
Real-time Facial Animation on Mobile Devices

Yanlin Weng, Chen Cao, Qiming Hou, Kun Zhou

State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China, 310058

Abstract

We present a performance-based facial animation system capable of running on mobile devices at real-time frame rates. A key
component of our system is a novel regression algorithm that accurately infers the facial motion parameters from 2D video frames
of an ordinary web camera. Compared with the state-of-the-art facial shape regression algorithm [1], which takes a two-step
procedure to track facial animations (i.e., first regressing the 3D positions of facial landmarks, and then computing the head poses
and expression coefficients), we directly regress the head poses and expression coefficients. This one-step approach greatly reduces
the dimension of the regression target and significantly improves the performance of the tracking process while preserving the
tracking accuracy. We further propose to collect the training images of the user under different lighting environments, and make use
of the data to learn a user-specific regressor, which can robustly handle lighting changes that frequently occur when using mobile
devices.

Keywords: Video tracking, 3D avatars, Facial performance, User-specific blendshapes, Shape regression

1. Introduction

Performance-based facial animation has attracted a lot of re-
search attention in the fields of computer vision and computer
graphics. And facial animation techniques based on special
equipment (e.g., facial markers and structure light projectors)
have achieved great success in film and game production. How-
ever, these techniques cannot be adopted by ordinary users who
do not have access to these equipment. With the rapid spread of
mobile devices, a real-time, single-camera based facial anima-
tion system could play an important role in many applications
like video chat, social network and online games.

Weise et al. [2] developed a real-time facial animation system
that utilizes depth and color information from a Kinect RGBD
camera. It, however, can only work in indoor environments.
Moreover, none of existing mobile devices integrates a depth
camera. Earlier this year, Cao et al. [1] proposed a more prac-
tical solution for ordinary users, which only needs a single web
camera. Although most mobile devices contains a video cam-
era, there still exist two major issues preventing the system from
running on mobile devices efficiently: first, the 3D shape re-
gression algorithm in [1] is still time consuming, significantly
limiting the system’s performance on mobile devices; second,
the limitation of handling dramatic lighting changes becomes
very serious on mobile devices which could be frequently used
under different environments.

In this paper, we present a facial animation system suitable
for mobile devices by making two contributions. First, instead
of using a two-step procedure to track facial animations (i.e.,
first regressing the 3D positions of facial landmarks, and then
computing the head poses and expression coefficients.) as in
[1], we directly regress the facial motion parameters (i.e., head
poses and expression coefficients) from 2D video frames of

Figure 1: Our facial animation system running at over 30 fps on a smart phone.
The insert on the top right is the screenshot of the phone, showing the input
video frame, reconstructed landmarks and avatar.

an ordinary web camera. This one-step approach greatly re-
duces the dimension of the regression target and significantly
improves the performance of the tracking process while pre-
serving the tracking accuracy. Second, we propose to collect
the training images of the user under different lighting environ-
ments, and make use of the data to learn a user-specific regres-
sor. This regressor can robustly handle lighting changes that
frequently occur when using mobile devices.

1.1. Related Work
Many facial animation systems work by tracking facial fea-

tures and use the information derived from these features to
animate digital avatars. Tracking algorithms based on special
equipments (e.g., markers [3, 4], structure lights [5, 6], and
camera arrays [7, 8]) have been widely used in film produc-
tion where high-fidelity animations are required. While being

Preprint submitted to Graphical Models October 29, 2013



able to generate high-quality animations, these methods are not
suitable for ordinary users due to the requirement of special
equipments.

Face tracking/animation based on simple devices, such as an
ordinary video camera, has also been explored. According to
how facial features are extracted from video, these tracking al-
gorithms can be divided into two main categories: optimization-
based and regression-based. Optimization-based methods al-
ways formulate a fitting energy related to the matching error
between the features and image appearance. For example, Ac-
tive Appearance Model (AAM) methods [9, 10] reconstruct the
face shape based on an appearance model by minimizing the
error between the reconstructed appearance and image appear-
ance. Regression-based methods learn a regression function
that maps the image appearance to the target output. Some
methods [11, 12] use the parametric models (e.g., AAM) and
regress the parameters. Cao et al. [13] directly regress facial
landmarks without using any parametric shape models by min-
imizing the alignment error over training data in a holistic man-
ner. All these algorithms learn a model or a regressor from a
large pool of training data, and try to find a general routine to
track facial features in any face image. However, such general
models or regressors may not generate satisfactory tracking re-
sults for images of a specific person, especially for non-frontal
faces and exaggerated expressions.

