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Estimation with a Consumer RGB-D Camera
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Abstract—Acquiring general material appearance with hand-held consumer RGB-D cameras is difficult for casual users, due to the
inaccuracy in reconstructed camera poses and geometry, as well as the unknown lighting that is coupled with materials in measured
color images. To tackle these challenges, we present a novel technique for estimating the spatially varying isotropic surface
reflectance, solely from color and depth images captured with an RGB-D camera under unknown environment illumination. The core of
our approach is a joint optimization, which alternates among solving for plausible camera poses, materials, the environment lighting
and normals. To refine camera poses, we exploit the rich spatial and view-dependent variations of materials, treating the object as a
localization-self-calibrating model. To recover the unknown lighting, measured color images along with the current estimate of materials
are used in a global optimization, efficiently solved by exploiting the sparsity in the wavelet domain. We demonstrate the substantially
improved quality of estimated appearance on a variety of daily objects.

Index Terms—RGB-D camera, spatially varying BRDF, joint optimization.
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1 INTRODUCTION

W ITH the wide availability of consumer RGB-D cam-
eras, casual users can easily acquire the geometry

of various objects at home nowadays. For example, by
moving and pointing a Kinect sensor towards an object
from different perspectives, a continuous stream of depth
maps are obtained; each map is processed, to solve for the
corresponding camera pose and refine the current geometry
estimate at the same time [1], [2].

The geometry alone is often not sufficient to faithfully
convey the realism of a captured object. The key missing
piece here is a realistic material appearance. Existing systems
such as [2] blend multi-view color samples, resulting in
ghosting or blurring artifacts. Recently, Zhou and Koltun [3]
present an efficient algorithm that jointly estimates RGB-D
camera poses and color textures of objects. But it is still diffi-
cult for a non-professional user to acquire complex, general
material appearance, which varies in space as well as with
lighting and view conditions, using an RGB-D camera.

Previous work on material acquisition does an excel-
lent job in digitizing real-world materials with high fi-
delity [4]. The majority of related work assumes carefully
calibrated cameras and precise geometry, and focuses on
reconstructing high-dimensional material appearance from
measurements. However, a number of challenges arise, if
one directly applies existing methods to estimate general
material appearance, using a hand-held RGB-D camera at
home/office with uncontrolled illumination. First, the cam-
era poses estimated from the noisy depth camera are too
inaccurate to recover appearance. Second, the reconstructed
geometry, in particular normals, lacks the precision for
appearance computation of acceptable quality. Third, unlike
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many previous approaches that employ active illumination,
the unknown lighting must be handled in order to estimate
materials from captured color images. Overall, the problem
is substantially more complicated, compared with existing
work that models color textures [3].

Fig. 1. Rendering results of material appearance estimated using our
approach, under the uffizi environment map. Given a geometric model
and RGB images acquired by a consumer RGB-D camera, our joint
optimization alternates among solving for plausible camera poses, ma-
terials, the environment lighting and normals.

In this paper, we present a novel technique for estimating
the spatially varying isotropic surface reflectance under
unknown environment illumination, solely from color and
depth images captured with a hand-held RGB-D camera. To
tackle the aforementioned difficulties, we propose a coher-
ent, joint optimization formulation, that alternates among
solving for plausible camera poses, materials, the envi-
ronment lighting and normals. To refine imprecise camera
localization, we exploit the rich spatial and view-dependent
variations of materials. Essentially, the object is treated as
a localization-self-calibrating model. To recover the unknown
lighting, measured color images along with the current
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estimate of materials are used in a global optimization,
which is efficiently solved by exploiting the sparsity in the
wavelet domain. We also correct inaccurate normals, mainly
based on a photometric consistency constraint.

Our approach considerably simplifies appearance acqui-
sition for casual users at home/office: one only needs to
take a video of an object using a hand-held RGB-D camera
from different viewpoints, without any markers or explicit
calibrations; there is no need to capture the environment
illumination using a light probe in a separate process. We
test our system on hand-held scans of a variety of daily
objects, and demonstrate the substantially improved quality
of estimated appearance, ranging from Lambertian to highly
specular. Our system is potentially useful for many applica-
tions, such as digital content creation by non-professionals
in e-commerce and games.

2 PREVIOUS WORK

To optimize camera poses corresponding to input RGB
images is a classic problem in the acquisition of geometric
models with color attributes. A number of methods (e.g., [5],
[6]) have been proposed to maximize the color consistency
among input images. Recently, Zhou and Koltun [3] propose
a joint optimization algorithm to compute color textures
of Lambertian objects with an RGB-D camera. Previous
work typically filters highlights as outliers and produces
view-independent texture maps, which are problematic for
relighting, as materials and lighting are baked together. In
comparison, our method handles more general materials
that can be described as 6D SVBRDFs (spatially varying
BRDFs), and exploits lighting/view-dependent cues to lo-
calize the camera. The SVBRDF, the environment lighting
and the normals are also estimated/decoupled as results of
our joint optimization.

