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Smoothed particle hydrodynamics (SPH) is efficient, mass preserving, and
flexible in handling topological changes. However, small-scale thin features
are difficult to simulate in SPH-based free surface flows, due to a number
of robustness and stability issues. In this paper, we address this problem
from two perspectives: the robustness of surface forces and the numerical
instability of thin features. We present a new surface tension force scheme
based on a free surface energy functional, under the diffuse interface mod-
el. We develop an efficient way to calculate the air pressure force for free
surface flows, without using air particles. Compared with previous surface
force formulae, our formulae are more robust against particle sparsity in
thin feature cases. To avoid numerical instability on thin features, we pro-
pose to adjust the internal pressure force by estimating the internal pressure
at two scales and filtering the force using a geometry-aware anisotropic ker-
nel. Our result demonstrates the effectiveness of our algorithms in handling
a variety of small-scale thin liquid features, including thin sheets, thin jets,
and water splashes.
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1. INTRODUCTION AND BACKGROUND

Small-scale thin features, such as water streamlets and sheets, pro-
vide interesting details in physically based liquid animation. But
how to prevent them from being destroyed by resolution limit and
numerical instability is challenging in computer graphics. While
most research efforts have been spent on solving this problem for
grid-based Eulerian simulators [Losasso et al. 2004; Irving et al.
2006; Kim et al. 2007; Sussman and Ohta 2009] and mesh-based
Lagrangian simulators [Thürey et al. 2010; Wojtan et al. 2010;
Brochu et al. 2010; Zhang et al. 2011; Clausen et al. 2013], little
has been done to smoothed particle hydrodynamics (SPH) and its
simulators. In fact, SPH is highly sensitive to the lack of particles
around liquid surfaces in free surface flows, which makes small-
scale thin features even harder to simulate. Since SPH simulators
are welcomed in many applications for its efficiency, mass preser-
vation, and flexibility in handling topological changes, we think it
is necessary to robustly simulate thin features in SPH-based free
surface flows as well.

Different from the recent work on the resolution limit of particle-
based simulation [Adams et al. 2007; Solenthaler and Gross 2011;
Ando et al. 2012; Ando et al. 2013], our work is focused on the
numerical aspect of small-scale thin features. Specifically, we are
interested in knowing how to improve their robustness, even when
there are not sufficient particles. From our experience, we found
two main factors related to this problem.

The first factor is the surface forces, especially surface tension. Sur-
face tension plays an important role in both maintaining and de-
stroying small-scale thin features in the real world. There are two
typical ways to calculate surface tension under the SPH framework:
the continuum surface force (CSF) method [Morris 2000; Müller
et al. 2003; Hu and Adams 2006] and the inter-particle interac-
tion force (IIF) method [Nugent and Posch 2000; Tartakovsky and
Meakin 2005; Becker and Teschner 2007]. By defining surface ten-
sion as a mean curvature flow at the macroscopic level, the CSF
method calculates the surface normal at each particle and then uses
a smoothing kernel to estimate the divergence of the surface nor-
mal. Alternatively, the IIF method calculates surface tension at the
microscopic level as an inter-molecular force between two parti-
cles. While both methods are capable enough for large water bod-
ies, they become less accurate and robust with fewer particles, mak-
ing thin features difficult to survive over time regardless of surface
tension coefficients.

The second factor is the numerical instability inherent in both at-
traction forces and repulsion forces. Unlike linear spring forces,
SPH-based attraction forces, including the surface tension force
and the air pressure force, are stronger when particles move clos-
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er and weaker when particles are more separated. If they are the
only forces, they will separate particles into a number of clusters.
This problem is commonly known as tensile instability. Previous
research on tensile instability was mainly focused on large defor-
mation in elastic solids [Chen et al. 1999; Monaghan 2000], and
the proposed techniques are not directly applicable to liquid simu-
lation. Meanwhile, SPH-based repulsion forces, such as the inter-
nal pressure force, tend to push particles out, when they are located
slightly off the same line or plane due to numerical errors. Both
attraction forces and repulsion forces can cause thin liquid features
to rupture, such as the thin sheet example shows in Fig. 6. We note
that numerical instability is different from real world surface ten-
sion instability. Its existence in free surface flows is largely due to
the fact that particles are defined on the liquid side of free surfaces
only. So adding ghost particles on the air side can help reduce nu-
merical instability as Schechter and Bridson [2012] suggested, but
that requires more implementation effort and computational cost.

