
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 1

Cone Tracing for Furry Object Rendering
Hao Qin, Menglei Chai, Qiming Hou, Zhong Ren and Kun Zhou, Senior Member, IEEE

Abstract—We present a cone-based ray tracing algorithm for high-quality rendering of furry objects with reflection, refraction and

defocus effects. By aggregating many sampling rays in a pixel as a single cone, we significantly reduce the high supersampling

rate required by the thin geometry of fur fibers. To reduce the cost of intersecting fur fibers with cones, we construct a bounding

volume hierarchy for the fiber geometry to find the fibers potentially intersecting with cones, and use a set of connected ribbons to

approximate the projections of these fibers on the image plane. The computational cost of compositing and filtering transparent

samples within each cone is effectively reduced by approximating away in-cone variations of shading, opacity and occlusion. The

result is a highly efficient ray tracing algorithm for furry objects which is able to render images of quality comparable to those

generated by alternative methods, while significantly reducing the rendering time. We demonstrate the rendering quality and

performance of our algorithm using several examples and a user study.

Index Terms—ray tracing, fur rendering, depth of field, antialiasing, reflection, refraction, shadows, cone tracing

✦

1 INTRODUCTION

FUR and hair are among the most important fea-
tures of avatar personalization [1], and can be

found on most virtual characters in digitally created
contents such as movies and games. Researchers have
been developing efficient approaches over the years
for rendering realistic fur and hair, taking into ac-
count complex visual effects including transparency,
self-shadowing and multiple-scattering. Despite the
significant progress, cinematic-quality rendering of
furry objects is still time consuming especially in the
presence of ray tracing effects such as reflection and
refraction and camera effects like depth of field (DOF).

A major challenge faced by any fur renderer is the
thin geometry of fur fibers, which requires extremely
high supersampling rates to produce an aliasing-free
image, especially when rendering camera effects like
DOF. For ray tracing based renderers, this means
a vast amount of rays need to be traced to pro-
duce the antialiasing samples (or visibility samples).
Furthermore, since fur fibers are often rendered as
transparent strands, a significant number of ray-fur
intersections may have to be composited to produce
each antialiasing sample. The final pixel colors are
computed by downsampling the colors and opacities
of the antialiasing samples using a filter function. The
combined computational cost of sampling, composit-
ing and filtering makes high-quality ray tracing of
furry objects highly expensive. As ray tracing attains
greater significance in high quality rendering [2], [3],
[4], it is of great interest to overcome these challenges
and develop efficient ray tracing techniques for fur
and hair.

• The authors are with the State Key Laboratory of CAD&CG, Zhejiang
University, Hangzhou, China, 310058. Email: {qinneo, cmlatsim,
hqm03ster, zren6ing}@gmail.com, kunzhou@acm.org.

Fig. 1. A scene with two squirrels rendered with

reflection and refraction effects at 1080× 720 resolu-
tion. The scene contains 368K fur fibers.The image is

rendered in 1,081 seconds on an NVIDIA GTX 570

GPU with no supersampling for the viewing rays and
11×11 supersampling for the reflection and refraction

rays. In contrast, the stochastic ray tracing algorithm

takes 3,722 seconds to render an image of comparable
quality under the supersampling rate of 21×21.

In this paper, we present a cone-based ray tracing
approach for high-quality rendering of furry objects.
By aggregating all sampling rays in a pixel as a single
cone, we significantly reduce the high supersampling
rate required by the thin geometry of fur fibers. The
result is a highly efficient ray tracing algorithm which
is able to render images of quality comparable to those
generated by alternative methods, while significantly
reducing rendering time. We demonstrate the render-
ing quality and performance of our algorithm using
several examples and a user study.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 2

1.1 Related Work

Our work is most related to fur/hair rendering and
bundled ray tracing. In the following we only cover
the most relevant references, as the literature covering
these topics is vast.

Fur Rendering The light scattering model for a
single fur/hair fiber has been well studied [5], [6].
Most recent research focuses on rendering hair with
complex visual effects, such as transparency and self
shadowing [7], [8], [9], multiple scattering [10], [11]
and natural illumination [12], [13].

Fur fibers can be densely diced into general prim-
itives, such as micropolygons, and rendered by ray
tracing [14]. Specific algorithms [15] have also been
developed for directly ray tracing curves represent-
ing fur fibers. Nonetheless, the fine geometry of fur
fibers poses significant difficulties for sampling and
antialiasing, and the cost of obtaining a noise-free
ray traced image is high. Fur fibers can also be vox-
elized for efficient ray tracing [12], [16]. This coarse
approximation suitable for evaluating irradiance due
to multiple scattering, however, is not precise enough
for tracing view or shadow rays.

Bundled Ray Tracing Bundled ray tracing aims to
solve the sampling and aliasing problems that plague
conventional ray tracing approaches. The basic idea
is to trace coherent bundles of rays as beams [17],
cones [18], [19] or hypercubes [20]. Igehy [21] de-
veloped a general and robust model for the inter-
actions between the ray bundles and scene, where
the ray footprints are estimated according to the
differentials of the ray properties with respect to the
screen coordinates. A chain rule is also developed to
handle multiple surface interactions. These methods
effectively calculate the path of every possible ray
within each bundle and are therefore not prone to
under-sampling or over-sampling. This alleviates the
sampling and aliasing problems faced by ray tracing.
The computational complexity associated with the
formation of ray bundles and intersecting them with
scene primitives, however, is often much higher than
that of individual rays. Specific algorithms are often
needed for different kinds of scene primitives.

Our approach is based on cone tracing for a specific
type of scene primitive, i.e., fur fibers represented as a
series of connected line segments with linearly inter-
polated per-vertex widths. We choose cones instead
of other bundle representations as its shape more
closely represents the image filter used in downsam-
pling antialiasing samples. Crassin et al. [19] use cone
tracing for interactive indirect illumination. Wand and
Straßer [22] propose to intersect anisotropic ray cones
with prefiltered and oriented surface sample points
from a multi-resolution point hierarchy. However,
their method cannot be directly applied to fur tracing.
To avoid unintended blurring between thin fibers, the
distance between sample points has to be well below

the average distance between fibers, resulting in an
impractically large set of points. Lacewell et al. [23]
extend Wand and Straßer’s idea to prefilter occlusion
of aggregate geometry, e.g., foliage or hair, and store
the directional opacity in a bounding volume hierar-
chy. At runtime, the prefiltered occlusion is used for
efficient rendering of soft shadows and ambient oc-
clusion effects. This method, however, cannot be used
to handle view and reflection/refraction rays, which
requires more accurate ray-fur intersection computa-
tion.