SVBRDFs can be measured with high precision, by
carefully sampling the 6D domain of lighting and view
directions, as well as locations. The majority of previous
work in this field relies on active illumination to accurately
and robustly reconstruct the surface reflectance (e.g., [7],
[8], [9]). These methods usually require specific devices
together with careful calibrations to obtain full control over
the incident lighting, which is not easily accessible to non-
professional users. On the other hand, passive appearance
acquisition techniques estimate the reflectance with un-
known lighting. We review two main classes of passive
methods and previous work based on similar hardware, as
they are closely related to this paper. Readers are referred
to [4] for an excellent survey on recent acquisition tech-
niques.

Example-based Acquisition. Hertzmann and Seitz [10]
reconstruct normals and reflectance, by photographing an
object along with a reference object of known geometry and
similar materials. The idea is extended to the multi-view
case in [11]. Dong et al. [12] employ a custom-built device
for quickly capturing representative BRDFs, and propose
a two-pass algorithm that acquires an SVBRDF as linear
combinations of the representatives. Ren et al. [13] use a
linear light source and a BRDF chart which contains tiles
of a variety of known BRDFs. They photograph a planar
sample with the chart. The SVBRDF is then reconstructed

by aligning the reflectance sequences of the sample and
the chart, via dynamic time warping. In comparison, our
method does not require the presence of known, reference
materials that are similar to the appearance of the object
during acquisition. Moreover, our reconstructed SVBRDFs
are not limited in the linear subspace spanned by a few
example materials.

Joint Estimation of Reflectance and Lighting. From a
single image, Romeiro and Zickler [14] estimate the ho-
mogeneous reflectance on a sphere with unknown lighting,
constrained by the statistics of real-world illuminations. For
an object of known shape, both the reflectance and lighting
can be estimated with constraints on the entropy as well
as the bound and variability of real-world materials [15].
The same research group [16] also proposes a method to
jointly estimate unknown reflectance and shape, by exploit-
ing the orientation clues in a known lighting environment.
Haber et al. [17] optimize the lighting and SVBRDFs in an
all-frequency wavelet domain based on inverse rendering,
while requiring manual registrations of input images. Li
et al. [18] reconstruct a geometry using multi-view stereo
for human performance, and optimize both the lighting and
SVBRDFs, assuming that the specular BRDFs can be divided
into spatial clusters of same materials. Palma et al. [19] use
video frames and a known geometry as input. They estimate
the environment lighting via points with specular reflec-
tions, and then optimize a parametric SVBRDF. Recently,
Dong et al. [20] reconstruct the lighting and the SVBRDF
expressed by a data-driven microfacet model, from a video
of a rotating object with known geometry. The sparsity of
natural illumination in the gradient domain is exploited to
constrain the optimization.

Similar Hardware Setups. Recently, researchers start to
investigate appearance acquisition using consumer RGB-
D cameras. Knecht et al. [21] interactively estimate BRDFs
from a fixed-view depth map captured by a Kinect sensor.
The surrounding lighting is acquired using a DSLR with a
fish-eye lens. In our earlier work [22], we propose a hybrid
system that employs the Kinect infra-red emitter/receiver
to estimate spatially varying material roughness, and uses
the Kinect RGB camera to compute the diffuse and specular
albedos. As the focus of the work is to provide quick visual
feedback, the camera poses from KinectFusion are used
directly. In addition, a separate scanning pass is required
to capture the environment illumination from a mirror ball.
Zollhöfer et al. [23] refine the geometry captured with an
RGB-D camera with shading cues, assuming that surfaces
are predominantly Lambertian.

Most existing appearance acquisition methods assume
that the camera poses and the object geometry are known
and sufficiently accurate (after calibrations), and focus on
estimating the materials. However, this is not the case
with consumer RGB-D cameras, which motivates our joint
optimization framework. We directly take unregistered RGB
images from the Kinect sensor plus the inaccurate geometry
and camera poses from KinectFusion as input, and explicitly
solve for plausible camera poses, materials, the lighting and
normals, based on a unified optimization objective.
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3 PRELIMINARIES

In this section, we derive equations for efficiently computing
our joint optimization objective to be defined in Sec. 4. We
do not handle visibility information or interreflections in
our pipeline, as is common in existing work on appear-
ance acquisition. Although the following derivations are
based on grayscale values, the extension to RGB channels
is straightforward (Sec. 5). First of all, the outgoing radiance
L at a surface point x along a direction ωo can be calculated
as:

L(ωo;x) =

∫
Ω

E(ωi)fr(ω
′
i, ω
′
o;x)(n(x) · ωi)+dωi. (1)

Here Ω is the upper hemisphere, E is a distant environment
lighting, ωi is a lighting direction, fr is a spatially varying
isotropic BRDF and n is a normal. We parameterize E over
two squares with a total resolution of 256×512, according
to [24]: each hemisphere of directions are mapped onto one
square (Fig. 2). Note that ω′ denotes a direction in the local
frame of x, while ω is expressed in the global coordinate
system. In addition, (·)+ is the cosine of the angle between
two vectors, which is clamped to zero if negative. We drop
x in subsequent derivations for brevity.