Based on these two observations, we made the following contribu-
tions to robustly simulate small-scale thin features:

—A surface tension scheme derived from the surface energy func-
tional under the diffuse interface model. This scheme can ro-
bustly reflect the local geometry of liquid surfaces, even without
a sufficient number of particles.

—An air pressure formula solely based on liquid particles in the
liquid phase. It can produce a variety of air pressure effects with
little computational overhead.

—An internal pressure force algorithm based on two-scale pressure
estimation and geometry-aware anisotropic filtering. It effective-
ly reduces numerical instability, without affecting the impress-
ibility of water bodies.

We implemented our new methods and integrated them into a stan-
dard SPH/WCSPH solver. The whole system is efficient and com-
patible with graphics hardware acceleration. Our experiment shows
that it can realistically and robustly simulate a variety of small-scale
thin features, such as thin jets (Fig. 9), thin films (Fig. 10), and wa-
ter splashes (Fig. 8).

2. PREVIOUS WORK

Smoothed particle hydrodynamics (SPH) has been widely used in
computational physics and computer graphics to simulate dynamic
liquid behaviors. Previous research has been focused on a number
of problems, including artificial viscosity [Monaghan 1989; 1994],
incompressibility [Becker and Teschner 2007; Solenthaler and Pa-
jarola 2009], boundary conditions [Müller et al. 2003; Schechter
and Bridson 2012], coupling with other fluids and solids [Mon-
aghan 1994; Müller et al. 2005; Solenthaler and Pajarola 2008;
Ihmsen et al. 2010; Akinci et al. 2012], and particles with variable
sizes [Adams et al. 2007; Solenthaler and Gross 2011; Ando et al.
2012; Ando et al. 2013].

Among these problems, surface tension and its influence on small-
scale thin features is a much less studied one. Initially developed
for multiphase flows [Morris 2000], the continuum surface force
(CSF) method was extended by Müller and colleagues [2003] to
handle free surface cases as well. Hu and Adams [2006] improved
the robustness of the CSF method by formulating surface tension
as the divergence of a stress tensor, rather than the surface nor-
mal. Sirotkin and Yoh [2011] presented a new smoothing kernel
and gradient correction terms to avoid compressional instability in

the CSF method. The particle-based surface tension flow can also
be calculated by the inter-particle interaction force (IIF) method,
as Nugent and Posch [2000] showed. Using a combination of re-
pulsion and attraction forces, Tartakovsky and Meakin [2005] used
the IIF method to simulate both surface tension and fluid-solid cou-
pling effects. Becker and Teschner [2007] applied the IIF method
to calculate surface tension in free surface flows.

Unfortunately, the accuracy of CSF and IIF depends on a sufficient
number of particles. Their results become less reliable and more
noisy, when they handle thin features with fewer particles. Alter-
natively, Zhang [2010] and Andersson and collaborators [2010]
proposed to reconstruct liquid surfaces for surface tension calcu-
lation. Yu and colleagues [2012] maintained liquid surfaces over
time explicitly as triangle meshs. Both methods are more robust
than particle-based surface tension methods, but they require addi-
tional computational cost. Since many issues in free surface flows
do not occur in multiphase flows, a straightforward idea is to cre-
ate ghost particles on the air side of free surfaces, as Schechter and
Bridson [2012] showed. The computational overhead of processing
these new particles can be large, when a scene contains many thin
liquid features.