1.2 Contributions

Our main contribution is an efficient cone-based ray
tracing algorithm for high-quality furry object render-
ing. As mentioned above, in our algorithm fur fibers
are represented as a series of connected line segments
with linearly interpolated per-vertex widths, which
means the geometry of each fur fiber is a generalized
cylinder with the connected line segment as its axis.
We focus on tackling two challenges caused by this
special geometry of fur fibers, which has not been
addressed by previous cone tracing techniques.

The first challenge is the high cost of intersecting
fur fibers with cones. Computing such intersections
precisely would negate the benefit of the reduced
supersampling rates. Our algorithm first constructs
a bounding volume hierarchy (BVH) for the fiber
geometry and traverses the BVH to find all fibers
that may intersect each cone. The projections of these
fibers on the image plane are then approximated as
a set of ribbons (or quadrilaterals), each of which
corresponds to a line segment of a fiber. Finally,
instead of computing the intersections between the
cone and ribbons, we evaluate the intersection area of
each ribbon with the cone, which suffices for further
compositing and filtering computations. The second
challenge is to handle transparency within each cone.
Complex fur geometry may generate a considerable
amount of transparent cone intersections, resulting
in expensive compositing computation. We solve this
problem by approximating away in-cone variations
of shading, opacity and occlusion. Specifically, we
assume the depth order required for compositing
transparent samples does not change within each cone
and perform the composition on a per-cone basis. To
facilitate such a compositing order, we convert each
cone-ribbon intersection into a single effective opacity
according to the intersection area and an aggregated
shading by further assuming shading and opacity are
smooth within each cone.

Compared to alternative ray tracing methods, our
algorithm is able to generate images of comparable
quality in significantly less rendering time according
to our experiments (see Fig. 8) as well as a simple user
study. Furthermore, image errors caused by the ap-
proximations made in our algorithm can be reduced

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 3

by increasing the supersampling rates and decreasing
the cone size (see Fig. 12).

Our fur rendering algorithm can be easily imple-
mented on the GPU, and integrated into a ray tracing
framework. As exemplified in Fig. 1, a moderately
complex scene with a refractive glass bottle, a reflec-
tive laptop pane and two furry squirrels is rendered
with ray tracing effects. Our algorithm is able to
render the image in 1081 seconds – 3.4× faster than
the results produced by brute force supersampling
with similar image quality.

Note that our cone tracing algorithm handles view
rays, reflection, refraction and shadow rays, but does
not deal with the multiple scattering among fur fibers.

2 CONE TRACING FUR FIBERS

For an image rendered at the resolution of n pixels
with m × m supersampling, our algorithm needs
n ×m2 cones, each of which is traced for each pixel
(or subpixel if m > 1). As illustrated in Fig. 2, we
represent a cone by its apex o, the ray direction v

and two 2D vectors Rx and Ry on a reference plane Π
perpendicular to v and offset by a unit distance from o

in the ray direction. The two vectors are determined
by the major and minor axes of the sheared ellipse
formed by the intersection of Π with the cone. For the
simplest case of cone formation shown in Fig. 2, the
viewpoint is taken as the ray cone apex and connected
with the circumcircle of a pixel on the image plane
to form a cone for the pixel. More complicated cases
of cone formation for DOF, reflection and refraction
effects are similar to that of [22] and explained in
detail in Section 2.3.

In the following we first describe how to compute
the shading value for each cone assuming the ribbons
intersecting the cone are known, and then explain
how to generate these ribbons.

2.1 Compositing and Filtering Within a Cone

To compute the shading value L for each cone, sup-
pose we can generate a set of ray samples Υ in the
cone to intersect the potentially intersected ribbons Ω,
yielding a set of sample points, each of which is as-
sociated with a shading value φ and an opacity value
α. The shading value of the cone can be computed by
averaging the composited shading values of all ray
samples, or more precisely:

L =

∑

i∈Υ

∑

j∈Ωi

(

αi,jφi,j

∏

k∈Ωi,j
(1− αi,k)

)

|Υ| , (1)

where Ωi is the set of ribbons hit by ray i. The pair
(i, j) specifies a sample point generated by ray i and
ribbon j. Ωi,j is the set of ribbons which are hit by
ray i and are located in front of the current sample
(i, j).

Π

Image Plane

Reference Plane

Rx

Ry

o

v

Fig. 2. Illustration of our cone representation.

Eq. (1) can be rewritten in the form of summing
over the ribbons by exchanging the summation order,

L =

∑

j∈Ω

∑

i∈Υj

(

αi,jφi,j

∏

k∈Ωi,j
(1− αi,k)

)

|Υ| , (2)

where Υj is the set of ray samples that hits ribbon j.

Since in high-quality rendering fibers are diced
densely to ensure enough shading precision and a
smooth curve representation [14], [15], the size of each
ribbon is often very small. Hence we choose to assume
the opacity α, shading φ and occluding ribbon set Ωi,j

do not change over the entire ribbon, and approximate
the shading by

L ≈ ∑

j∈Ω

(

|Υj|αjφj

∏

k∈Ωj
(1 − α′

k)
)

/|Υ|
=

∑

j∈Ω

(

α′
jφj

∏

k∈Ωj
(1− α′

k)
)

,
(3)

where φj is the average shading value of ribbon j,
and the effective occluding ribbon set Ωj of ribbon j
can be determined by comparing the average depth
values of ribbons. The fraction |Υj|/|Υ| converges to
the fraction of the cone area covered by ribbon j. The
effective opacities α′

k = αk|Υk|/|Υ|, α′
j = αj |Υj|/|Υ|

take into account the original opacity of ribbon k (or j)
and its intersection area with the cone, or the fraction
of the cone area covered by the ribbon. In doing this,
we ignore the actual overlapping relationships among
ribbons, and approximate the occlusion of ribbon k
using the fraction of the cone area covered by the
ribbon. We will analyze the shading error caused by
these approximations in Section 4.