Similar to previous work in real-time rendering [25], we
represent the 2D cosine-weighted BRDF slice at an outgoing
direction ω′o, as a diffuse term plus a specular term:

fr(ω
′
i;ω
′
o) · (n · ωi)+ ≈ ρd

π
(n · ωi)+ + ρsαG(ωi;κ, µ), (2)

where ρd is the diffuse albedo, ρs is the specular albedo and
α is a non-negative scalar. G is a Gaussian-like von Mises-
Fisher (vMF) probability distribution function over the unit
sphere [26], defined as:

G(ω;κ, µ) =
κ

4π sinh(κ)
eκ(ω·µ), (3)

with κ as the inverse width and µ the central direction.
Using vMFs allows us to compactly represent a wide range
of BRDFs, as only {α(ω′o), κ(ω′o), µ(ω′o)} for discretized ω′o
are stored. Moreover, rendering vMF-based BRDFs under
environment lighting is highly efficient (Eq. 6). vMF-based
BRDFs also lead to a straightforward equation for estimat-
ing the environment lighting (Sec. 4.3). On the other hand,
the approximation of Eq. 2 has a limited effect on accuracy
in our case, which will be detailed in Sec. 6.

With the vMF-based BRDF representation, (inverse)
rendering under environment lighting can be performed
rapidly. We first precompute the convolution of the lighting
E and cosine / vMF lobes as:

Ed(n) =
1

π

∫
S2

E(ωi)(n · ωi)+dωi, (4)

Es(κ, µ) =

∫
S2

E(ωi)G(ωi;κ, µ)dωi, (5)

which yields the diffuse response function Ed(n) and the
specular response function Es(κ, µ). An example is shown
in Fig. 2. Ed and Es(κ; ·) share the same double-squares
parameterization as E. For κ, we discretize it as κ =
2, 22, ..., 214, whose range and sampling rate are sufficient

for approximating BRDFs of our interest. Next, by substi-
tuting Eq. 4 & 5, computing Eq. 1 is simply a mixture of
lookups and basic arithmetic operations:

L(ωo) ≈ ρdEd(n) + ρsα(ω′o)Es(κ(ω′o), µ(ω′o)). (6)

Note that Ed, Es are decoupled from the BRDF fr , and
only need to be precomputed once for a given environment
lighting E. For any fr expressed in the form of Eq. 2, we
can rapidly evaluate the rendering equation (Eq. 6) with
precomputed Ed and Es.

Environment

Lighting

Parameterize

E

* =

vMF filters

Es

Fig. 2. The environment lighting E is parameterized using an octahe-
dron mapping [24]. The specular response function Es is computed by
convolving E with vMFs of different sizes (i.e., κ).

4 THE JOINT OPTIMIZATION

Our input is a set of images {Ij} captured from a Kinect
sensor, and a set of vertices {x} representing the geometry of
an object of interest, obtained from KinectFusion. Our goal
is to estimate the appearance of an object that best matches
its measurements in {Ij}. Since the appearance is related to
the unknown spatially varying BRDF fr, the environment
lighting E, the inaccurate camera poses {Tj} and normals
{n} (Eq. 1), we perform a joint optimization with respect to
all four factors as follows:

arg min
{Tj},{fr,n}x,E

λIPI + λSPS + λCPC , (7)

where PI is the photometric consistency term defined as:

PI =
∑
j

∑
x∈Xj

||Ij(x, Tj)− L(ωo;x,E, Tj)||2, (8)

and PS/PC are geometric terms related to the normal op-
timization only, which will be detailed in Sec. 4.4. In Eq. 8,
Xj is the subset of vertices that are visible in image Ij . Tj is
an extrinsic 4 × 4 matrix, that transforms x from the global
coordinate system to a local system corresponding to image
Ij .

Our objective in Eq. 7 is non-convex, and involves
many variables. To minimize it in practice, we alternate
among solving for camera poses {Tj} (Sec. 4.1), materials fr
(Sec. 4.2), the environment lighting E (Sec. 4.3) and normals
n (Sec. 4.4). In each stage, we estimate some variables and
keep others fixed, while minimizing the same global objec-
tive. Pseudo-code of our joint optimization can be found in
Tab. 1.

Observe that Eq. 7 is a non-linear least-squares problem,
in the form of

∑
i ri

2. We can minimize it via the Gauss-
Newton method, similar to [3]. Specifically, suppose θ are
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TABLE 1
Pseudo-code of our joint optimization.

1. Initialization (Sec. 5).
2. Solve for camera poses {T} (Sec. 4.1).
3. Solve for cluster materials {ρd, ρs,m} (Sec. 4.2).
4. Reassign each point to the closest cluster material (Sec. 4.2).
5. Solve for the lighting E (Sec. 4.3).
6. Solve for normals {n} (Sec. 4.4).
7. Go to step 2 if convergence is not reached.
8. Post-processing (Sec. 5).

the variables of interest at the current stage. In each iteration,
θ is updated as θk+1 = θk + ∆θ, where ∆θ is the solution to
the linear system J>r Jr∆θ = −J>r r. Here r = (r0, r1, ...)

>

is the residual vector, and Jr is the Jacobian, computed as
the finite difference.