The existence of thin features in liquid animation also relies on the
liquid surface reconstruction process. The blobby sphere approach
proposed by Blinn [1982] extracts an isosurface from a scalar field
using a sum of radial basis functions. Zhu and Bridson [2005] later
improved this method to reduce artificial bumps and indentation-
s, by adding compensations for local particle density variations.
Adams and collaborators [2007] proposed to track particle-surface
distances over time, so that liquid surfaces can be smoothly re-
constructed for non-uniform particles. Instead of using an isotrop-
ic smoothing kernel, Yu and Turk [2010] used an anisotropic s-
moothing kernel based on local particle distributions, in order to re-
duce surface bumps without destroying thin features. Bhatacharya
and colleagues [2011] formulated liquid surface reconstruction as
a constrained optimization problem and used the level set approach
to minimize the thin plate energy of liquid surfaces. Akinci and
collaborators [2012] applies mesh operations to reduce bumps and
improve the reconstruction quality efficiently. While our work is
focused on numerical simulation, our system can benefit from the
use of these liquid surface reconstruction techniques for more ro-
bust thin feature effects as well.

3. SURFACE FORCES

In this section, we propose new techniques to handle surface ten-
sion and air pressure for SPH-based free surface flows. Both tech-
niques are based on the diffuse interface model, whose history can
be traced back to van der Waals’ early work [1893]. The basic idea
behind the diffuse interface model is to assume that a liquid surface
has a small but finite thickness, across which physical quantities
can change rapidly but smoothly from one phase to another. The
surface energy in a diffuse interface can be defined as a Helmholtz
free energy functional [Cahn and Hilliard 1958]:

E =

∫
V

[
f(c) +

κ

2
|∇c|2

]
dV, (1)

in which V is the liquid volume, and κ is a squared gradient energy
coefficient, f(c) is the bulk free energy density, and c is the con-
densation field. Typically, the condensation value c is 1, if a point
is within the volume; or 0, if a point is outside of the volume; and
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changes smoothly from 1 to 0, when a point moves across the inter-
face. Intuitively, |∇c| indicates where the interface is and how fast
c changes. The squared gradient energy term in Eq. 1 is the surface
tension energy,

Es =

∫
V

κ

2
|∇c|2dV, (2)

which is proportional to the surface area. The gradient of this en-
ergy can then be formulated as the surface tension force, which
minimizes the surface area. The diffuse interface model is natural-
ly compatible with particle-based representations, since it does not
require liquid surfaces to be explicit.

3.1 Surface Tension Force

To calculate surface tension using the diffuse interface model un-
der the SPH framework, we simply define c = 1 at each particle,
known as the color field [Morris 2000; Müller et al. 2003]. We then
calculate∇ic as:

∇ic =

∑
j

Vjcj∇iWh
ij∑

j

VjWh
ij

, (3)

in which Vj is particle j’s volume, Wh
ij = W (rij , h) is a smooth-

ing kernel function with a radius h, and rij is the distance between
particle i and j. The denominator

∑
j

VjW
h
ij is used here to com-

pensate for missing air particles in free surface flows. Using Eq. 3,
we can then obtain κ

2
|∇ic|2 at each particle i. By treating it as a

smoothed energy density at each particle and ignoring the influ-
ence of other particles on it, we assume that ES can be minimized
by minimizing each energy density separately. This assumption al-
lows us to define the surface tension force using the gradient of the
energy density:

Fs
i = Vi∇i

(κ
2
|∇ic|2

)
=
κ

2

∑
j

ViVj |∇cj |2∇iWh
ij . (4)

Intuitively, the surface tension energy density κ
2
|∇ic|2 can be con-

sidered as an approximation to the local surface area of particle i.
The surface tension force tries to minimize it, by summing up a set
of attraction forces. In ideal cases where interior particles have zero
surface areas and surface particles are explicitly specified, we can
simply treat the surface tension force as the sum of attraction forces
caused by neighboring surface particles, as Fig. 1 shows. To ensure
momentum conservation in practice, we calculate the average of
two surface tension energy densities and use it in the following sur-
face tension force formula:

Fs
i =

κ

4

∑
j

ViVj

(
|∇ci|2 + |∇cj |2

)
∇iWh

ij . (5)

The main advantage of our method is its robustness against parti-
cle sparsity, which is commonly noticed on thin features. Unlike
the CSF method that relies on ∇c to determine the normal direc-
tion and the mean curvature, our method uses |∇c|2 to estimate the
local surface area only. So when normal estimation becomes prob-
lematic, such as a liquid sheet made of a single particle layer, our
method can still calculate surface tension forces accurately. Fig. 2
compares our method with the CSF method (in [Müller et al. 2003])
and the IIF method (in [Becker and Teschner 2007]), when the sup-
port domain of the smoothing kernel contains less than 20 particles.
It shows that our method is more robust in both 2D and 3D.