Weise et al. [2] developed a novel facial animation system
based on a Microsoft Kinect RGBD camera. They combine the
geometry and texture registration with animation priors into a
single optimization problem. With the help of the user-specific
blendshape model pre-constructed for the user, they formulate
the optimization problem as a maximum a posterior estimation
in a reduced parameter space. Cao et al. [1] demonstrated com-
parable tracking results using a single web camera. They de-
veloped a novel user-specific 3D shape regressor, which can
regress the 3D positions of landmarks directly from 2D video
frames. These 3D landmarks are then used to track the facial
motion, including the rigid transformation and non-rigid blend-
shape coefficients, which can be mapped to any digital avatar.

1.2. Overview
We propose to learn a user-specific regressor that can directly

regress facial motion parameters from 2D video frames. To
learn this user-specific regressor, we need to prepare the train-
ing data as in [1] (see Section 2.1). We then construct the train-
ing data for the regressor in Section 2.2, and learn a facial mo-
tion regressor in Section 2.3. In Section 2.4, at run time, the
regressor takes the video frame and the previous frame’s facial
motion parameters as input and compute the facial motion pa-
rameters for the current frame.

In Section 3, we describe two strategies to handle dramatic
lighting changes in the system. First, we collect images taken
under different lighting environments and train them together
to broaden the range of lighting environments that can be han-
dled in our regressor. Second, to deal with the global intensity
adjustment caused by the camera white balance, we perform a
histogram normalization to normalize all training images and
runtime video.

(a) (b) (c) (d)

Figure 2: Two captured images with automatically located landmarks (a)(c),
and the manually corrected landmarks (b)(d).

2. Facial Motion Regression

Our facial motion regression algorithm is an extension of the
3D facial shape regression algorithm proposed by Cao et al. [1].
Unlike in [1] where the regression target is the 3D facial shape,
our regression target is the facial motion parameters that de-
scribe the rigid and non-rigid facial motion. We take an image
I and an initial guess of its facial motion parameters xc as input,
iteratively update xc in an additional manner, and output the fi-
nal motion parameters. Like in [1], the regression algorithm
consists of four parts: training data preparation, training data
construction, training and run-time regression.

2.1. Training Data Preparation

Following [1], we need to collect training data from the user.
Image capturing and labelling. First, we capture 60 im-

ages {Ii} of the user performing a sequence of predefined facial
poses and expressions. Then the 2D facial alignment algorithm
described in [13] is used to automatically locate 75 facial land-
marks on each image. These landmarks describe the relatively
distinctive facial features on the image, such as the face con-
tour, eye boundaries, and mouth boundary. The user can also
manually adjust the landmark positions if the automatic detec-
tion results are not accurate enough. Two examples of labelled
images are shown in Figure 2.

User-specific blendshape generation. Making use of these
labelled images and the FaceWarehouse database [14], we ex-
tract the user-specific blendshapes B = {B0, B1, ..., B46} and ob-
tain the intrinsic matrix Q of the camera by minimizing the fol-
lowing energy as in [1]:

Et(Q,wid,wexp,i,Mi) =

60∑
i=1

75∑
k=1

∥∥∥∥ΠQ
(
MiF(vk)

)
− s(k)

i

∥∥∥∥2
,

F = Cr ×2 wT
id ×3 wT

exp,i,

(1)

where ΠQ is the projection operator which transforms the 3D
position in camera coordinates to a 2D position in screen coor-
dinates, Mi is the rigid transformation matrix for each image, F
is the reconstructed mesh by tensor contraction, Cr is the core
tensor from FaceWarehouse, wid and wexp,i are the column vec-
tor of identity and expression weights in the tensor (the identity
weights are the same for all the images), s(k)

i is the 2D position
of the k-th landmark for image Ii, and vk is the related vertex
index on the mesh.