4.1 Camera Pose Optimization

The camera poses {Tj} determine both the measured image
pixel Ij(x, Tj) that a point x corresponds to, and the inverse
rendering of estimated appearance, L(ωo;x, Tj). As {Tj} are
independent from each other, we optimize them one at a
time. Specifically, for an image Ij , minimizing Eq. 7 with
respect to the transform Tj is equivalent to minimizing the
following equation:

arg min
Tj

∑
x∈Xj

||Ij(x, Tj)− L(ωo;x, Tj)||2. (9)

To obtain Ij(x, Tj), we first compute the transformed point
Tjx, which is then projected onto the image plane of Ij ,
based on the camera’s intrinsic parameters; we then bi-
linearly interpolate image pixels to get the result. L can be
quickly computed with Eq. 6, based on the current estimate
of the BRDF, lighting and normal.

Following [3], ∆Tj is parameterized by a 6D vector:

∆Tj ≈

 1 −γj βj aj
γj 1 −αj bj
−βj αj 1 cj

0 0 0 1

 , (10)

where (aj , bj , cj)
> is a translation, and (αj , βj , γj)

> can
be viewed as the angular velocity. In each iteration, we
compute {∆Tj} and update {Tj}, using the Gauss-Newton
method.

4.2 Material Optimization

Materials are related to the estimated appearance L(ωo;x)
via Eq. 1. We describe materials as a 6D SVBRDF, which
has a large number of degrees of freedom. To make our
material optimization feasible, we assume that there are
a finite number of possible specular BRDFs, whose vMF
representations are precomputed (Eq. 2). So optimizing fr
is equivalent to optimizing ρd and ρs, and picking the
best possible {α(ω′o), κ(ω′o), µ(ω′o)} from all precomputed
specular BRDFs. In this paper, we use 256 isotropic Ward
models [27] as specular BRDFs, whose roughness param-
eter ranges from 0.007 to 0.4. Other analytic or measured
BRDFs can also be included, provided that they can be well
approximated by Eq. 2.

To further constrain the unknown materials, we assume
in this stage that each fr(x) belongs to only one of k distinct
BRDFs, where k is a user-specified number. Thus, X is
partitioned into k clusters as X = ∪lMl, based on the
BRDFs. This idea is similar to [28].

Now material optimization is performed as two steps in
each iteration: computing the optimal cluster BRDFs from
measurements of cluster members Ml, and reassigning all
points to their closest cluster BRDFs. In the first step, we
minimize the following goal derived from Eq. 7, for each
material cluster Ml:

arg min
ρd,l,ρs,l,ml

∑
j

∑
x∈Xj∩Ml

||Ij(x)− L(ωo;x)||2. (11)

Here ml is the index of precomputed specular BRDFs. To
find the optimal ml, we first enumerate all precomputed
specular BRDFs. For a given ml, ρd,l and ρs,l can be calcu-
lated as the solution to a non-negative linear least-squares
problem, derived by substituting Eq. 6 into Eq. 11:∑

j,x∈Xj∩Ml

||Ij(x)− L(ωo;x)||2

≈
∑

j,x∈Xj∩Ml

||Ij(x)− ρd,lEd(n)− ρs,lαml
Es(κml

, µml
)||2.

(12)

The {ρd,l, ρs,l,ml} that minimizes Eq. 11 is finally chosen as
the optimal cluster material.

The second step in material optimization is to reassign
each point x to the closest cluster BRDF, based on its image
measurements. For a given x, we optimize the following
objective:

arg min
l

∑
j

||Ij(x)− L(ωo;x)||2, (13)

by looping over all cluster BRDFs and selecting the one that
minimizes the above equation.

4.3 Lighting Optimization

Similar to materials, the lighting E is related to the esti-
mated appearance via Eq. 1 as well. We derive the lighting
optimization objective from Eq. 7 as:

arg min
E

∑
j

∑
x∈Xj

||Ij(x, Tj)− L(ωo;x,E)||2, (14)

≈
∑
j

∑
x∈Xj

||Ij(x, Tj)−
∫
S2

[
ρd
π

(n, ωi)
++

ρsαG(ωi;κ, µ)]E(ωi)dωi||. (15)

Note that Eq. 15 is obtained by substituting Eq. 2.
As the integral operator is linear, Eq. 15 is essen-
tially a linear least-squares problem. However, solv-
ing the above problem in a brute-force way is pro-
hibitively expensive. Consider formulating the equation as
min ||Fe − p||2, where e = (E(ωi,0), E(ωi,1), ...)>, p =
(Ij0(x0), Ij0(x1), ..., Ij1(x0), ...)>, and F is a matrix defined
as Fkl = [ρdπ (n, ωi,l)

+ + ρsαG(ωi,l;κk, µk)]∆ωi,l. Here ωi,l
is a discretization of the lighting direction ωi. In our exper-
iments, matrix F is large with ˜108 rows and ˜105 columns.
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Fig. 3. Two vMFs (G) approximated with Haar wavelets. The number of
non-zero coefficients is reduced from 131,070 to 206 (κ = 4), and 23,332
to 224 (κ = 256), by transforming from the spatial domain to the wavelet
domain, while retaining 99.5% of the original energy.

To make the computation of E involving F feasible, we
reduce the footprint of F with the following two techniques.