(a) Convex (b) Flat (c) Concave

Fig. 1. The surface tension force in three surface cases. In these cases, we
can model the surface tension force as the sum of attraction forces between
surface particles. It tries to deform convex and concave surfaces into flat
surfaces, where the surface tension energy gets minimized.

(a) The CSF method (b) The IIF method (c) Our method 

Fig. 2. 2D and 3D comparison examples of the three surface tension meth-
ods. We simulate the concave examples by restraining liquid particles in a
closed container and applying both surface tension forces and air pressure
forces (to be discussed in Subsection 3.2).

Liquid particles

Particle i

Air particles

Liquid particles

Fig. 3. A surface particle with both air particles and liquid particles in
its neighborhood. By defining a negative air pressure at each neighboring
liquid particle, we can calculate the air pressure force without explicitly
defining air particles.

3.2 Air Pressure Force

Because of the air pressure force, water cannot leave solid surfaces
freely nor occupy air bubble volumes in the real world. The air
pressure force is straightforward to simulate in multiphase flows
using both liquid and air particles. For single-phase free surface
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(a) Ghost SPH (b) Our method

400

500

ep
 (m

s) ghost SPH our methodGhost SPH Our method

100

200

300

Ti
m

e 
pe

r S
te

0
0 250 500 750 1000 1250 1500

Simulation Steps

Fig. 4. Flowing water. While both the ghost SPH method and our method
can be used to simulate flowing water on a solid sphere, our method requires
no air particles and runs faster.

flows, Schechter and Bridson [2012] proposed to calculate the air
pressure force in a similar way, by adding ghost air particles around
liquid surfaces. Since the use of air particles requires more memory
and computational cost, an interesting question is: can we simulate
the air pressure force without air particles?

To answer this question, let us first assume that air particles still
exist. A liquid particle i should be surrounded by both air particles
and liquid particles as Fig. 3 shows. Let patm be the air pressure
at each air particle k. The air pressure force at particle i can be
calculated as:

Fa
i = −Vipatm

∑
k

Vk∇iWh
ik. (6)

Assuming that air particles and liquid particles are smoothly and
uniformly distributed, we have:∑

j

Vj∇iWh
ij +

∑
k

Vk∇iWh
ik = ∇1 = 0, (7)

in which the first term is summed over liquid particles and the sec-
ond term is summed over air particles. Using Eq. 7, we can replace
the sum in Eq. 6 and get:

Fa
i = Vipatm

∑
j

Vj∇iWh
ij . (8)

Intuitively, Eq. 8 formulates the air pressure force as the sum of at-
traction forces, by assigning neighboring liquid particles with neg-
ative air pressures.

To compare the performance of our method with the ghost SPH
method by Schechter and Bridson [2012], we create a solid sphere
example as Fig. 4 shows. This example indicates that both meth-
ods can produce the flowing effect (together with our surface ten-
sion formula in Subsection 3.1), in which water flows on the sol-
id surface and merges at the bottom of the sphere. But since our
method does not need air particles, it is faster than the ghost SPH
method and its computational cost is independent of thin features.
Furthermore, our method does not require any extra memory cost

ab c

baF caF

ab c

ab c

baF caF

(a) An attraction case

ab c

baF caF

ab c

ab c

baF caF
(b) A repulsion case

Fig. 5. 1D examples that demonstrate numerical instability issues in SPH-
based attraction and repulsion forces.

in calculating the air pressure force while the ghost method added
approximately 25% memory overhead for this example.

4. NUMERICAL INSTABILITY

Although the formulae proposed in Section 3 can robustly calculate
surface forces, we may still see thin liquid features being affect-
ed by numerical instability. This issue is related to both attraction
forces and repulsions forces under the SPH framework.