In short, to compute the shading value for a cone,
we loop over the set of potentially intersected ribbons
of the cone. For each ribbon, we compute an average
shading value and effective opacity value and yield a
sample. These samples are then composited according
to the order of the average depth value of each
ribbon to compute the shading value of the cone.
In computing the effective opacity α′

k of each ribbon
k, we need to evaluate the intersection area of each
ribbon with the cone.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 4

Rx

Ry

r1

r2
A

B

C

D

A

B

C

D

[Rx, Ry]
-1

(a) reference plane (b) image plane

Fig. 3. A fiber is projected to the reference plane of
the cone. For each line segment of the fiber, a quad

is constructed to approximate the projection (a). The

quad is transformed to the image plane to produce a
ribbon corresponding to the line segment (b).

2.2 Cone-Fiber Intersections

Now we describe how to generate the potentially
intersected ribbons for each cone and compute the
intersection area of each ribbon with the cone.

We first construct a BVH for the fibers using the
surface area heuristic (SAH) [24]. As aforementioned,
the fiber geometry is a generalized cylinder with
the connected line segments as its axis. For each
line segment, we construct an axis aligned bounding
box (AABB) for the two spheres centered at the two
ending vertices of the segment, each of which has a
radius equal to the width value at the vertex. This
AABB is regarded as the basic geometric primitive
when building the BVH. It can be proved that the
combination of all the AABBs bounds the fiber geom-
etry.

During ray tracing, for each cone, the BVH nodes
are first checked against the ray cone using a fast
separating axis theorem test, which conservatively
excludes many non-intersected nodes. For each AABB
passing the test, we construct a ribbon for its corre-
sponding line segment to approximate the projection
of the fiber geometry bounded by the AABB to the
image plane.

We first project the two vertices of the line segment
to the reference plane Π of the cone. The projected
fiber width at each vertex is determined by dividing
the vertex’s fiber width by the vertex’s depth value
z with respect to the cone apex o. The cross-section
formed by the cone and the reference plane is a
sheared ellipse determined by Rx and Ry (Fig. 3(a)).

On the reference plane, we approximate the pro-
jection of the fiber geometry bounded by the AABB
as a quadrilateral. At each vertex of the projected
line segment, the bisector of the angle formed by
the two connected line segments sharing the vertex
is intersected with a circle whose radius equals the
projected fiber width at the vertex, yielding a pair of
points. If the vertex is the end of a fiber and there
is only one segment sharing the vertex, we use the
line perpendicular to the projected line segment to

Aperture
Focal

Plane

Fig. 4. Cone formation for DOF.

intersect the circle. These points are then connected
in turn to form a quadrilateral (see the quadrilateral
ABDC in Fig. 3(a) for example).

Note that the transformation from the image plane
to the cone’s reference plane is described by T =
[Rx,Ry]. Therefore, the quadrilateral can be trans-
formed back to the image plane by T−1 to obtain a
ribbon, which is also a quadrilateral (Fig. 3(b)). The
intersection area of the ribbon with the cone (i.e., a
circular disk) can be efficiently computed on the GPU
(see details in Section 3).

2.3 Cone Formation for DOF, Reflection and Re-

fraction

Here we discuss how cones are formed to represent
the ray bundles for tracing more complicated effects,
including DOF, reflection and refraction. Our method
is similar to that used by [22]. For DOF, we use the
envelope of two cones, one for the ray samples over
the aperture and the other for those over the pixel.
Cones for the reflection and refraction ray samples are
formed according to ray differentials which describe
the evolution of the ray footprint along the rays.

Depth of Field To correctly model the DOF effect,
a ray tracer needs to sample the rays connecting a
point on the aperture and a point on the projection
of a pixel on the focal plane [25]. The envelope
of these ray samples can be approximated by two
cones, as illustrated in Fig. 4, where one is formed by
connecting the aperture center and the circumcircle
of the focal plane projection of the pixel (marked in
red), and the other one is formed by connecting the
projection of the projected pixel center on the focal
plane and the aperture circle (marked in blue).

When a fiber segment is projected onto the reference
plane of the DOF cones, the average depth value
of the segment is used to compute the sizes of the
cross-sections of the DOF cones. And the segment is
projected to the reference plane of the cone with larger
cross-section size for intersection computation. The
depth values are computed with respect to the view
point and the samples are stored in a single buffer
and composited to yield the shading of the pixel, as
described in detail in Section 2.1.

Reflection/Refraction For reflection and refraction
rays, cones are formed according to ray differen-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 5

o

∂�

∂y

N

��

��

��

��

�� =
��

��
+
�

��
�

�� =
��

��
+
�

��
�

Fig. 5. Cone formation for reflected and refracted rays

based on ray differentials.

tials [21]. Note that scene geometries other than fur
are not necessarily traced by cones and we only
assume that the ray tracer used for them can provide
a set of reflected/refracted rays, along with the ray
differentials.

More specifically, for a ray R = 〈P ,D〉, the ray
tracer used for scene geometry provides four partial
derivative vectors of the ray:∂P

∂x
,∂P
∂y

,∂D
∂x

and ∂D
∂y

. Here
P is a position on the ray and D is the ray direction.
The derivatives for P and D describe the differential
offsets of the position and direction with respect to
the image space coordinates [21].

At the starting point of the ray where reflection or
refraction takes place, the ray footprint is a deformed
pixel determined by the two derivatives of P (see
Fig. 5). As the ray proceeds in its direction, the two
spanning vectors of the ray footprint are given by:

ux =
∂P

∂x
+

∂D

∂x
t, uy =

∂P

∂y
+

∂D

∂y
t,

where t is the distance to where the ray starts. The
envelope of this ray footprint is again a complex shape
which cannot be easily represented by a cone. But we
can study the area of the footprint to get an idea of
how this envelope converges.