First, we decrease the footprint of each row by exploiting
sparsity. We observe that cosine lobes and G are sparse in the
wavelet domain (Fig. 3), owing to the scale-varying basis
functions. Note that the same property does not exist in
the spatial domain, except for G with very large κ. As E,
(n, ωi)

+ and G are parameterized over the double-squares
(Fig. 2), we can transform all of them into the Haar wavelet
domain. Then Eq. 15 becomes:

arg min
E

∑
j,x∈Xj

||Ij(x)−
∑
t

Et[
ρd
π
Dt(n) + ρsαGt(κ, µ)]||2,

where

E(ωi) =
∑
t

EtΨt(ωi),

(n, ωi)
+∆ωi =

∑
t

Dt(n)Ψt(ωi),

G(ωi;κ, µ)∆ωi =
∑
t

Gt(κ, µ)Ψt(ωi). (16)

Here Et,Dt and Gt are wavelet coefficients, and Ψt is a basis
function. We precompute {Dt} and {Gt} by retaining 99.5%
of the total energy.

Second, we approximate F by sampling its rows via [29],
to reduce the number of rows. Each original row is sam-
pled with a probability proportional to its L2-norm, ef-
ficiently approximated as (n, ωo)

+
√

(ρdNd)2 + (ρsαNs)2.
Here Nd/Ns is the precomputed L2-norm of a Lam-
bertian/vMF lobe. Essentially, each row is weighted by
(n, ωo)

+, to penalize unreliable grazing angle views. We
choose the row sampling technique, because it is highly
efficient on our large, sparse F in the wavelet domain,
and its accuracy is comparable with more computationally
involved techniques like random projections, as reported in
[30]. In our experiments, row sampling is performed 2×106

times.
Now we obtain a row-reduced, sparse matrix to approx-

imate F in the wavelet domain. The maximum size of the
approximation is only a few GB in our experiments, which
not only is manageable in storage, but also allows efficient
computation. In comparison, the size of the original dense
F is on the order of 100TB. Next, we select corresponding
elements of p, based on sampled rows of F . Finally, we
apply a standard iterative solver for sparse least squares [31]
to efficiently solve Eq. 16. The results {Et} are then trans-
formed back to the spatial domain to obtain E.

Note. Due to the band-limiting nature of BRDFs over the
environment lighting [32], we are only able to recover E up
to the frequency limit represented by the most specular ma-
terial in the object. Nevertheless, higher frequency content
of E is not needed in estimating materials (see the Piggy-
Bank example in Fig 14). We describe how to resolve the
lighting-material ambiguities in Sec. 5.

4.4 Normal Optimization
The normals {n(x)} are also related to the estimated ap-
pearance via Eq. 1. Similar to existing work such as [33],
we constrain the high degrees of freedom in the spatially
varying n(x), using a normal smoothness term PS and a
normal integrability term PC , in addition to the photometric
consistency term PI in Eq. 7. We define PS and PC as
follows:

PS =
∑
x

||n(x)−
∑
y∈Rx

n(y)

||
∑
y∈Rx

n(y)||
||2, (17)

PC =
∑
x

[
1√
A(Rx)

∑
y0,y1∈Rx

∫ y1

y0

n(y) · y1 − y0

||y1 − y0||
dy]2.

(18)

Eq. 17 essentially computes the mesh Laplacian, where Rx
indicates the one-ring neighborhood of x. Eq. 18 computes
the curl at x, where y0, y1 are connected vertices in Rx, and
A(Rx) is the area circumscribed byRx. Note that we use

√
A

instead of A as in the original definition of curl, to make PC
scale-independent for the multi-scale optimization (Sec. 5).

We optimize the normal n(x) on a per-point basis. For
each point x, our objective is as follows:

arg min
n(x)

λI
∑
j

||Ij(x)− L(ωo;x)||2+

λS ||n(x)−
∑
n(y)

||
∑
n(y)||

||2+

λC [
1√
A(Rx)

∑
y0,y1∈Rx

∫ y1

y0

n(y) · y1 − y0

||y1 − y0||
dy]2,

(19)

which is derived from Eq. 7 by substituting Eq. 17 & 18.
Following [33], we parameterize a normal n over a 2D vector
(u, v)> such that n = (u, v,

√
1− u2 − v2)>, expressed in a

local frame built from a previous estimate of n. In each itera-
tion, ∆u and ∆v are computed to update the corresponding
n.

5 IMPLEMENTATION DETAILS

Preprocessing. We apply [34] to sample points {x} over the
surfaces of the object, reconstructed with KinectFusion. We
also follow [3] to select images that exhibit least blur and
are within 10ms to the time stamp of the closest depth map,
from which the camera pose is derived. Pixels at grazing
angle views ((n, ωo) ≤ 0.3) or depth discontinuities are
excluded from processing, due to the unreliability in mea-
surements. Unlike in [3], we do not model lens distortions.
Instead, we point the RGB camera so that the object shows
up approximately in the center region of captured images
during acquisition. We find that the distortions in this region
do not cause problems for our algorithm.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

Initialization. As our joint optimization is solved in an
iterative fashion, it is important to set good initial val-
ues for the unknowns, for the quality of the final results.
Specifically, we initialize camera poses {Tj} as the ones
obtained from KinectFusion after shifting 2.5cm along the
local x axis. The shifting is applied, because we need to
estimate the RGB camera poses from the depth camera poses
obtained with KinectFusion, where the baseline between
two cameras is 2.5cm. Initial material clusters are generated
based on the initial diffuse albedo ρ̃d(x), computed as:
ρ̃d(x) = minj Ij(x), assuming that Ed(n) = 1. Next, we
initialize the environment lighting E, by assuming that
each fr has a diffuse albedo of ρ̃d(x) and a perfect mirror
specular BRDF with a unit specular albedo. Then E is
computed as E(2(ωo · n)n − ωo) = Ij(x) − ρ̃d(x), where
2(ωo · n)n − ωo is the reflection vector of ωo with respect
to n. With the initial clustering and initial E, we calculate
the corresponding cluster materials. Moreover, we smooth
the normals obtained from KinectFusion as the initial {n},
using the algorithm described in [35].