2



Following the assumption of the ideal pinhole camera, the
intrinsic matrix Q of the camera can be represented as

Q =

 f 0 cx

0 f cy

0 0 1

 , (2)

where f represents the focal length in terms of pixel, (cx, cy)
represents the principal point and is the center of the image.
Thus f is the only unknown parameter in the matrix.

We solve for all the unknowns (Q,wid,wexp,i,Mi) using the
same approach described in [1]. The expression blendshapes
{Bi} for the user can be computed as

Bi = Cr ×2 wid ×3 (Ǔexpdi), 0 ≤ i < 47, (3)

where Ǔexp is the truncated transform matrix for the expression
mode in FaceWarehouse, and di is an expression weight vector
with value 1 for the i-th element and 0 for other elements.

Motion parameter recovery. With the user-specific blend-
shapes and camera’s intrinsic matrix, we can recover the 3D
face meshes for all input images. For each image, we minimize
the the error between the labeled 2D landmark positions and
the projection of the 3D landmark vertices, and solve the facial
motion parameters

arg min
M,a

75∑
l=1

∥∥∥∥∥∥∥∥ΠQ

M
B0 +

46∑
i=1

αiBi


(vl) − q(l)

∥∥∥∥∥∥∥∥
2

, (4)

where a = {a1, a2, ..., a46} is the expression coefficients M is the
rigid transformation matrix. Note that the setup images con-
sist of pre-defined standard expressions. To make the blend-
shape expression coefficients consistent with pre-defined stan-
dard blendshape coefficients a∗, we also add a regularization
term to the above energy: ‖a − a∗‖2.

We further represent the rigid transformation matrix M as
a 4D rotation quaternion vector R and a 3D translation vector
T. Finally, for each input image Ii, we concatenate its motion
parameters to form a 46+4+3 = 53D vector: xg

i = (ag
i ,R

g
i ,T

g
i ).

2.2. Training Set Construction
For each image and the computed motion parameter vector

(Ii, xg
i ), we construct a set of augmented parameter vectors as

its initial guess in the regression process. Specifically, for each
parameter vector xg

i = (ag
i ,R

g
i ,T

g
i ), the augmented parameter

vectors are computed as follows:

• Translation: (ag
i ,R

g
i ,T

g
i + ∆i j), where translation vectors

∆i j, 1 ≤ j ≤ 27, form a 3 × 3 × 3 jittered grid.

• Rotation: (ag
i ,R

g
i′ ,T

g
i + ∆i j), where {Rg

i′ , i
′ , i} cover the

rotations of all other input images. For each Rg
i′ , several

random translations ∆i j, 1 ≤ j ≤ 32 are applied.

• All other expressions: (ag
i′ ,R

g
i ,T

g
i +∆i j), where {ag

i′ , i
′ , i}

cover the blendshape coefficients of all other input images.
For each ag

i′ , several random translations ∆i j, 1 ≤ j ≤ 10
are applied.

We denote each augmented parameter vector as xc
i j, comb-

ing which we can construct a training tuple as (Ii, xg
i , x

c
i j). For

description simplicity, we denote all these training data as
{(Ii, xi, xc

i )}.

2.3. Regressor training
With these N training data {(Ii, xi, xc

i )}, we train a motion pa-
rameter regression function from xc

i to xi based on the pixel
intensity of image Ii. We use the two-level boosted regression
algorithm in [1], as described in Algorithm 1. In the first level,
we reconstruct the 3D landmarks from the current motion pa-
rameters xc

i , and sample pixels on image Ii to construct the ap-
pearance vector. In the second level, we build a sequence of
weak regressors based on this appearance vector, and update
the current motion parameters xc

i by minimizing the error be-
tween xi and xc

i .
Appearance vector generation. We need to randomly gen-

erate P points around the face mesh and use them to sample
the images. Each point is represented as an index-offset pair
(kp,dp), where kp is the landmark index and dp is the offset. In
our experiment, we randomly choose a landmark kp, and deter-
mine a random offset as in [1].