The square of the ray footprint area is proportional
to σ(t) = ‖ux × uy‖2, which is a quadratic function
of t. Solving σ′(t) = 0 gives us up to three extrema.
If only one extremum t = t0 exists, we take the
point corresponding to t0 as the apex of the cone.
Otherwise there are three extrema, and we take the
point corresponding to the average of the smallest and
the largest t as the apex.

We then project the derivatives of D to the reference

plane Π and multiply them by a diagonal factor of
√
2

2

to yield the tangential vectors Rx and Ry of the cone.

3 ALGORITHM IMPLEMENTATION

In this section we discuss several non-trivial imple-
mentation details of our algorithm.

Fur Shading We support any curve representation
of fur fibers. During rendering, each fiber is first
view-dependently diced into a series of connected
line segments each of which is no longer than three
pixels, and shading is computed at the vertices of
line segments. We use the shading model proposed
by Marschner et al. [6] to compute the reflectance.

We use the same cone tracing algorithm to handle
shadow rays. Cones are formed from the shading
point and the lighting information - point lights are
modeled as spheres and directional lights as disks
spreading a small solid angle, and they are connected
with the shading point to form the cones. More com-
plicated lighting/shadow conditions like area light
sources can also be approximated with cones. For
example, Fig. 1 is rendered with SRBF-approximated
environment lighting [12] with cone-traced shadows.

Composition Optimization Our ray tracer is im-
plemented on the GPU using CUDA [26]. To bound
the GPU memory consumption, we use the adaptive
transparency method proposed by Salvi et al. [8].
Specifically, a sample buffer of fixed size is maintained
for each ray cone. New samples are inserted into
the buffer according to their depth values. In the
case that the buffer is full and a new sample needs
to be inserted, current samples in the buffer would
be looped over and an optimal candidate is selected
for replacement so as to minimize the error to the
visibility function integration. We refer the readers
to [8] for more algorithmic details. Note that unlike
the original implementation of [8], we can completely
avoid data races and a fixed memory bound can be
assured, as our samples are generated by ray tracing
instead of rasterization.

Reflection/Refraction Cones Reflection and re-
fraction cannot be directly applied to cones as rays
within each individual cone may hit different reflec-
tive/refractive objects and diverge. Therefore, we use
the shading reuse metric described in [4] to cluster
supersampled reflection/refraction rays that happen
to be coherent into groups and generate an aggregated
cone for each group. Specifically, we create one group
for all reflection/refraction rays from the same pixel
with hit points sharing the same shading value. The
origin and direction of the cone is determined by
averaging the origins and directions of the rays in the
group. The ray differentials [21] required in forming
the cone are also determined by averaging the ray
differentials in the group, scaled by

√
nG where nG is

the number of rays in the group. This is to ensure
that the aggregated cone roughly covers the same
area on the reference plane as the sum of all cones
in the corresponding group. Note that by taking the
intersection set of pixels and shading reuse clusters,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 6

0.00040.0000

Fig. 6. Visualization of the cone sizes of reflec-

tion/refraction rays for the scene shown in Fig. 1. Cone

sizes are measured as solid angles.

we ensure rays within each individual group are
reasonably coherent at both image plane intersections
(where pixels are defined) and final hit points (where
shadings are defined). Therefore, the generated ray
cone can be expected to be compact throughout the
entire traversal, assuming the ray derivative values
are within a reasonable bound.

Reflection/refraction rays generated around object
boundaries could have very large derivative values,
resulting in very large cones (see Fig. 6 for an exam-
ple). The cones reflected at the boundary of the iron
wires of the bottle are so large that they intersect with
most of the fur in the scene, which severely affects
the workload balance among GPU threads and is
problematic for parallel tracing. In our algorithm, we
revert to trace all original supersampling rays within
a cone if the solid angle of the cone is greater than a
threshold (0.0001 in our implementation). This simple
scheme works well for all of our scenes. For example,
in Fig. 1, we revert to ray tracing for about one tenth
of the cones.

Quadrilateral-Disk Intersection The quadrilateral-
disk intersection is executed on the GPU. To maximize
performance, we need to store all intermediate results
in registers and minimize register usage, which pre-
vents us from storing an explicit representation of the
intersection.

We iterate the four edges of the quadrilateral in
turn. Each edge forms a triangle with the center of the
disk. We then intersect the disk with each of the trian-
gles and calculate a signed area for each intersection.
All signed areas are then summed, and the absolute
value of the total signed area is the intersection area
of the quadrilateral and the disk.

To compute the signed area, the edge is extended to
a line and intersected with the disk, and the signed
area is computed for different cases of intersections
(see Fig. 7). If the edge AB has two intersections with
the disk and all intersections are outside of the edge
(Fig. 7(a)), the signed area is computed as the area of

o o o o

A
B

A B

A
B A

B

(a) (b) (c) (d)

Fig. 7. Computing the signed area of the triangle

formed by a line segment and the disk center. The seg-
ment can have two outer intersections (a), one inner

and one outer intersection (b), two inner intersections
(c) with the disk boundary or lie completely outside of

the disk (d).

Algorithm 1 Pseudo code of the ray tracing system

1: image = EmptyImage()
2: rays = GeneratePrimaryRays()
3: while rays.isNotEmpty() do
4: hits = TraceAndShadeScene(rays)
5: cones = ClusterIntoCones(rays)
6: AT buffer = ConeTraceFur(cones)
7: fur rgba = AT buffer.QueryRgbaAt(hits.Depths())
8: final rgba = AlphaBlend(hits.Colors(), fur rgba)
9: image += DownSample(final rgba * rays.Contribution())

10: rays = NextBounce(rays)
11: end while

the triangle formed by the edge and the disk center
ABO. If one of the intersections of AB and the disk
is inside AB and the other is outside (Fig. 7(b)), the
signed area is computed by adding a triangle and a
sector of the disk. If two intersections are both inside
AB (Fig. 7(c)), the signed area is computed by adding
a triangle and two sectors of the disk. If the edge is
completely outside of the disk (Fig. 7(d)), the signed
area is the sector of the disk covered by the triangle.
Note that only a fixed amount of temporary storage
is required for each edge. This enables us to perform
all computations in GPU registers.