Multi-scale Optimization. We build a hierarchy of {I},
{E} and {x} in a bottom-up fashion. In each level, the reso-
lutions of {I} and {E} are reduced by a factor of 2, and the
number of points {x} by a factor of 4. We perform the joint
optimization starting from the top level in the hierarchy, and
do not move to the next level until convergence. Three levels
are used in our experiments.

Handling Material Boundaries. Physical material
boundaries sometimes result in aliased edges on measured
images {I}, which causes inaccuracy when computing the
environment lighting from images in Eq. 15. For these cases,
we detect whether a point x is within a certain distance of a
cluster boundary, and do not compute the lighting from the
image measurements of that point if the former condition
holds.

Post-processing. After the joint optimization, we com-
pute RGB versions of ρd and ρs for cluster materials, us-
ing the original RGB image {I} as input. Next, to refine
the reconstructed appearance, we follow a simple method
in [28], which projects the image measurements at each
point x to the cluster materials, by solving a non-negative
least squares problem. The final fr(x) is represented as a
linear combination of cluster materials. We would like to
emphasize that our framework is not tied to the projection
method. In fact, since we already have plausible estimates
of both {Tj}, E and {n}, any conventional appearance
reconstruction method, such as [36], could be plugged in
this stage.

Lighting-material Ambiguities. As the lighting and the
materials are both unknowns in our optimization, we need
to resolve their ambiguities by imposing additional con-
straints. Since both E and fr are linear with respect to
Eq. 1, exactly the same inverse rendering can be produced,
if we scale E by a scalar a, and ρd and ρs by 1

a . To resolve
this scale ambiguity, we normalize E after the lighting
optimization, by scaling it such that the average E equals
a user-specified Eavg (Eavg = 1 in our experiments); all ρd
and ρs are adjusted accordingly to retain the same inverse
rendering result.

Another fundamental ambiguity is that the angular
sharpness of a BRDF can be traded by the blurriness

of the lighting [32]. We exploit the statistics of com-
mon home/office lighting to determine the absolute BRDF
roughness. First, the environment maps in two different
lighting conditions are captured from a mirror ball using our
pipeline. Next, we compute the specular responses Es of the
average environment map, and analyze their power spectra
in the Haar wavelet domain. We find that the normalized
histogram of band 4 and 5 is discriminating with respect
to κ. Therefore, we precompute the histograms as the refer-
ences onEs(κ; ·) of various κ. During runtime, for a particu-
lar material, we compute the normalized histogram of band
4 and 5 of Es(κ̂; ·), where κ̂ is the precomputed, average
κ in the vMF representation of the current BRDF. Finally,
we find the closest match to the computed histogram in the
references, and determine the absolute roughness based on
the κ corresponding to the match. The above algorithm is
executed right before post-processing, and works well in
our experiments.

Note that the reference environment maps only need to
be acquired once, and are discarded after the analysis. The
user is not required to capture any environment map. It
will be interesting future work to analyze a larger database
of environment maps, similar to [37]. Other methods for
determining the absolute roughness can also be employed
here.

6 RESULTS

All experiments are conducted on a workstation with an
Intel i7-4790k CPU and 32GB of memory. The RGB images
are captured using a first-generation Kinect sensor at 12fps
and a resolution of 1280×960, with fixed exposure and
white balancing in a linear space. In precomputing vMF
representations of isotropic Ward models, we discretize ωo
as 180 different elevation angles (i.e., the sampling interval
= 0.5◦), which results in only 0.9MB for all 256 BRDFs. The
precomputed {Dt,Gt} (Sec. 4.3) takes up 117MB, 546MB and
3.04GB for three levels in our multi-scale optimization.

To evaluate the approximation accuracy of the vMF-
based BRDFs, we compute the relative root-mean-squared
error (RMSE) according to [38] for all 256 precomputed
BRDFs. We do not consider ωo that is below the grazing
angle threshold in Sec. 5, as measurements along these di-
rections are excluded from our pipeline. The relative RMSEs
for all precomputed BRDFs are in the range of [0.146, 0.190],
which are sufficient for our applications.

k = 5 k = 8 k = 100k = 7

Fig. 5. Impact of using different k. Setting k roughly to the number
of distinct materials produces plausible results (the left three images),
while using a large value (rightmost) makes our optimization under-
constrained.

