
the frequency content of an mD affine subspace sample lies on the
linear subspace impulse δ

d‖,0 (ω) perpendicular to the direction of
the sample. The frequency content in the linear subspace is also
an (n−m)D Fourier basis function with parameter d⊥

ω and fre-
quency R. Consequently, the sampling scheme is also similar to
line samples. Poisson disk sampled R for parallel samples with
the same direction d

‖ can produce blue-noise properties on the line
subspace impulse δ

d‖,0 (ω).

m-Ball sampling. A generalized line segment in high dimen-
sional space could be of various shapes. We propose to use an
m-Ball because its orientation does not need to be considered.

If the sample is an m-Ball with center xc and radius b:

δd⊥,R,xc,b
(x) = δd⊥,R (x)H

(

b−
∣

∣

∣
d
‖ (x− xc)

∣

∣

∣

)

(18)

then the corresponding frequency content is

F
(

δd⊥,R,xc,b
(x)
)

= F (δ (x− xc))w
(

b, ω‖
)

w
(

b, ω‖
)

= b
(

b
∣

∣

∣
ω‖
∣

∣

∣

)−n
2

BesselJ
(n

2
, 2πb

∣

∣

∣
ω‖
∣

∣

∣

)

, (19)

where BesselJ is the Bessel function of the first kind.

As expected, Eq. (19) is the product of a point sample and a non-
impulse weighting function, which is similar to the frequency con-
tent of a line segment sample as shown in Eq. (5). A line segment
sample in Section 3.2 is indeed a 1-Ball sample. Eq. (5) is a special
case of Eq. (19) where n = 2, m = 1 and l = 2b. We can also
generalize the frequency analysis in Section 3.2 accordingly. From
Eq. (19), the m-Ball sample is also equivalent to a weighted point

sample in the nD space. The magnitude of the weight w
(

b, ω‖
)

is bounded by b. It decreases continuously along d
‖ with respect to

the distance from the linear subspace L
d‖,0 and is constant along

d
⊥. The Poisson disk sampled center xc will have blue-noise prop-

erties along d
⊥. Multiple direction sampling can maintain blue-

noise properties throughout the frequency domain and alleviate an-
gular aliasing. The jittering scheme can also benefit the sampling
scheme by providing a compromise between angular aliasing and
noise. The relationships among point sampling, affine subspace
sampling and m-Ball sampling still hold true, similar to what we
discussed in Section 3.2 for the 2D space.

3.5 Extensions to General Non-point Samples

Our analysis for line segment samples can also be extended to other
non-point samples of arbitrary shapes. Lines and line segments are
two regular shapes widely use in graphics. We will show how the
frequency content is determined by the shape of the samples.

Given a general shape S in the nD space with center xc and lying
in the mD affine subspace Ld⊥,R (x), it can be represented by the
indicator function of H

d‖,xc,S
(x):

H
d‖,xc,S

(x) =

{

1, d
‖ (x− xc) ∈ S

0, else.
(20)

d
‖ (x− xc) is the position in the affine subspace Ld⊥,R (x) rela-

tive to xc. A sample of this shape is also defined as an mD impulse:

δd⊥,R,xc,S
(x) = δd⊥,R (x)H

d‖,xc,S
(x)

= δd⊥,R (x)
(

δ
d‖,−d‖xc

(x)⊗H
d‖,0,S (x)

)

= δ (x− xc)⊗H
d‖,0,S (x) . (21)

The above derivation shows that the impulse of the shape can be
obtained by convolving a point impulse with the shape S. Its fre-
quency content is thus their product:

F
(

δd⊥,R,xc,S
(x)
)

= F (δ (x− xc))wH,d‖,S,

wH,d‖,S (ω) = F
(

H
d‖,0,S (x)

)

=

∫

S

e−2πi(ω̂T
x̂c) dx̂, (22)

where ω̂ = d
‖
ω and x̂c = d

‖
x. The frequency content of the

shape sample is equivalent to the weighted frequency content of a
point sample in the nD space. The weight is the integral of the
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(a) Single direction. (b) Jittering range is ±9◦. (c) l is 0.3 .
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(d) Multiple directions. (e) Jittering range is ±3◦. (f) l is 0.05 .
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(g) r is 0.005 , 20000 samples. (h) Directions are randomly sampled. (i) Same as (h), 26000 samples.