Note that in [27] a coverage algorithm was pro-
posed to compute the intersection of hard shadow
quads with light source quads by looking-up into
a precomputed 4D coverage texture. Our algorithm
does not need any precomputed texture but computes
the quadrilateral-disk intersection analytically, and is
carefully optimized to minimize register usage and
make sure that all computations can be performed in
GPU registers.

Integration with Scene Geometry Algorithm 1
shows how our cone tracing algorithm is integrated
with the ray tracing of scene geometry. Mutual oc-
clusions between fur and scene geometry need to be
taken into account. We first trace the scene geometry
to obtain a hit sample for each ray (line 4). Then we
trace the fur using cones and generate the adaptive
transparency (AT) buffer [8] (line 6). For each cone,
the maximum depth of the scene geometry samples
covered by the cone are obtained to cull the fur during
the tracing (line 7). The scene geometry samples are
updated using the opacity obtained from the fur AT

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 7

(a) Ours, 87.8s (b) SRT 4×4, 76.2s (c) SRT 21×21, 513.5s (d) SRT 31×31, 1224.3s (e) MRT 21×21, 1053.1s

Fig. 8. A squirrel rendered with DOF and reflection effects. Our algorithm is able to achieve a high-quality result

(a) comparable to that of stochastic ray tracing (SRT) at a 31×31 supersampling rate (d) with significantly less
rendering time. Stochastic ray tracing with 4×4 supersampling takes similar rendering time but suffers from

severe noise artifacts (b), which are visible until the supersampling rate is increased to 21×21 (c). A similar

supersampling rate is required for the recent micropolygon ray tracing (MRT) method [14] (e) to achieve a result
of comparable quality. This furry object consists of 129K fibers, diced into 931K line segments.

buffer, and the fur color is finally added to the sample
(line 8).

4 EXPERIMENTAL RESULTS

Our cone tracing algorithm and other ray tracing al-
gorithms used for comparison in this paper have been
implemented and tested on a 2.33GHz dual-core PC
with 4GB of memory and an NVIDIA GTX 570 GPU.
We use a Lanczos filter [28] of three-pixel diameter
for the antialiasing of all results. No supersampling
is used for fur rendering (i.e., m = 1), unless stated
otherwise. The supersampling rate used for tracing
scene geometry is always set to 9×9 to eliminate
the noisy artifacts of ray traced DOF, reflection and
refraction effects for scene geometry, unless otherwise
stated.

Comparisons We compare our algorithm with al-
ternative techniques including stochastic ray tracing
(with/without adaptive sampling) and the recent mi-
cropolygon ray tracing [14] in both rendering perfor-
mance and quality. All implementations are based on
the GPU.

When implementing stochastic ray tracing, we use
the same dicing, shading, BVH construction and BVH
traversal loop as in our method, and only replace the
ray-box and ray-ribbon intersection routines with the
corresponding cone versions. The persistent while-
while traversal algorithm [29] is used for efficient
work distribution on the GPU. Packet ray tracing
is not used because it has been tried in GPU ray
tracing [29] and there is no evidence that it brings any
benefit in performance. The ray-ribbon intersection is

implemented by computing the shortest distance be-
tween the ray and the ribbon’s line segment, and gen-
erating a sample if the distance is less than the width
at the segment point having the shortest distance.
The width value at an arbitrary point is obtained
by interpolating the input width values at the line
segment vertices. The tracing performance of primary
rays for the scene shown in Fig. 1 is 5.81 Mrays/s.
Note that this appears to be much lower than the
surface tracing performance reported in literature [29].
We would like to point out that fur tracing is much
more computationally expensive than surface tracing.
It is thus inappropriate to directly compare fur tracing
performance with surface tracing performance. The
distribution of fur fibers are considerably different
from that of surface triangles, resulting in different
traversal/intersection behaviors. For example, for the
scene in Fig. 1, the average numbers of traversed BVH
nodes and intersection tests for each ray are 266.46
and 44.28 in fur tracing, while those in scene geometry
tracing are much less (52.23 and 9.21). Additionally,
fur tracing requires generating all hit points and
adding them to an AT buffer, while surface tracing
typically only needs to store one. This results in a
significant higher intersection cost in the fur tracer.

As shown in Fig. 8, our result is comparable to
the result generated by stochastic ray tracing at a
very high supersampling rate (31×31) but is pro-
duced in about 10× less time. Under the condition
of comparable rendering performance, the result of
stochastic ray tracing at 4×4 supersampling suffers
from severe noise (Fig. 8(b)). The micropolygon ray

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 8

(a) Adaptive, 10.4s (b) Adaptive, 81.2s (c) Ours, 1.6s

3×3/8×8 17×17/23×23

Fig. 9. Comparison between adaptive sampling and

our method. Timings given below each column are for
tracing view rays (cones). (a) using 3×3 supersampling

in the coarse phase and 8×8 in the refining phase

produces noisy results. Some pixels, marked in red
in the insets in the top row, are missed in the coarse

phase and ignored in the refining phase. (b) this prob-
lem can only be alleviated with a 17×17 coarse phase

supersampling rate and such an adaptive sampling

scheme hardly brings any performance gain. (c) our
rendering result.

tracing algorithm also needs a 21×21 supersampling
rate to achieve a satisfactory result. Moreover, it dices
fur fibers into micropolygons facing the viewpoint
and causes visible artifacts in reflection, e.g., the
reflection of the squirrel whiskers is mostly lost in
Fig. 8(e). Another comparison between our result and
that obtained by stochastic ray tracing with 21 × 21
supersampling is shown in Fig. 11. The scene is taken
from an animation with a running furry character.

Adaptive sampling techniques [30], [31], [32] strive
to resolve the tension between sampling expense and
image fidelity by investing more samples in regions
of rapid radiance changes. A coarse phase is often
employed to evaluate the local radiance change rates,
which are then used to guide the distribution of
additional samples in the following refining phases.
This strategy, however, can “miss minute isolated
features” [31] and does not work well in the case of
fur ray tracing. The main reason is that a region where
thin fur fibers are missed completely by the coarse
phase would be mistakenly interpreted as having
smoothly changing radiance, ending up with getting
less than ideal samples in the subsequent refining
phases. Capturing these high frequency details in the
coarse phase, on the other hand, requires very high
initial supersampling rates, negating the benefit of the
adaptive sampling.