For each training data (Ii, xi, xc
i ), we can first reconstruct the

3D landmark positions at the rest pose (i.e., without rotation
and translation), S c

i = {sc
ik}, by

sc
ik =

B0 +

46∑
j=1

αc
i jB j


(vk)

. (5)

Based on the positions of these landmarks at rest pose, we gen-
erate the P points at the rest pose according to the index-offset
pairs {(kp,dp)}. We then transform these 3D points via the trans-
formation in xc

i , and then project the transformed points to the
image space via the mapping function ΠQ:

up = ΠQ
(
Rc

i

(
sc

ikp
+ dp

)
+ Tc

i

)
. (6)

The image intensity values at {up} construct the appearance
vector Vi = App(Ii, xc

i , {(kp,dp)}). For each appearance vector
Vi, we generate P2 index-pair features by computing the differ-
ences between each pair of elements in Vi.

In the second level, based on the appearance vector Vi ob-
tained in the first level, we construct a set of weak regressors
in an additive manner, which minimize the error between the
ground truth parameters xi and the current parameters xc

i . To
train these weak regressors, we need to efficiently choose the
features from the P2 index-pair features.

Feature selection. We choose the feature that has the highest
correlation with the regression target. To select the effective
features, we first generate a random 53D direction Y . For each
training data, we calculate the difference vector by δxi = xi−xc

i .
We then project this difference vector to the random direction Y
to produce a scalar. We choose the index-pair with the highest
correlation with this scalar.

In the parameter vector x = (a,R,T), the three components
are in different spaces with different units. We thus cannot han-
dle them in the same way. We need to carefully choose weights

3



Algorithm 1 Facial motion regression training
Input: N Training data (Ii, xi, xc

i )
Output: Two-level boosted regressor

/* level one */
for t = 1 to T do
{kp,dt

p} ← randomly generate P offsets
for i = 1 to N do

Vi ← App(Ii, xc
i , {(kp,dp)})

Compute the P2 feature values for Vi

end for

/* level two */
for k = 1 to K do

for f = 1 to F do
Y f ← randomly generate a direction
for i = 1 to N do
δxi ← xi − xc

i
δx′i ← scale δxi

ci ← δx′i · Y f

end for
Find the index-pair with the highest correlation with
{ci}, and randomly choose a threshold

end for
for i = 1 to N do

Calculate the features in Vi using F index-pairs
Compare the features to the thresholds and determine
which bin the data belongs to

end for
for i = 1 to 2F do

Compute δxbi according to Eq. (7)
for each training data l ∈ Ωb j do

xc
l ← xc

l + δxbi

end for
end for

end for
end for

to reflect their influences on the features. According to our ex-
periments, the weight values listed in Table 1 can generate sat-
isfactory results.

Coefficients a Rotation R Translation T
4 8 1/σ

Table 1: The scaling factors for different components in motion parameters,
where σ is the standard deviation of translation in the training data.

Fern construction. We repeat F times to select F different
index-pair features. For each index-pair feature, we assign a
random threshold value between the minimum and maximum
differences of element pairs in the appearance vectors. These
features and related thresholds are used to build a primitive re-
gressor called fern. In each fern, we calculate the F index-pair
features for each training data, compare the feature values with
the threshold values, and determine which bin in the index-pair
space it belongs to. In each bin b, for the training data falling
into it, which we denote them as Ωb, we try to find an addi-

Algorithm 2 Runtime regression
Input: Previous frame’s motion parameters x′, current frame’s
image I
Output: Current frame’s motion parameters x

S ′ ← RC(x′)
Get the parameter vector xs in {xg

i } most similar to x′
Rb ← Rs(R′)−1

S ′∗ ←= RbS ′

{x∗l } ← Get L parameter vectors most similar to S ′∗ in the
training data
for l = 1 to L do

M∗
l ← merge(Rs,Tl)

Mb ←M′(M∗
l )−1

xl ←Mbx∗l
for t = 1 to T do

Vl ← App(I, xl, {(kp,dp)})
for k = 1 to K do

Get the F index-pairs recorded during training
Calculate the F appearance feature values for Vl

Use the values to locate its bin b in the fern
Get δxb in b
xl ← xl + δxb

end for
end for

end for
x← Compute the median result of {xl, 1 ≤ l ≤ L}

tional offset that minimizes the error between the ground truth
parameters and current parameters. Following [1], this addi-
tional offset can be calculated as

δxb =
1

1 + β/|Ωb|

∑
i∈Ωb

(
xi − xc

i

)
|Ωb|

, (7)

where |Ωb| is the number of training data falling into bin b, β is
the free shrinkage parameter that helps to overcome the overfit-
ting when the number training in the bin is too small. We take
δxb as the regression output for each bin, and for all the data in
the bin, we update their current parameters by xc = xc + δxb.