Our objective function in Eq. 7 is complex. There is no
theoretical guarantee that our optimization converges to
the global optimal solution. Nevertheless, we observe in all
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Fig. 4. Progress of our joint optimization on the Xmas-Ball model. The first row shows the estimated appearance rendered with a corresponding
estimated environment lighting, which is visualized in the second row. The reference photograph of the model can be found in Fig. 13. No post-
processing is performed at this stage.

experiments that the joint optimization converges quickly
(typically after 75 iterations), and the objective function
decreases over iterations, as illustrated in Fig. 6. While it
is possible that the optimization gets trapped in a local min-
imum, as is common in related work (e.g., [17], [20]), we find
in practice that the results of the optimization are sufficiently
good as plausible estimates of appearance/normals, which
are useful for realistic rendering/editing. In addition, the
initial values for camera poses and normals, obtained from
KinectFusion, are not drastically different from the ground-
truth. Also note that the albedos and the environment light-
ing are computed using linear least squares, which yields
the global minimum.
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Fig. 6. The optimization objective (Eq. 7) plotted as a function of the
number of iterations for the Xmas-Ball case. Three levels are used in
the optimization.

The joint optimization on average takes about 100 min-
utes to compute, with roughly 25%, 20%, 50% and 5% of the
time spent on camera pose, material, environment lighting
and normal optimizations, respectively. We find that setting
k roughly to the number of distinct materials works well
in our experiments. As shown in Fig. 5, the final results of
our optimization are not sensitive to the choice of k. Typical
values for λ are λS = 6 and λI = λC = 1. Detailed statistics
of our experiments can be found in Tab. 2.

TABLE 2
Statistics of our experiments.

Model # of images # of points k
Xmas-Ball 128 600K 6
Kettle 276 1M 3
Piggy-Bank 227 600K 4
Cookie-Tin 194 800K 4
Cosmetic-Bag 68 800K 1
Book 32 600K 5

The progress of a joint optimization is visualized in
Fig. 4. It is interesting to note that, although our objective

is to match image measurements, the environment lighting
also gets refined indirectly, as a consequence of more accu-
rate estimates of camera poses, normals and materials.

We evaluate the efficacy of our joint optimization with
previous work on a variety of objects, whose materials
range from diffuse, glossy to highly specular (Fig. 13). Our
results are compared with the textured models produced
by [3], the results using our optimization with camera poses
from KinectFusion, the results using our optimization with
camera poses computed by [3] and corresponding pho-
tographs. The photographs in Fig. 13 participate in camera
pose optimization only, and are excluded from the rest of the
joint optimization. In cases where our method is used with
camera poses from other approaches, we disable camera
pose computation in the joint optimization, and keep the
material and environment lighting optimizations. As shown
in the figure, the camera poses obtained from KinectFusion
are too imprecise for estimating SVBRDFs, particularly spec-
ular ones. Note that in the Xmas-Ball case, view-dependent
highlights are aligned as view-independent texture maps
by [3], which results in large camera pose errors. Moreover,
in the highly-textured Cookie-Tin case, accurately-aligned
textures can be obtained from [3], despite the white stripes
caused by the averaging of highlights. Using our method
in conjunction with camera poses from [3] generates a less
satisfactory result as well, since such camera poses are
optimized without considering the lighting or the SVBRDF.
Our method produces a plausible result even for the Piggy-
Bank with no specular materials, while other methods fail
to align the red coin feature on the back of the pig.

We also compare our method with [3] on a diffuse book
in Fig. 7. While the appearance results of [3] are textures
only, our method estimates both SVBRDF and lighting sep-
arately. Note that the original method in [3] gets trapped in
a wrong local minimum. We extend their method with the
multi-scale idea in Sec. 5 to obtain a plausible result.

Relighting results of our estimated appearance using the
uffizi environment map, along with additional details, are
shown in Fig. 14. We also demonstrate the environment
illumination recovered by our optimization. All objects are
captured in an office with light tubes over the ceiling. We
do not perform reprojection for specular materials of Kettle,
as they are considerably distinct. More results rendered
with different conditions can be found in the accompanying
video.
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Fig. 7. Comparisons between our method and previous work on the
diffuse Book model. We estimate both the SVBRDF and lighting, while
[3] computes textures only. Note that the top-left photograph is not used
in material/lighting/normal optimization.

Repeatability experiments are conducted to test our joint
optimization under different illumination and camera tra-
jectories. We capture the same Xmas-Ball model in two sep-
arate scans with different lighting conditions, as illustrated
in Fig. 8. Relighting results of the estimated appearance are
demonstrated as well.

Appearance Relighting Result Est. Lighting Appearance Relighting Result Est. Lighting

Fig. 8. Results of the same Xmas-Ball model captured under different
conditions. For each pair of images, we show the relighting result of the
estimated appearance under the uffizi environment map (left), and the
illumination recovered by our optimization (right).

7 DISCUSSIONS

We evaluate the impact of each of the four variables in
the joint optimization: camera poses, lighting, materials
and geometry. Physical and/or synthetic experiments are
conducted to study the impact of each variable in isolation.

Camera Poses. We evaluate the numerical accuracy of
camera positions estimated with various methods. First, we
put a checker-board pattern below the Xmas-Ball during
acquisition, and reconstruct the reference camera positions
using a standard method [39]. Next, we compute the RMSE
of camera positions estimated with our approach, KinectFu-
sion and [3], which are 0.071, 0.074 and 0.43, respectively.
The numerical error of our method is slightly smaller than
that of KinectFusion, but the difference in visual quality
of appearance reconstruction is substantial in Fig. 13. The
main reason is that specular reflections are highly sensitive
to camera poses.