We implemented the adaptive sampling algorithm
proposed by Mitchell [31] and compared the results

Fig. 10. Shading error distribution. The top row is

generated for the fur ball scene in Fig. 9, and the

bottom row is generated for the same scene with DOF
effects.

with ours, as shown in Fig. 9. For the pixels marked
in red in the inset of Fig. 9(a) (top row), none of the
samples in the coarse phase intersects with the fur
strands that actually pass through the corresponding
pixel. Therefore no additional samples are invested
on these pixels, resulting in small dark spots in the
final result (bottom row). Increasing the supersam-
pling rate of the coarse phase alleviates the problem
(Fig. 9(b)), but cancels out most of the performance
gain as well. In contrast, our method is able to obtain
smooth results with superior performance.

Error Analysis Our algorithm makes three approx-
imations to achieve efficient high-quality rendering
of furry objects. First, we approximate away in-cone
variations of shading, opacity and occlusion over each
ribbon by assuming that the ribbon is sufficiently thin
and the shading and opacity are smooth within the
ribbon. Second, we approximate the projection of a
fiber on the image plane as a set of connected ribbons
(or quadrilaterals). Finally, we assume uncorrelated
ribbon coverage, and approximate the occlusion of a
ribbon using the fraction of the cone area covered by
the ribbon.

In Fig. 10, we visualize the shading error distribu-
tion for the fur ball scene, both with and without DOF
effects. Error is computed as the luminance difference.
Cones are grouped into bins according to the number

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 9

(a) Ours (b) SRT, 21×21 (c) Differences

Fig. 11. A dynamic scene with an animated furry character, rendered in 340.6 seconds at the resolution of 1080
× 720 with DOF and reflection effects (a). The SRT algorithm takes 1329.3 seconds to render an image (b)

of comparable quality. The difference between the two images is visualized as color temperature (c). The RMS
error is 3.38%.

of intersected ribbons and the error value. The log of
the number of the cones belonging to each bin is vi-
sualized as color temperature. Note that a logarithmic
scale is used here to better display cones with large
errors. As seen from the plots, most cones are dis-
tributed in low-error regions, and statistically cones
having more intersected ribbons tend to have smaller
errors. This is a reflection of the fact that cones having
more intersected ribbons usually have uncorrelated
ribbon coverage, resulting in small approximation
errors. Similar error distributions can be observed for
all scenes we tested (see the supplementary material
for more results).

Errors introduced by our approximations can be
effectively reduced by decreasing the cone size, i.e.,
increasing the supersampling rate m. Fig. 12 shows
the rendering errors of our algorithm with different
supersampling rates, using the stochastic ray tracing
result (31×31 supersampling) as the reference. This
clearly demonstrates that our result can converge
to the reference when increasing the supersampling
rate. Note that our result with 7×7 supersampling
already has a very low RMS error (1.53%) and is
visually indistinguishable from the reference, while
our rendering time is still less (2.5×).

In practice, we found that our algorithm can gener-
ate visually pleasing results even without supersam-
pling. The reason is that our errors consistently exag-
gerate depth-based occlusion, which results in a visu-
ally pleasant enhancement of the least occluded fur
layer. To evaluate the rendering quality of our result,
we performed a simple user study involving 35 sub-
jects, including 15 participants from game/animation
studios, 10 graduate students majoring in computer
graphics and 10 non-graphics students. We showed
each subject our result (Fig. 8(a)) and the reference
(Fig. 8(d)), and asked the subject to identify the most
realistic image. The subjects did not have prior knowl-
edge on how either image was produced, and had
unlimited time to finish this task. In the study, 18
participants favored our result, 9 favored the refer-
ence, and 8 participants felt the differences to be very

(a)1×1, 9×9 (b)3×3, 13×13 (c)7×7, 21×21 (d)13×13, 31×31

Fig. 12. Supersampling effectively reduces the ap-
proximation error. The relative errors are visualized as

color temperature images, with red corresponding to a

relative error of 10%, and blue 0%. The supersampling
rates used for fur/scene geometry are shown under

each figure. From left to right, the quantitative RMS

errors are 3.38%, 2.68%, 1.53% and 1.12%, respec-
tively. And the rendering time is 87.8s, 124.9s, 207.3s

and 425.1s, respectively.

subtle with neither image more realistic than the other.
Participants choosing the reference commented that
the reference is “less aliased in the tail” or “has alpha
falloff along the length of the whiskers”. Participants
choosing our result commented that our result has
“better definition on edge of core of the tail; looks
more solid” or “better (more realistic) handling of
whisker edges”. Although this user study is simple,
the results reflect the high rendering quality of our
algorithm to a certain extent.

Performance A timing breakdown of different
stages of our fur rendering algorithm and the stochas-
tic ray tracing method (SRT) is provided in Table 1.
In this table, “dice” stands for the time used to dice
fur fibers into line segments and “bvh” stands for the
BVH construction time. The dicing, BVH construction
and shading time are the same for both methods.
Note that when computing the shading at the fiber
vertices, we use the same shadow algorithm described
in Section 3 for both methods. As we focus on fur
rendering, the timings for rendering scene geometries
are excluded from the numbers in the table, except for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 10

TABLE 1
Timings (in seconds) of our algorithm and SRT (21×21 supersampling) for the test scenes.

scene #triangles #fibers resolution dice bvh shade
view rays refl./refr. rays total

ours SRT ours SRT ours SRT

Fig. 1 819K 368K 1080×720 0.51 9.78 84.3 1.97 56.3 91.8 142.7 1081.4 3722.9

Fig. 8 25.4K 129K 720×1080 0.38 4.27 15.6 8.05 87.6 17.6 38.8 87.2 513.5

Fig. 11 235K 801K 1080×720 0.62 16.1 143.1 5.14 88.7 18.6 22.1 340.6 1329.3

Fig. 14(a) 0 10K 1024×1024 0.04 4.6 24.6 4.7 128.1 - - 47.5 428.4

(a) Ours, 92.5s (b) SRT (9×9), 141.6s (c) SRT (9×9), 159.0s

Fig. 13. Rendering the squirrel in Fig. 8 with doubled

fiber width. In (c) the fiber opacity is reduced by half.

the two right-most columns, where the total rendering
time is reported.