As described in [1], we process T stages in the first level and
K stages in the second level, iteratively build the primitive re-
gressor, calculate the regression output and update current mo-
tion parameters for each training data. In our experiment, we
choose T = 7, P = 300,K = 200, F = 5, β = 150.

2.4. Runtime Regression

With the facial motion regressor trained in the last section,
we can compute the facial motion parameters for input video
frame I in real time. We start from x′, the regression result
of the previous frame and find motion parameters similar to x′
from the training set as the initial parameters for regression.

Initial parameters. Similar to the training process, we first
reconstruct the 3D landmark vector S ′ = {s′k} using the previous

4



frame’s parameter vector x′ via

s′k = R′
B0 +

46∑
j=1

α′jB j


(vk)

. (8)

Notice that we omit the translation T′ here, and we denote
this reconstructed operator as S = RC(x). For the ground truth
motion parameter of each input image xg

i , we reconstruct the
3D landmark positions via S g

i = RC(xg
i ). We then find the land-

mark vector S s from {S g
i }, which is most similar to S ′, and take

the corresponding parameters as the most similar parameters
xs. To compare two landmark vectors, we directly compute the
Euclidean distance between them. We then transform S ′ to the
pose of xs via rotation Rb = Rs(R′)−1. Finally, we compare
the rotated landmarks RbS ′ with the reconstructed landmarks
{S c

i = RC(xc
i )} from all augmented parameters in the training

data, find the L most similar ones, and take the related parame-
ters as {x∗l }.

Given that we rotate the landmarks according to Rb in find-
ing the similar landmarks and omit all translations in choosing
similar parameters, we need to transform each similar parame-
ter vector x∗l to the pose of the previous frame’s parameters x′.
We first combine the rotation Rs in xs and the translation in x∗l ,
and merge them as a new transformation M∗

l = merge(Rs,T∗l ).

Thus the transformation from xl to x′ pose is Mb = M′
(
M∗

l

)−1
,

where M′ is the transformation in x′. Applying the Mb on x∗l ,
we finally find the L initial parameter vectors: xl = Mbx∗l .

Appearance vector. We take each parameter vector xl as the
initial parameters in the regressor, and update it through the re-
gressor. In each stage of the first level regression, we construct
the appearance vector based on current motion parameters xl

and the index-offset pairs {(kp,dp)}.
Fern passing. In the second level of regression, we take the

appearance vector Vl, and pass all the ferns in an additional
manner. For each fern, we take the recorded F index-pairs and
calculate the related features from Vl. These features are com-
pared with related threshold values to locate the bin b among
the 2F bins. We then take the regression output δb associated
with b and update the parameters via xl = xl + δxb.

For each initial parameter vector, after passing all ferns in
the regressor, we get an updated parameter vector. We finally
calculate the median of all the updated parameter vectors {xl} as
the final result x . The runtime regression algorithm is described
in Algorithm 2.

Note that to get realistic facial animation, the range of ex-
pression coefficients needs to be restricted to between 0 and 1.
To do this, we clamp the coefficients to between 0 and 1 each
time the parameter vector is updated in the regression process.
Such a simple approach can generate satisfactory results in our
experiments. And interestingly, the results from our motion pa-
rameter regressor are already very smooth and temporally co-
herent. Although it is possible to consider animation prior in a
postprocessing step like in [1], we found it is unnecessary to do
this in our experiment.

Figure 3: Captured images under different light conditions. From left to right:
in the office, outdoor with direct sunshine, and in a hotel with dim light.

Figure 4: Histogram normalization. Left: before normalization, most pixels are
located in the dark region in histogram and the face appears very dark; right:
after normalization, the histogram distributes uniformly and the face region
becomes brighter.

3. Handling Lighting Changes

Unlike desktop PCs which are used indoors most of the time,
mobile devices may be used under different environments. For
example, if the user is using our system while walking, the
lighting and background are changing all the time. Cao et al. [1]
can handle lighting changes to a modest extent, but may fail to
generate accurate tracking results if the lighting environment
changes dramatically.