Figure 5: Comparisons on jittering for line segment sampling. Within each group are the samples, Fourier spectrum, reconstruction image,
radial mean of power spectrum and anisotropy. Unless otherwise noted, the images have about 10000 samples. The r is 0.008 for blue-noise
sampling. The sample images show about 5% of the samples for better visualization. xc is multi-class blue-noise sampled. The samples are
evenly distributed into eight groups of different directions for the multiple direction sampling scheme. The length l is 0.1 and the jittering
range is 12◦.

frequency content in the affine subspace Ld⊥,R (x). The integral
is computed with the frequency parameter ω̂ within the domain of
S. x̂c determines the translation of the integral domain. Eq. (22) is
reduced to Eq. (19) if the shape S is an m-Ball.

Obviously, the weight wH,d‖,S (ω) in Eq. (22) is dependent on the
shape S, which determines the frequency properties of the samples.
The frequency content of various samples, including point samples
(Eq. (27)), line samples (Eq. (3) and Eq. (17)) and line segment
samples (Eq. (5) and Eq. (17)), only differs in this weight.

If the weight in Eq. (22) is bounded and very smooth, there will be
a good chance to get blue-noise properties in the shape sampling,
as we proposed in Section 3.1 to Section 3.4. It is natural that con-
vex shapes are good candidates for non-point samples. Jittering is
also possible by bounding the change of d⊥ and the shape S. The
bounding in Section 3.3 is just a special case of line segment sam-
pling in the 2D space.

If the shape S (x) is generated by the convolution of two shapes
S (x) = S1 (x)⊗S2 (x), its frequency content can easily be com-
puted as the product between them:

F
(

H
d‖,0,S (x)

)

= F
(

H
d‖,0,S1

(x)
)

F
(

H
d‖,0,S1

(x)
)

. (23)

Eq. (23) tells us that the frequency content of a sample can be con-
sidered as a combination of multiple physical processes, just as in
the temporal light field reconstruction that we will discuss in Sec-
tion 4.4.

4 Applications

Our sampling algorithm is summarized here. We first uniformly
sample a few directions. For each direction, we generate a group
of samples with blue-noise properties by 1D and 2D dart throw-
ing for line samples and line segment samples respectively. Then
the directions of all samples are uniformly jittered if required. We
apply this sampling algorithm to several problems. The reference
images in Section 4.2, 4.3 and 4.4 are generated by path tracing
with a substantial number of low discrepancy point samples.

4.1 Image Reconstruction

Although line segment sampling has never been applied to image
reconstruction, we use this application to compare different sam-
pling schemes due to its simplicity.

The comparisons for an image of detailed fabric are shown in Fig. 6.
For both line sampling and line segment sampling, the blue-noise
sampling schemes (Fig. 6 (c)(f)) produce the best results, as seen
from the noise of random sampling (Fig. 6 (b)(e)) and aliasing of
uniform sampling (Fig. 6 (a)(d)). Because only two directions are
sampled, the angular aliasing is quite obvious for parallel samples
in Fig. 6 (c)(f), which can be improved by jittering as shown in
Fig. 6 (g). We increase the sampling rate for line segment samples
to make the accumulated lengths of all samples approximately the
same between line sampling and line segment sampling. By com-
paring Fig. 6 (c) and (f), we can see more and shorter samples alle-
viate aliasing. The reconstruction from blue-noise point sampling
with a high sampling rate is aliasing-free but noisy. In general, the
line segment sampling scheme makes it possible to achieve a good
balance among aliasing, noise and sampling rate.



(a) Uniform (b) Random (c) Blue-noise
line samp. line samp. line samp.

(d) Uniform (e) Random (f) Blue-noise
line segment samp. line segment samp. line segment samp.

(g) Jittered blue-noise (h) Blue-noise (i) Reference.
line segment samp. point samp.

Figure 6: Comparisons of image reconstruction. The images of
detailed fabric have a resolution of 1200 × 1200. Two directions
are sampled. Line sampling: r = 0.005 and 500 samples. Line
segment sampling: l = 0.1 , r = 0.01 and 5000 samples.