As illustrated, our algorithm is very effective in
accelerating the tracing of viewing rays, thanks to
the reduced supersampling rate. For reflection and
refraction rays, the speedups are less significant due
to the finer grain cone generation. We use cone tracing
to compute shadows of both fur and geometry, which
takes a large portion of the shading time and reduces
the overall speedups (especially for the scenes shown
in Fig. 1 and Fig. 11). It is also possible to use alter-
native shadowing techniques such as deep shadow
maps to reduce this cost.

The memory consumption of our algorithm can be
divided into two parts. For the BVH of fiber geometry,
we pre-allocate a buffer no larger than a user-specified
upper bound (256MB in our implementation) in the
GPU memory. When the actual BVH size is larger
than the upper bound, we swap in and out chunks of
the BVH data and fiber geometry from the memory
during the traversal in a way similar to the out-of-core
GPU ray tracing algorithm described in [4]. We also
maintain a buffer to store the adaptive transparency
data, in which 512 bytes (32 samples) are allocated
for each cone. We use up all remaining GPU memory,
deducting the memory required for shading and scene
geometry rendering, for this sample buffer to trace
as many cones as possible in parallel. Based on this
memory management scheme, our algorithm is scal-
able to large scenes. In the accompanying video1, we
show a test scene of six squirrels with 2,584K fibers,

1. http://gaps-zju.org/publication/2012/fur-divx.avi

(a) Hair with DOF (b) Hair with MB

Fig. 14. Rendering hair with DOF (a) and motion blur

(b) effects. The rendering time of our method is 42.5s

and 173.2s respectively. For the motion blur result, we
use 13×13 supersampling of the shutter open time.

The stochastic ray tracing method takes 223.6s and

368.5s to render results of comparable quality. The hair
consists of 10K fibers.

diced into 5,958K line segments and rendered with
DOF effects.

Discussion and Limitations The performance ben-
efit of our algorithm over stochastic ray tracing is
more significant for thin fibers than for wide fibers. In
Fig. 13, we show the rendering results of the squirrel
of Fig. 8 with doubled fiber width. For this scene, our
algorithm (a) is only 1.5× faster than stochastic ray
tracing (b) for which 9×9 super-sampling is sufficient
to produce a satisfactory image. This increased fiber
width, of course, gives the furry object a very different
look. Reducing the fiber opacity by half would restore
the overall occlusion, but still generates an image (c)
quite different from the original thin fiber result.

One limitation of our algorithm is that we cannot
accelerate motion blur rendering due to the difficulty
of formulating the 4D problem as 3D cones. On the
other hand, we can still render motion blur effects by
directly combining our algorithm with shutter time
supersampling. Fig. 14(b) shows the rendering of long
hair with motion blur effects. Another problem is that
the approximation we used for the projected fiber
geometry could generate self-intersecting ribbons if
the fiber width is comparable to or larger than the
line segment length, making the computation of fiber-
ribbon intersection areas incorrect. In our experi-
ments, however, we did not observe any annoying

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 11

artifacts caused by this problem. The cone footprints
can also become very large with the propagation of
rays in the scene and a large amount of ray fibers
may be covered by a single cone. We are interested
in developing level-of-detail techniques to achieve
further performance acceleration.

Note that we did not choose rasterization for pri-
mary ray effects due to the integration difficulty with
a ray tracer. Current rasterization based OIT (order-
independent transparency) methods require allocating
large render buffers. However, on current GPUs such
buffers cannot be easily reused for other purposes
(like storing scene BVH or rays) and dynamic al-
location and destruction of large render buffers can
be very costly. Moreover, to get high-quality results,
rasterization still needs high supersampling rates and
does not reduce the cost of compositing, while our
algorithm is able to reduce both the sampling and
compositing cost (see the supplementary material for
details). Actually we initially tried a rasterization-
based solution but we found that we must either face
degraded scene rendering performance from memory
stress, or endure the render buffer destruction and
reallocation cost for every bucket.

5 CONCLUSION

We have presented an efficient cone tracing algorithm
for high-quality rendering of furry objects with re-
flection, refraction and DOF effects. Compared with
alternative ray tracing methods, our algorithm can
generate images of comparable quality but is sig-
nificantly faster. According to a simple user study,
our algorithm can generate visually pleasing results
without any supersampling. Moreover, errors intro-
duced by the approximations made in our algorithm
can be effectively reduced by increasing the cone
supersampling rate.

ACKNOWLEDGMENTS

The work is partially supported by the NSF of China
(No. 61103102, No. 61272305 and No. 61379070).

REFERENCES

[1] N. Ducheneaut, M.-H. Wen, N. Yee, and G. Wadley, “Body
and mind: a study of avatar personalization in three virtual
worlds,” in Proceeding of CHI, 2009, pp. 1151–1160. [Online].
Available: http://doi.acm.org/10.1145/1518701.1518877

[2] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison,
and M. Stich, “Optix: a general purpose ray tracing engine,”
ACM Trans. Graph., vol. 29, pp. 66:1–66:13, July 2010.

[3] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R.
Mark, “Razor: An architecture for dynamic multiresolution ray
tracing,” ACM Trans. Graph., vol. 30, pp. 115:1–115:26, October
2011.

[4] Q. Hou and K. Zhou, “A shading reuse method for
efficient micropolygon ray tracing,” ACM Trans. Graph.,
vol. 30, pp. 151:1–151:8, Dec. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2070781.2024185

[5] J. T. Kajiya and T. L. Kay, “Rendering fur with three dimen-
sional textures,” in Proceedings of ACM SIGGRAPH’89, 1989,
pp. 271–280.

[6] S. R. Marschner, H. W. Jensen, M. Cammarano, S. Worley, and
P. Hanrahan, “Light scattering from human hair fibers,” ACM
Trans. Graph., vol. 22, no. 3, pp. 780–791, 2003.