Our first strategy is to include training data from multiple
environments to train the regressor. We collect the user’s setup
images under different environments. In our experiments, as
shown in Figure 3, we include the images in the office, outdoors
with direct sunshine, and in a hotel room with dim light.

Second, mobile cameras often perform white balancing. This
changes the overall intensity of the image, making the whole
image darker or brighter. Given that we compare the index-pair
features acquired from images, which are absolute values re-
lated to pixel’s intensities, the global adjustment will make the
intensity value inconsistent in range. To handle this problem,
we additionally perform a histogram normalization on the ap-
pearance vectors, in both the training and run-time testing.

An example of histogram normalization is shown in Figure 4.
Due to the bright background, white balance makes the face ap-
pear dark. Histogram normalization helps to adjust the intensity
of the entire face, unify the global intensity of the image, and
make the tracking more robust.

4. Experimental Results

We have implemented the system on a PC with an Intel Core
i7 (3.5 GHz) CPU, with an ordinary web camera recording
640× 480 images at 30 fps. The runtime algorithm runs at over
200 fps on this device, eight times faster than [1]. We also tested
the regression algorithm on a Motorola MT788 cell phone, with
an Intel Atom 2.0 GHz CPU and Android 4.0 operating system.

5



RMSE < 3.5 pixels < 5.0 pixels < 6.5 pixels < 8.0 pixels Avg. Err. (pixels)
Basic 3.0% 17.4% 29.9% 44.3% 12.12

Basic + AD 11.4% 46.1% 69.5% 80.2% 6.18
Basic + HN 22.2% 46.7% 60.5% 77.8% 7.22

Basic + AD + HN 61.6% 88.0% 97.6% 100.0% 3.31

Table 4: Percentages of frames with RMSE less than given thresholds and the average errors using four different methods,

Figure 5: Comparison with Cao et al. [1]. Top: our tracking results. Bottom:
results from Cao et al. [1].

Target 2D shape 3D shape Ours
Dimension 150 225 53

Training (min) 8 10 3.5
Regression (ms) 4.3 6.2 1.8

Fitting (ms) / 8.2 0.0
Runtime total (ms) / 14.4 1.8

Memory (MB) 21.2 32.3 9.17

Table 2: The training timing and memory consumption of different regression
algorithms. All results are trained using the same training data.

The performance is still very high, at about 30 fps (Figure 1).
Figure 7 shows some other results using our system. Please see
the accompanying video1 for animation demos.

Unlike [13] and [1] which regress face shapes, we directly
regress facial motion parameters, which are represented as a
53D vector. The dimension of our regression target is thus
much lower than the regression targets of [13] (75 × 2D) and
[1] (75× 3D). The efficiency of our algorithm thus comes from
several aspects: 1) the reduced dimension of regression target
greatly improves the regression efficiency, in both the training
and runtime testing; 2) given that we have the rotation R and
translation T in each iteration, we do not need to calculate the
transformation via singular value decomposition (SVD); 3) we
do not need to fit facial parameters after the regression, which
contains the SVD and BFGS solving procedure in [1]. In Ta-
ble 2, we compare the timings in training, testing and the mem-
ory consumption with different regression targets.

To compare the accuracy of different algorithms, we take a
set of video sequences as input, and use the generated regres-
sors to compute the landmark positions (or parameters) respec-

1http://gaps-zju.org/publication/2013/mface-divx.avi

RMSE < 2 px < 3 px < 4 px Avg. Err.(px)
Cao et al. [1] 66.2% 87.1% 97.1% 2.08

Ours 20.1% 65.5% 95.7% 2.93

Table 3: Percentages of frames with RMSE less than given thresholds and the
average errors.

tively. In Table 3, we measure the errors (in pixels) between the
screen projection of landmarks obtained by the two regression
algorithms and the ground truth positions, which are manually
labelled for each frame.

Figure 5 shows the comparisons of our algorithm with Cao
et al. [1]. It can be seen that our algorithm achieves compa-
rable tracking results. We note that the landmark positions re-
constructed from our motion parameters are not as accurate as
those generated by Cao et al.’s direct shape regression. Some
facial features of our results do not match very well. In prac-
tice we found that the animations generated from our motion
parameters are visually plausible and resemble the user’s facial
motion very well. Please see the accompanying video for ani-
mation results.