To evaluate the sensitivity of our approach to the error
in the camera trajectory, we add unbiased Gaussian noise
to the camera poses obtained from KinectFusion, similar
to [3], and then perform the joint optimization. Specifically,

� = 0.005 � = 0.010 � = 0.015

Fig. 9. Impact of camera trajectory perturbations. Gaussian noise with
a deviation of σ is added to the initial camera poses computed from
KinectFusion.

we modify each existing camera pose with an incremental
transformation ∆Tj(aj , bj , cj , αj , βj , γj). The translational
component (aj , bj , cj)

> is a direction sampled uniformly
at random, then multiplied by a scalar sampled from a
Gaussian distribution with a deviation of σ. The rotational
component (αj , βj , γj)

> is computed in the same way.
In Fig. 9, we show the robustness of our method when
σ = 0.005, 0.010 and 0.015 (meter).
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Fig. 10. Impact of a blurred environment lighting / a rough material
on optimization results. The blurred environment lighting is generated
by convolving with a vMF kernel (κ = 32). The rough material has a
roughness of 0.13, while the original roughness is 0.007.

Lighting. The presence of a moving person in our ac-
quisition setup makes the environment illumination non-
constant. To alleviate this issue, we plan our motion path
to avoid blocking of main light sources, which are typically
ceiling lights at home/office. In addition, when scanning
objects with materials of high specular albedos, we try to
stay at a distance to reduce the sizes of the reflections of
the person and the Kinect sensor on measured images. In
practice, we do not find the issue a problem, as shown in
Fig. 13. It is worth noting that the persons captured in the
photograph of the Kettle model in Fig. 13 are averaged out
and do not show up in our appearance result.

To evaluate the impact of blurred environment lighting,
we first conduct a synthetic experiment by rendering the
acquired geometry of Xmas-Ball with a highly specular
material (roughness = 0.007) under a captured environment
lighting, using camera poses optimized by our method (the
left column of Fig 10). The rendered images, along with the
camera poses obtained from KinectFusion, are used as input
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for our joint optimization. The RMSE for estimated camera
positions is 0.7×10−4, and the average normal error is 0.43◦.
Next, we blur the lighting with a vMF kernel (κ = 32) and
run our optimization again (the center column of Fig 10).
The camera position RMSE is 1.6 × 10−4, and the normal
error is 0.47◦. A visual comparison on estimated appearance
can be found in Fig 10.

Materials. Similar to the synthetic experiment on blurred
lighting, we render the geometry of Xmas-Ball with a rough
material (roughness = 0.13) as input images, and then
perform our optimization. Please refer to the right column
of Fig. 10 for a visual comparison between the ground-truth
and our result. The localization RMSE is 1.9× 10−4, and the
normal error is 0.46◦.

Geometry. We evaluate the sensitivity of our optimiza-
tion to the accuracy of the input geometric model on a
simplified mesh. As shown in Fig. 11, our approach is
robust with respect to geometric model error. In addition, to
demonstrate the effect of normal optimization, we show in
the same figure a result generated with normals unchanged.

80 triangles 80 triangles w/o normal opt.1.2M triangles

Fig. 11. Impact of geometric model error. We perform our joint opti-
mization on the simplified geometry with (center image) and without the
normal optimization (right image).

LDR Input Images. The RGB images captured by the
Kinect sensor are limited in its dynamic range, compared to
previous work that uses DSLRs with bracketing. To evaluate
the impact of the low dynamic range, we compare two
experiments that use the same set of RGB images as input.
The only difference is that one set is of HDR, and the other
LDR (Fig. 12). The camera position RMSE and normal error
for the HDR case is the same as the original experiment in
Fig. 10. For the LDR case, the location RMSE is 0.8 × 10−4,
and the normal error is 0.42◦, which are similar to the HDR
case.

Original Result from HDR input Result from LDR input

Fig. 12. Impact of LDR / HDR input images on optimization results.

8 LIMITATIONS AND FUTURE WORK

Our technique is subject to a number of limitations. First,
ignoring occlusions and interreflections will result in less

accurate estimate of materials in regions where such effects
are strong. Next, the distant lighting assumption restricts
the maximum size of object, as the light-object distance in
a common home/office is limited. This could be solved
by explicitly modeling local lighting effects. Due to the
sensor limitation, all RGB input images are captured in low
dynamic range and with a low spatial resolution, compared
to a DSLR with bracketing. We expect that the quality of our
results can get improved, with future hardware updates.
In addition, the assumption of a few BRDF clusters is not
valid in cases where the object has a large number of distinct
BRDFs. Moreover, comparing with latest work in capturing
normal maps of predominantly Lambertian objects using
consumer RGB-D cameras [23], our resulting normal maps
appear over-smoothed and less accurate.

In the future, we would like to extend our framework to
handle more general cases, such as objects with anisotropic
materials. It will also be interesting to further refine vertex
positions of the geometry reconstructed from KinectFusion,
using our optimized normals via [40]. As more degrees of
freedom are introduced with the changing geometry, proper
extra constraints are needed in the joint optimization to
avoid getting trapped in undesired local minimums.
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