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1 Computing the Angular Bound

In this section, we will explain the mathematical details behind the
angular bound of tentative ray tracing, which we have briefly de-
scribed in Section 3.4 of the paper. We need to choose an angular
bound so that Eq. (16) in the paper is analytically integrable. In
practical implementation, the direction of a tentative ray is gen-
erated by uniform sampling a random number in the 2D space
of [0, 1] × [0, 1]. Therefore, we choose an angular bound within
which the random numbers generating tentative rays cover an axis-
aligned bounding box (AABB) in the 2D space. Then the proba-
bility pb(x̄s′,t′−1) is the AABB area.

Here we take two common BSDFs as examples, including the Lam-
bertian model [Lambert 1760] and the Phong model [Phong 1975],
and develop an AABB bound in a uniform random number space.
The bound is both used to sample the tentative rays and compute
the probability density integration. We also show how to handle
BSDFs that are a linear combination of multiple components.

1.1 Hemisphere Angular Bound

Given a reflective material, the tentative ray zt′−1 → z is con-
fined within the upward hemisphere defined by the surface normal
at zt′−1. The neighborhood we wish to sample is a sphere located
at ys′ with radius d.

For brevity, we use the local frame {X,Y, Z} at zt′−1, where Z is
the surface normal. The direction zt′−1 → z can be represented
in spherical coordinates as {θ, φ}, where θ and φ are the polar and
azimuthal angles respectively. When sampling rays, θ and φ are
typically computed from two independent uniform random num-
bers {rθ, rφ}

θ = fθ(rθ), φ = fφ(rφ), (1)

where fθ and fφ are mapping functions for importance sampling.
Since fθ and fφ are typically monotonic, an AABB bound {θ, φ} ∈
Θ × Φ in the angular space θ × φ can be directly converted to an
AABB bound {rθ, rφ} ∈ Rθ × Rφ in the random number space
rθ × rφ

Rθ =
[
f−1
θ (θ|Θ)inf , f

−1
θ (θ|Θ)sup

]
,

Rφ =
[
f−1
φ (φ|Φ)inf , f

−1
φ (φ|Φ)sup

]
, (2)

where the inf and sup subscripts refer to the lower and upper bound
respectively.

By definition, the mappings fθ and fφ are isometric. Therefore, the
probability density integration pb is simply the AABB area in the
random number space

pb(x̄s′,t′−1) = ‖Rθ ×Rφ‖ . (3)

A simple conservative angular bound of the spherical neighborhood
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Figure 1: Three different cases of angular bounds. (a) direction
is not bounded, as zt′−1 is inside the neighborhood. (b) only θ is
bounded, as Z-axis intersects the neighborhood. (c) both θ and φ
are bounded.

can be written for the three cases in Fig. 1

Θ = [0, π
2

]

Φ = [0, 2π]
, if l ≤ d,

Θ =
[
0,min

(
π
2
, θc + arcsin d

l

)]
Φ = [0, 2π]

, else if d
l
≥ sin(θc),

Θ =
[
θc − arcsin d

l
,min

(
π
2
, θc + arcsin d

l

)]
Φ =

[
φc − arcsin d

l sin θc
, φc + arcsin d

l sin θc

] , otherwise,

(4)

where {θc, φc} are the spherical coordinates of the direction vector
zt′−1 → ys′ , and l is the distance to the neighborhood center l =
‖zt′−1 − ys′‖. In the first case shown in Fig. 1(a), zt′−1 is inside
the neighborhood sphere, and a bound cannot be placed on {θ, φ}.
In the second case shown in Fig. 1(b), the neighborhood sphere
intersects theZ-axis, and only θ is bounded. In the third case shown
in Fig. 1(c), the neighborhood sphere is well separated from the Z-
axis, and we can bound both θ and φ. The AABB bound in random
number space can be computed using Eq. (2), which depends on the
BSDF importance sampling functions fθ and fφ.

1.2 Bounds for Lambertian and Phong BSDFs

1.2.1 Lambertian BSDF

The Lambertian diffuse BSDF is a simple constant function

fLambertians (ωi, ωo) = κ, (5)

where we parameterize the BSDF fs over directions. ωi corre-
sponds to the direction zt′−1 → zt′−2, and ωo corresponds to the



direction zt′−1 → z or {θo, φo}.

As the constant fs does not affect sampling, the outgoing ray di-
rection zt′−1 → z for a Lambertian BSDF is typically importance-
sampled from the cosine part of the geometric term

px(zt′−2 → zt′−1 → z) ∝ cos θo. (6)

The importance function fθ can be found by inverting the cumula-
tive distribution function

f−1
θ (θo) = 2

∫ π
2

θo

cos θ sin θdθ = cos2θo,

fθ(rθ) = arccos
√
rθ, (7)

and fφ is simply:

fφ(rφ) = 2πrφ. (8)

The bounds and pb can be computed using Eq. (2) and Eq. (3):

rθ ∈
[
cos2 Θsup, cos2 Θinf

]
,

rφ ∈
[

Φinf

2π
,

Φsup

2π

]
,

pb =
(
cos2 Θinf − cos2 Θsup

)(Φsup

2π
− Φinf

2π

)
.

1.2.2 Phong BSDF

The Phong BSDF [1975] is a perceptually based model for glossy
reflectance, which is symmetric around the mirror reflectance di-
rection ωr

fPhongs (ωi, ωo) = κ cosk θo−r, (9)

where θo−r is the angle betweenωo andωr . As k is typically a large
value which makes fs dominate px, we directly use a normalized
version of fPhongs as the importance function and leave the cosine
term mentioned in the previous subsection out of the sampling.