The instability issue related to SPH-based attraction forces, includ-
ing our surface tension force and our air pressure force, is known
as tensile instability. To understand this problem, let us consider a
1D case containing one movable particle a and two fixed particles b
and c, as Fig. 5a shows. Assuming that the particles have the same
size and they are affected by attraction forces only. If a is exactly in
the middle of b and c, it receives zero total force and it can stay stat-
ic. However, if a is positioned slightly closer to b due to numerical
errors, then the attraction force exerted on a by b will be larger and
the attraction force exerted on a by c will be smaller. So the total
force gets unbalanced and pushes a even closer to b. In simulation,
this will cause particles to form a set of clusters. According to Swe-
gle and collaborators [1995], the existence of tensile instability can
be mathematically identified as a sufficient condition: σW ′′ > 0,
where σ is the stress state and W ′′ is the second derivative of the
smoothing kernel to the particle distance.

While SPH-based repulsion forces do not have the tensile instabil-
ity issue, they have their own instability issue as Fig. 5b shows. In
this example, particle a can stay at rest between b and c, when only
repulsion forces exist. But if a is positioned slightly off the line,
repulsion forces will push it out even further. As a result, repulsion
forces cannot maintain thin liquid features in free surface flows, in-
cluding thin jets and thin sheets. We note that this problem do not
appear in multiphase flows, because surrounding air particles will
prevent liquid particles from escaping thin features easily.

The instability caused by attraction forces (or called tensile instabil-
ity) can occur everywhere, while the instability caused by repulsion
forces can occur on thin features only. In practice, we do not notice
tensile instability in water bodies, since repulsion forces avoid par-
ticles from being arbitrarily close. However, tensile instability be-
comes problematic on thin features, where particles are sparser and
internal pressure forces get underestimated by most of the existing
simulators.

Based on the previous analysis, we derive our solution against nu-
merical instability as follows. To reduce tensile instability, we first
increase internal pressure forces on thin features using two smooth-
ing kernels. Once repulsive internal pressure forces become larger,
their instability issue gets noticeable and needs to be addressed as
well. We then apply an anisotropic filter on internal pressure forces,
so that their influence is limited within thin features. By calculat-
ing internal pressure forces in this way, our system can robustly
maintain thin features, such as the thin sheet in Fig.6.
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4.1 Two-Scale Pressure Estimation

When using a large smoothing kernel, most algorithms cannot dis-
tinguish particle sparsity on thin features from particle sparsity in
low internal pressure regions. As a result, internal pressure forces
are often underestimated on thin features and cannot prevent tensile
instability from happening. Using a small kernel can reduce tensile
instability, but since fewer particles are involved in calculation, the
estimated pressure will be more noisy and less reliable.

To robustly estimate internal pressures for both water bodies and
thin features, our idea is to use small and large smoothing kernels
together. Let h = R be the radius of the large kernel and h = r
be the radius of the small kernel. We first calculate the density
using the multiphase method proposed by Solenthaler and Pajaro-
la [2008]:

ρri = αm
∑

j
W r
ij and ρRi = m

∑
j
WR
ij , (9)

in which m is the particle mass, α is a scaling factor which corre-
sponds to (r/R)3 in three-dimensional space and (r/R)2 in two-
dimensional space. We typically set R = 2.5d and r = d, where d
is the expected reference distance between two particles. Then we
use the local Poisson method [He et al. 2012] to convert the two
densities into two pressures pri and pRi , respectively. For efficiency,
we only apply the special formula with the radius of the integra-
tion domain degrading to zero. The pressure pRi is more accurate
for particles in water bodies, but it is underestimated for particles
on thin features. Meanwhile, the pressure pri is less reliable, but it
does not have the underestimation issue on thin features. To pro-
vide a smooth transition from one to another, we calculate the final
internal pressure at particle i as:

pi = max
(
pRi , βp

r
i

)
+ patm. (10)