[7] E. Sintorn and U. Assarsson, “Hair self shadowing and
transparency depth ordering using occupancy maps,” in
Proceedings of I3D. ACM, 2009, pp. 67–74. [Online]. Available:
http://doi.acm.org/10.1145/1507149.1507160

[8] M. Salvi, J. Montgomery, and A. E. Lefohn, “Adaptive trans-
parency,” in Proceedings of HPG, 2011, pp. 119–126.

[9] E. Enderton, E. Sintorn, P. Shirley, and D. Luebke, “Stochastic
transparency,” in Proceedings of I3D, 2010, pp. 157–164.

[10] J. T. Moon, B. Walter, and S. Marschner, “Efficient multiple
scattering in hair using spherical harmonics,” ACM Trans.
Graph., vol. 27, no. 3, pp. 31:1–7, 2008.

[11] A. Zinke, C. Yuksel, A. Weber, and J. Keyser, “Dual scattering
approximation for fast multiple scattering in hair,” ACM Trans.
Graph., vol. 27, no. 3, pp. 32:1–10, 2008.

[12] Z. Ren, K. Zhou, T. Li, W. Hua, and B. Guo, “Interactive hair
rendering under environment lighting,” ACM Trans. Graph.,
vol. 29, no. 4, pp. 55:1–8, 2010, sIGGRAPH 2010.

[13] K. Xu, L.-Q. Ma, B. Ren, R. Wang, and S.-M. Hu, “Interactive
hair rendering and appearance editing under environment
lighting,” ACM Transactions on Graphics, vol. 30, no. 6, pp.
173:1–173:10, 2011.

[14] Q. Hou, H. Qin, W. Li, B. Guo, and K. Zhou, “Micropolygon
ray tracing with defocus and motion blur,” ACM Trans.
Graph., vol. 29, pp. 64:1–64:10, July 2010. [Online]. Available:
http://doi.acm.org/10.1145/1778765.1778801

[15] K. Nakamaru and Y. Ohno, “Ray tracing for curves primitive.”
in WSCG, 2002, pp. 311–316.

[16] J. T. Moon and S. R. Marschner, “Simulating multiple scatter-
ing in hair using a photon mapping approach,” ACM Trans.
Graph., vol. 25, no. 3, pp. 1067–1074, 2006.

[17] P. S. Heckbert and P. Hanrahan, “Beam tracing polygonal
objects,” SIGGRAPH Comput. Graph., vol. 18, pp. 119–127,
January 1984.

[18] J. Amanatides, “Ray tracing with cones,” SIGGRAPH Comput.
Graph., vol. 18, pp. 129–135, January 1984.

[19] C. Crassin, F. Neyret, M. Sainz, S. Green, and
E. Eisemann, “Interactive indirect illumination using voxel-
based cone tracing: an insight,” in ACM SIGGRAPH
2011 Talks, ser. SIGGRAPH ’11. New York, NY,
USA: ACM, 2011, pp. 20:1–20:1. [Online]. Available:
http://doi.acm.org/10.1145/2037826.2037853

[20] J. Arvo and D. Kirk, “Fast ray tracing by ray classification,”
SIGGRAPH Comput. Graph., vol. 21, pp. 55–64, August 1987.

[21] H. Igehy, “Tracing ray differentials,” in ACM SIGGRAPH, 1999,
pp. 179–186.

[22] M. Wand and W. Straßer, “Multi-resolution point-sample ray-
tracing,” in Graphics Interface, 2003, pp. 139–148.

[23] D. Lacewell, B. Burley, S. Boulos, and P. Shirley, “Raytracing
prefiltered occlusion for aggregate geometry,” in IEEE Sympo-
sium on Interactive Ray Tracing, 2008, pp. 19–26.

[24] J. Goldsmith and J. Salmon, “Automatic creation of object
hierarchies for ray tracing,” IEEE CG&A, vol. 7, no. 5, pp. 14–
20, 1987.

[25] R. L. Cook, T. Porter, and L. Carpenter, “Dis-
tributed ray tracing,” SIGGRAPH Comput. Graph.,
vol. 18, pp. 137–145, January 1984. [Online]. Available:
http://doi.acm.org/10.1145/964965.808590

[26] NVIDIA, “CUDA downloads page,”
http://developer.nvidia.com/cuda/cuda-downloads.

[27] U. Assarsson and T. Akenine-Möller, “A geometry-based soft
shadow volume algorithm using graphics hardware,” ACM
Trans. Graph., vol. 22, no. 3, pp. 511–520, Jul. 2003. [Online].
Available: http://doi.acm.org/10.1145/882262.882300

[28] C. E. Duchon, “Lanczos filtering in one and two dimensions,”
Journal of Applied Meteorology, vol. 18, pp. 1016–1022, 1979.

[29] T. Aila and S. Laine, “Understanding the efficiency of
ray traversal on gpus,” in Proceedings of the Conference on
High Performance Graphics 2009, ser. HPG ’09. New York,
NY, USA: ACM, 2009, pp. 145–149. [Online]. Available:
http://doi.acm.org/10.1145/1572769.1572792

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JANUARY 20XX 12

[30] T. Whitted, “An improved illumination model
for shaded display,” Commun. ACM, vol. 23,
no. 6, pp. 343–349, Jun. 1980. [Online]. Available:
http://doi.acm.org/10.1145/358876.358882

[31] D. P. Mitchell, “Generating antialiased images at low
sampling densities,” SIGGRAPH Comput. Graph., vol. 21,
no. 4, pp. 65–72, Aug. 1987. [Online]. Available:
http://doi.acm.org/10.1145/37402.37410

[32] T. Hachisuka, W. Jarosz, R. P. Weistroffer, K. Dale,
G. Humphreys, M. Zwicker, and H. W. Jensen, “Multidimen-
sional adaptive sampling and reconstruction for ray tracing,”
ACM Trans. Graph., vol. 27, pp. 33:1–33:10, August 2008. [On-
line]. Available: http://doi.acm.org/10.1145/1360612.1360632