To evaluate the effects of our two strategies for handling
lighting changes, we designed four different regressors: the
basic regressor trained with images captured under one light-
ing environment (basic), the regressor trained with images cap-
tured under tree lighting environment (basic+AD), the regres-
sor trained with images captured under one lighting environ-
ment using histogram normalization (basic+HN), and the re-
gressor trained with images captured under tree lighting envi-
ronment using histogram normalization (basic+AD+HN). We
tested the four regressors on a testing video recorded under
a new lighting environment which is not used in the training
process. From Table 4 and Figure 6, it can be seen that Ba-
sic+HN+AD can produce the best results in our experiment.

5. Conclusion

We have introduced a novel facial motion regression algo-
rithm and shown that it can be used to generate accurate facial
animations in real time even on mobile devices. We also de-
scribed two strategies to improve the robustness of our algo-
rithm to lighting changes. The whole system provides a practi-
cal solution to real-time facial animation on mobile devices.

Acknowledgements

This work was supported by the NSF of China (No. 61003145
and No. 61272305) and the National High-Tech R&D program
of China (No. 2012AA011503).

6



Figure 6: Comparison of different algorithms for dynamic light adaptation. From top to bottom: Basic, Basic+AD, Basic+HN, Basic+AD+HN.

Figure 7: Real-time facial animation results of two examples. For each example, from left to right: input video frame, tracked mesh, reconstructed landmark, driven
avatar.

7



References

[1] C. Cao, Y. Weng, S. Lin, K. Zhou, 3d shape regression for realtime facial
animation, ACM Trans. Graph. 1, 2, 3, 4, 5, 6

[2] T. Weise, S. Bouaziz, H. Li, M. Pauly, Realtime performance-based facial
animation, ACM Trans. Graph. 30 (4) (2011) 77:1–77:10. 1, 2

[3] L. Williams, Performance driven facial animation, in: Proceedings of
SIGGRAPH, 1990, pp. 235–242. 1

[4] H. Huang, J. Chai, X. Tong, H.-T. Wu, Leveraging motion capture and
3d scanning for high-fidelity facial performance acquisition, ACM Trans.
Graph. 30 (4) (2011) 74:1–74:10. 1

[5] L. Zhang, N. Snavely, B. Curless, S. M. Seitz, Spacetime faces: high
resolution capture for modeling and animation, ACM Trans. Graph. 23 (3)
(2004) 548–558. 1

[6] T. Weise, H. Li, L. V. Gool, M. Pauly, Face/off: Live facial puppetry, in:
Eurographics/SIGGRAPH Symposium on Computer Animation, 2009. 1

[7] D. Bradley, W. Heidrich, T. Popa, A. Sheffer, High resolution passive fa-
cial performance capture, ACM Trans. Graph. 29 (4) (2010) 41:1–41:10.
1

[8] T. Beeler, B. Bickel, P. Beardsley, R. Sumner, M. Gross, High-quality
single-shot capture of facial geometry, ACM Trans. Graph. 29 (4) (2010)
40:1–40:9. 1

[9] T. Cootes, G. Edwards, C. Taylor, Active appearance models, ECCV’98
(1998) 484–498. 2

[10] I. Matthews, S. Baker, Active appearance models revisited, International
Journal of Computer Vision 60 (2) (2004) 135 – 164. 2

[11] P. Dollár, P. Welinder, P. Perona, Cascaded pose regression, in: Com-
puter Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, IEEE, 2010, pp. 1078–1085. 2

[12] P. Sauer, T. Cootes, C. Taylor, Accurate regression procedures for active
appearance models, in: British Machine Vision Conference, 2011. 2

[13] X. Cao, Y. Wei, F. Wen, J. Sun, Face alignment by explicit shape regres-
sion, in: Computer Vision and Pattern Recognition (CVPR), 2012, pp.
2887–2894. 2, 6

[14] C. Cao, Y. Weng, S. Zhou, Y. Tong, K. Zhou, Facewarehouse: a 3d facial
expression database for visual computing, Tech. rep. (2012). 2

8