The coefficient β serves two purposes in Eq. 10. Firstly, it ensures
that the pressure for particles in water bodies does not affected by
pri , which might contain noise. Secondly, it controls the magnitude
of repulsive internal pressure forces on thin features, so that they do
not suppress attractive surface forces, especially surface tension. S-
ince the surface tension force is related to the surface tension energy
density, we use an empirical equation to define β:

β = γmax
i

(κ |∇ic|2)/max
i

(pri ) . (11)

where γ needs to be located in the range of [0, 0.5] so as to get
a plausible simulation result. The use of β can be considered as a
balance between surface tension effects and thin features. A small-
er β makes surface tension effects more salient but destroys thin
features, while a greater β preserves thin features but weakens sur-
face tension effects. We note that β is introduced completely from
the algorithmic perspective and it has no physical meanings, but it
provides us a convenient way to adjust the visual effects. We will
demonstrate how β can affect the fluid behavior by setting γ to
different values in the results section.

4.2 Anisotropic Pressure Filtering

After we fix tensile instability using the two-scale pressure estima-
tion method in Subsection 4.1, we now have to face the instability
caused by the increased internal pressure forces. This instability
problem is often exaggerated by the noise in pi, even after the use
of a small β in Eq. 10.

(a) Without our method (b) With our method

Fig. 6. A thin sheet. Without calculating internal pressure forces by our
method, the thin sheet ruptures into water drops after small perturbation as
(a) shows. Using our method, the sheet stays at rest as shown in (b).

Inspired by the anisotropic surface reconstruction method pro-
posed by Yu and Turk [2010], we solve this instability by apply-
ing an anisotropic filter on internal pressure forces. Let Ci =∑
j (xj − xi) (xj − xi)

TWR
ij be the anisotropic covariance ma-

trix defined at particle i. We propose a tensor matrix Ti as:

Ti =
pRi
pi

I +

(
1− pRi

pi

)
Ci

‖Ci‖2
. (12)

For particles in water bodies, pi = pRi and Ti is the identity matrix.
For particles on thin features, pi is larger than pRi and Ti becomes
more anisotropic. Using this tensor matrix, we then formulate the
internal pressure force as:

Fp
i = −1

2

∑
j

ViVj (piTi + pjTj) · ∇iWh
ij . (13)

Intuitively, Eq. 13 diminishes the internal pressure effect in the di-
rection perpendicular to thin features. In this way, the internal pres-
sure force removes tensile instability, without destroying thin fea-
tures by its own instability issue. For particles in water bodies, E-
q. 13 is simply reduced to a standard formula with no anisotropic
filtering.

5. RESULTS

(Please refer to the supplemental video for the animation result-
s.) We implement our methods and we integrate them into a stan-
dard SPH/WCSPH solver and all the smoothing kernels are chosen
according to the work by Müller and colleagues [2003]. We use
the parallel index sorting algorithm presented by Ihmsen and col-
leagues [2011] to construct a uniform grid and accelerate the neigh-
borhood search. We use the level set approach proposed by Bhat-
acharya and collaborators [2011] for liquid surface reconstruction.
To model solid objects, we uniformly create solid particles close to
solid surfaces and treat them as ghost liquid particles. In this case,
we ignore the solid-liquid surface tension and treat the solid-air
surface tension as the liquid-air surface tension. We test our sys-
tem on a quad-core Intel Xeon W3550 3.07GHz workstation with
6GB memory. We set the time step as ∆t = 0.001s in simulation.
Table I shows the coefficients and timings (per time step) of our
examples, including the number of particles N , the surface tension
efficient κ, the average computational time for surface forces ts, the
average computational time for internal pressures tp, and the total
computational time ttot.

Water jet. Fig. 9 compares the simulation effects of using differ-
ent surface tension coefficients. In this example, a water jet breaks
up into small water drops with the same volume but less surface
area. Commonly known as Plateau-Rayleigh instability, this effect
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(a) Without the surface tension force (b) Without the air pressure force (c) With both surface forces

Fig. 7. Chocolate on bunny. This example demonstrates the effects of using different surface forces. We use both the surface tension force and the air pressure
force in most of the examples.