4.2 Motion Blur

Traditional motion blur rendering performs point sampling in the
temporal-spatial domain, and shoots a ray from each sample for a
visibility test. Recently, line segment sampling as shown in Fig. 7
has been employed in stochastic rasterization [Gribel et al. 2011]
to achieve better quality as well as low computational cost. The
basic idea is to divide the image into a set of tiles, each of which
covers a small rectangular region. Usually a tile covers 32 × 32
pixels, so the rendered 512 × 512 image is divided into 16 × 16
tiles. Within each tile, line segments that cross the whole tile are
sampled instead of the point samples employed in the traditional
rendering pipeline. The visibility test and shading are computed by
point sampling along the line segments.

In our implementation, the rendering framework is the same as that
proposed by Gribel et al. [2011] except that we only modify the
generation of line segments in the tiles. Gribel et al. [2011] sample
two directions in a tile. For each direction, parallel line segments
are sampled at uniform intervals. We use four directions in our
experiments, and demonstrate that our blue-noise sampling scheme
can improve rendering quality under the same sampling rate. In
Fig. 9 (a), aliasing is caused by both the high-frequency textures and
non-linear motions. Our blue-noise sampling scheme (Fig. 9 (b))
converts the aliasing into noise. We also allow a tradeoff between
aliasing and noise by jittering according to the requirements of the
application (Fig. 9 (c)).

4.3 Depth of Field

The line segment sampling for motion blur rendering [Gribel et al.
2011] can be directly extended to render depth of field as shown in

����������� 	
	 	
	 �
	�
	� ������ � 
Figure 7: Motion blur rendering based on stochastic rasterization
with line segment sampling in the image space [Gribel et al. 2011].
The triangle travels along time t. The line sample l on the image
plane intersects the moving triangle, generating the area in the t× l
space as shown on the right. The evaluation of visibility and shad-
ing within this area gives the rendering result of the motion blur.����������� 	�� 
���������� � ��� ��� ������� 
Figure 8: Depth of field rendering with line segment sampling on
the image. For each line segment on the image plane, we sample a
parallel straight line on the camera lens to generate a plane. The
plane intersects the scene geometry after the refraction on the lens.
The intersection generates the area in u × l space. The evaluation
including visibility and shading within this area produces the depth
of field rendering result. This scheme is a straightforward extension
of the motion blur rendering algorithm [Gribel et al. 2011].

Fig. 8. The difference is that each line segment sample on the image
corresponds to a line segment sample on the camera lens. The two
line segment samples on the image and lens should be parallel and
form a plane that intersects the scene geometry.

The chess scene in Fig. 10 is mapped with high-frequency textures.
Aliasing artifacts are generated in both in-focus and out-of-focus
areas if we uniformly sample the line segments (see Fig. 10 (a)).
Our blue-noise sampling (Fig. 10 (b)) reduces the stratified alias-
ing, but the effects are not smooth enough for the out-of-focus blur
as expected. The jittering scheme helps smooth out the remaining
aliasing and generates results much more consistent to the ground
truth.

Besides the textures, the complex geometries also generate alias-
ing artifacts with the uniform sampling scheme (Fig. 11 (a)). The
blue-noise sampling scheme (Fig. 11 (b)) removes almost all the
aliasing artifacts, but still keeps the high-frequency features con-
sistent to the ground truth as shown in Fig. 11 (d). The jittering
scheme introduces some randomness to the result (Fig. 11 (c)).

4.4 Temporal Light Field Reconstruction

The temporal light field reconstruction method proposed by Lehti-
nen et al. [2011] is efficient in rendering distribution effects such
as depth of field and motion blur. The key idea is to perform point
sampling in the temporal light field, and then reconstruct the image



(a) Uniform sampling. (b) Blue-noise sampling. (c) Blue-noise sampling w. jittering. (d) Reference.
Figure 9: Comparisons for motion blur rendering of polyhedra. The image is divided into square tiles of resolution 32. Within each tile, we
sample four directions each with 32 line segment samples.

(a) Uniform sampling. (b) Blue-noise sampling. (c) Blue-noise sampling with jittering. (d) Reference.

Figure 10: Comparisons for depth of field rendering of a chess scene. The image is divided into square tiles of resolution 32. Within each
tile, we sample eight directions each with 32 line segment samples.

(a) Uniform sampling. (b) Blue-noise sampling. (c) Blue-noise sampling with jittering. (d) Reference.