(a) γ = 0 (b) γ = 0.2 (c) γ = 1.0

Fig. 8. Water crown. This example shows how the pressure correction can affect the fluid behavior by setting γ to different values.

Table I. Simulation coefficients and timings

Name N κ ts tp ttot

(N/m) (ms) (ms) (ms)

Chocolate on Bunny 191K 0.035 49 41 281
Water Jet 5.2K 0.015 – 0.09 1 2 20

Bounced Drop 235K 0.1 92 90 532
Water on Sphere 71K 0.015 26 39 174

Water Crown 348K 0.015 124 133 752

becomes more likely to happen, when the surface tension coeffi-
cient increases from left to right.

Chocolate on bunny. Fig. 7 demonstrates the simulation effects
of different surface forces. Without using the surface tension force,
liquid particles can leave the streamlets freely and form a number
of drops, as shown in Fig. 7a. Without using the air pressure force,
the streamlets do not flow on solid surfaces, as show in Fig. 7b.
We obtain more physically plausible effects by using both surface
forces as Fig. 7c shows.

Water crown. Fig. 8 compares the fluid behaviors of using dif-
ferent values of γ. In the extreme case of γ = 0, a bunch of small
droplets will pinch off due to the numerical instability caused by the
surface tension. In the other extreme case of γ = 1, which means
the pressure will be overcorrected, the fluid fails to reveal the plau-
sible surface tension behavior. To balance between surface tension
effects and thin features, an appropriate choice is to set γ = 0.2
and we are able to get the plausible simulation result.

(a) κ = 0.015 (b) κ = 0.03 (c) κ = 0.06 (d) κ = 0.09

Fig. 9. Water jet. This example shows the Plateau-Rayleigh instability ef-
fects of using different surface tension coefficients (in N/m).

Water on sphere. In this example, we present another exam-
ple to demonstrate the importance of our internal pressure force
algorithm for preserving thin features as Fig. 10 shows. Here we
directly set γ = 0.2 and ignore the air pressure force to make the
visual difference more noticeable. Without adjusting internal pres-
sure forces, the water film quickly ruptures into pieces. After using
our technique, the water film stays in simulation until it gets de-
stroyed by resolution limits.
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Fig. 10. Water on sphere. In this example, we compare the difference between not using (top) and using (bottom) our internal pressure force algorithm. This
algorithm effectively avoid numerical instability issues, but it cannot prevent thin features from being destroyed by resolution limits.

6. LIMITATIONS

Our system does not address the resolution limit issue, so it can-
not handle thin features whose sizes are less than a single particle.
It cannot be used to animate air bubbles in large water bodies, s-
ince it does consider air compressibility. It does not consider sol-
id surface properties or wetting effects either, so it cannot model
complex solid influence on liquid, such as hydrophobic effects. Al-
though our surface tension formula is more robust than the CSF and
IIF methods, it is still an approximation and it is not so accurate as
the ghost SPH method [Schechter and Bridson 2012]. Some of the
coefficients in our algorithms (including κ and β) are not based on
physics, and they need to be tuned for different examples. Finally,
how to preserve thin features during the liquid surface reconstruc-
tion process is still a difficult problem, since thin features may be
erroneously identified as noises. Using a smaller smoothing kernel
can preserve thin features, but it may not be sufficient for removing
actual noises, as we found in some examples.

7. CONCLUSION AND FUTURE WORK

In this paper, we identified that surface forces and numerical insta-
bility are the two main factors affecting small-scale thin features in
SPH-based free surface flows. We demonstrated the use of the free
surface energy functional in formulating surface tension forces, and
we studied the possibility to handle air pressure effects without us-
ing air particles. We proposed a novel algorithm to calculate in-
ternal pressure forces on thin features, which effectively reduces
numerical instability issues.

Our immediate plan next is to test the compatibility of our system
with graphics hardware acceleration. We are also interested in com-
bining it with the mesh-based tracking method [Yu et al. 2012], to
simulate the effects that our current system cannot handle. In the
long term, we would like to explore the possibility of using free
surface flows to animate complex liquid-solid interactions and air
bubbles in large water bodies, most of which can be simulated only
by multiphase flows in the past.
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