Figure 11: Comparisons for depth of field rendering of a bench. The image is divided into square tiles of resolution 32. Within each tile, we
sample four directions each with 32 line segment samples.



from all samples with sheared filtering. Each sample is a 5D point:
{

s = (x,u, t)T

u
T
u ≤ rlen

2 and t ∈ (t0, t1)
(24)

where x = (x, y)T is the position in the image, u = (u, v)T is the
position on the lens, t is the time stamp, rlen is the radius of the
camera lens, and (t0, t1) is the range of the time period.

Even though each sample is a 5D point, the sampling space is actu-
ally not a full 5D space as xu = dx

du
and xt =

dx

dt
are determined

by s. From sheared filtering, the shading value of a sample posi-
tion x

′ on the image will be reconstructed by gathering all samples
which can potentially “move” to x

′. Such “movement” exists only
if u′ and t′ satisfy

{

x
′ = x+ xu (u′ − u) + xt (t

′ − t)

u
′T
u
′ ≤ rlen

2 and t′ ∈ (t0, t1) .
(25)

Reconstruction with sheared filtering performs reconstruction from
point samples with anisotropic kernels. Another equivalent un-
derstanding of sheared reconstruction is to do reconstruction with
isotropic kernels from non-point samples whose shape is deter-
mined by {xu,xt, rlen, (t0, t1)}, as shown in Fig. 12.

The quality of reconstruction is determined by the frequency con-
tent of those non-point samples. Fixing u , {t′ ∈ (t0, t1)} gener-
ates a line segment from x

′ of length l. On the other hand, fixing

t and having
{

u
′|u′T

u
′ ≤ rlen

2

}

results in x
′ covering the circle

of confusion (COC) with radius b. Then the combination of all pos-
sible t′ and u

′ is a convolution between the line segment and the
circle. We can get the frequency content of the non-point sample
according to Eq. (5), Eq. (19) and Eq. (23):

F (δP,Q,R,xc,l (x)) = F (δ (x− xc))wmb

(

l, ω‖
)

wdof

(

b, ω‖
)

wmb

(

l, ω‖
)

= l sinc
(

lω‖
)

wdof

(

b, ω‖
)

=
1

|ω‖| BesselJ
(

1, 2πb
∣

∣

∣
ω‖
∣

∣

∣

)

xc = x+ xt ((t0 + t1) /2− t)− xuu

l = |xt| (t1 − t0)

ω‖ =
xt

T
ω

|xt|
. (26)

Similar to our conclusion about line segment sampling in Sec-
tion 3.2, the frequency properties of the non-point samples with
the same {xu,xt, rlen, (t0, t1)} are determined by xc. Blue-noise
point sampling of xc can produce high-quality reconstructions.

Based on our analysis, the quality of samples is determined by their
position distribution in the image space. That conclusion can be
validated by the comparisons in Fig. 1. In Fig. 1 (a), the samples are
generated by low discrepancy sampling in the 5D space of (x,u, t).
The samples have frequency content close to blue-noise properties
in the 5D space. But in the image space for reconstruction, the
xc of those samples are distributed irregularly, and the frequency
content does not hold blue-noise properties anymore. As a result,
the reconstruction has much noise.

In Fig. 1 (b), we also sample in the 5D space, but we use a much
higher sampling rate. After generating a large number of initial
samples, we discard most of them according to their value of xc.
By discarding samples, the xc of the remaining samples leads to
blue-noise properties in the image space. After preprocessing, the
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Figure 12: Temporal light field reconstruction from point samples
is equivalent to image reconstruction from non-point samples. The
original light path represents a sample with the given sample u on
the lens and the sample t of the time stamp. Different samples of u′

and t′ produce the green light path. All of the possible u′ and t′ will
generate the light paths covering the red area on the image plane.
This red area is a non-point sample produced by the orange light
path. This non-point sample is the convolution between the COC of
the lens and the motion vector on the image.

samples used for reconstruction have much better frequency proper-
ties in the image space, so the variance in reconstruction is reduced.

The comparison between Fig. 1 (a) and (b) delivers an interesting
insight. If the sampling and reconstruction are handled in different
spaces, the quality of reconstruction is determined by the frequency
properties of the samples in the reconstruction space instead of in
the sampling space. That is consistent to the conclusion in Sec. 5
of [Mitchell 1991]. Based on that insight, we show another scheme
in Fig. 1 (e) for even less noise in reconstruction. The samples are
generated with low discrepancy sampling of xc in the image space,
with u and t fixed to 0 and (t0 + t1) /2 respectively without any
randomness. But this scheme cannot converge to the ground truth
with a higher sampling rate, because the geometries only visible
with different values of u and t cannot be rendered. Note that we
mention Fig. 1 (e) only to discuss noise here; an analysis of physical
correctness is out of the scope of this paper.

Fig. 1 (b) introduces a simple method to generate high quality sam-
ples to represent a light field while keeping the sampling rate un-
changed. In other words, the traditional widely used low discrep-
ancy samples in the high dimensional light field space are inefficient
in light field representation and reconstruction.

As the computation cost of sample generation is determined by the
sampling rate in 5D light field space, the preprocessing of sample
generation and rejection is quite heavy in Fig. 1 (b). But the sam-
pling scheme in Fig. 1 (b) could be a good strategy for applications
whose sampling and reconstruction can be decoupled, such as refo-
cusing and relighting, as also mentioned by Lehtinen et al. [2011].
We can build a small set of high quality samples in the prepro-
cessing which can significantly improve the rendering quality with-
out introducing extra computation or storage in the reconstruction
phase as shown in the comparison between Fig. 1 (c) and (d).

5 Conclusion and Future Work

We have presented a frequency analysis of line segment sampling
in the 2D space, and extended the conclusions to high dimensional
spaces and samples of arbitrary non-point shapes. Based on this
analysis, we proposed a line segment sampling scheme to best pre-
serve the blue-noise properties of samples and minimize anisotropy.
This sampling scheme outperforms other sampling schemes in sev-
eral applications such as uniform sampling, random sampling or
some straightforward extensions of blue-noise point sampling.



As previous work mainly focus on point samples, we regard our
work as the first frequency analysis of non-point samples and hope
that it can stimulate further work along this direction. Our work be-
gan with studying the frequency properties of a line segment sam-
ple. The anisotropic weighting is the key observation and all our
conclusions are derived from it. The basic frequency analysis can
help to understand the characteristics of line segment sampling, and
provide the preliminaries for further exploration of more efficient
sampling schemes.

Our current analysis is based on the assumptions that samples are of
the same shape and similar sizes. How to use samples of different
shapes or dramatically different sizes will be very useful in some
applications. For example, we can use line segment samples for ar-
eas with less angular aliasing and employ point samples elsewhere.
The sampling rate of line segment samples of the same direction
can be adapted along that direction according to the lengths of sam-
ples. For example, in motion blur rendering with sheared filtering,
the sampling rates along the motion direction should be much lower
than in the perpendicular direction. We leave these for future work.
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Appendix: Quantitative measurement of Pois-

son disk sampling

Blue-noise properties can be achieved by Poisson disk point sam-
pling, which randomly generates the samples such that no two sam-
ples are placed closer than a given Poisson disk radius r. The power
spectrum of Poisson disk samples is quantitatively measured based
on the distribution of the displacements among the samples, which
is referred to as differential domain analysis [Wei and Wang 2011].

The frequency content of a point sample at xc has a constant unit
magnitude:

F (δ (x− xc)) = e−2πi(ωT
xc). (27)

Given a set of ideal Poisson disk samples, the distribution of the
displacements di,j = xj − xi follows the distribution

ρ (d) =

{

0, |d| < r

1, else.
(28)

Without loss of generality, r = 1 is assumed. After normalization,
this Poisson disk sampling provides a unit impulse on the original
point, and the power spectrum elsewhere is

Pow (ω) = 1− 0F1

[n

2
+ 1,− (π |ω|)2

]

(29)

where 0F1 is a confluent hypergeometric function. The power spec-
trum P (ω) is close to zero when |ω| < 1

r
, so the Nyquist limit νN

of ideal Poisson disk sampling is approximately 1

r
.

The effects of Poisson disk sampling are shown in Fig. 2. The uni-
form sampling in Fig. 2 (a) generates aliasing. The random sam-
pling in Fig. 2 (b) shows white-noise properties, leading to substan-
tial noise in reconstruction. The blue-noise sampling in Fig. 2 (c)
provides the best reconstruction result with low noise and an ab-
sence of aliasing.

The comparison in Fig. 2 also provides an explanation in the fre-
quency domain. Uniform sampling generates impulses and shows
much anisotropy in the spectrum. Random sampling maintains a
similar magnitude throughout the frequency domain. The blue-
noise attenuates the frequency content near the original point while
having little anisotropy.