For convenience, we first sample the angles θo−r and φo−r , then
compute ωo from it. Similar to the Lambertian case, the importance
function fθ can be found by inverting the cumulative distribution
function:

f−1
θ (θo−r) = 2

∫ π
2

θo−r

cosk θ sin θdθ = cosk+1θo−r,

fθ(rθ) = arccos r
1
k+1

θ , (10)

and fφ is the same as Eq. (8). The bounds and pb are:

rθ ∈
[
cosk+1 Θsup, cosk+1 Θinf

]
,

rφ ∈
[

Φinf

2π
,

Φsup

2π

]
,

pb =
(

cosk+1 Θinf − cosk+1 Θsup

)(Φsup

2π
− Φinf

2π

)
.

Note that the direction ωo is sampled in the upper hemisphere de-
fined by ωr , not the surface normal. Consequently, the direction
may point into the surface, resulting in the measurement contribu-
tion being constantly 0. While such rays are wasted, in practice this
does not occur very frequently because for highly glossy surfaces
ωo typically stays near ωr . As long as this case is tested and the
measurement contribution is properly zeroed, the final Monte Carlo
estimation remains unbiased.

1.3 Bounds for Multiple Component BSDF

Importance Sampling in General. A complex BSDF is fre-
quently defined as a linear combination of multiple components,
such as a diffuse one and a specular one. The formal definition is

fs =

h∑
i=1

fs,i, (11)

where h is the number of components. The corresponding prob-
ability density of importance sampling without angular bound can
be also formulated with respect to the multiple components

p =
fs∫

Ω
fsdωo

=

∑h
i=1 κipi∑h
i=1 κi

, (12)

κi =

∫
Ω

fs,idωo, pi =
fs,i
κi

, (13)

where Ω is the domain of outgoing directions. κi and pi represent
the reflectivity and sampling probability density for an individual
component fs,i respectively.

Importance sampling of a multiple-component BSDF is typically
achieved by first selecting an individual component i to sample with
a probability proportional to the respective reflectivity values κi.
Then the sample is generated for component i using its importance
function pi. Formally, the importance sampling takes two steps.

1. Randomly select one component based on reflectivity. The
i-th component is chosen with probability

pselect,i =
κi∑h
j=1 κj

. (14)

2. Sample a direction using the chosen component.

What we are interested in is the acceptance probability pc for the
hypothetical Russian roulette event (Section 3.2 of the paper). Note
that the Russian roulette event itself only tests whether a ray hits
a fixed spatial neighborhood, which does not depend on the BSDF
component used to sample the ray. Consequently, we can simply
combine the per-component probability values pci using Eq. (12)

pc =

∑h
i=1 κip

c
i∑h

i=1 κi
. (15)

Angular Bound. For efficiency and implementation conve-
nience, we choose to apply an independent angular bound for each
component, as shown in Fig. 2. Mathematically speaking, this
corresponds to applying the same importance sampling process
to an updated set of BSDF components f̄s,i. Assuming the an-
gular bound for each component i has already been computed as
{Θi,Φi}, one can define f̄s,i explicitly as

f̄s =

h∑
i=1

f̄s,i, (16)

f̄s,i =

{
fs,i, if ωo ∈ {Θi,Φi},
0, else.

(17)
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Figure 2: Angular bound with two component BSDF. The bounds
of the two components are different. But the neighborhood S is
included in their intersection.

Substituting Eq. (17) into the general multi-component sampler in
Eq. (12), we formulate the importance sampling probability for f̄s

p =
f̄s∫

Ω
f̄sdωo

=

∑h
i=1 κip

b
i p̄i∑h

i=1 κip
b
i

, (18)

pbi =

∫
Θi×Φi

pidωo, p̄i =
f̄s,i
κipbi

, (19)

where pbi is the probability density integration of each component
i inside its own bound, and κipbi can be thought of as an effec-
tive reflectivity for the angularly bounded BSDF component f̄s. p̄i
is the normalized probability density of an individual component
f̄s,i. The importance sampling consists of the same two steps as we
introduced for multiple components without angular bounds. How-
ever, Eq. (14) has to be updated accordingly. Replacing the original
reflectivity κi with the effective reflectivity κipbi , we get

pbselect,i =
κip

b
i∑h

j=1 κjp
b
j

. (20)

Applying the same procedure to the Russian roulette probability pc

defined in Eq. (15), we get

p̄c =

∑h
i=1 κip

b
i p̄
c
i∑h

i=1 κip
b
i

, (21)

where p̄ci is the per-component Russian roulette acceptance prob-
ability after applying the corresponding angular bound. By defi-
nition, it differs from the original pci by the normalization factor
pbi

p̄ci =
pci
pbi
. (22)

Substituting Eq. (22) into Eq. (21), we get

p̄c =

∑h
i=1 κip

c
i∑h

i=1 κip
b
i

. (23)

Finally, we can compare pc in Eq. (15) with p̄c in Eq. (23) to define
the multi-component normalization factor pb

pb =
pc

p̄c
=

∑h
i=1 κip

b
i∑h

i=1 κi
. (24)

Note that pb only depends on the analytically computed pbi and the
input constants κi. Consequently, pb itself can also be evaluated
analytically, which is a requirement for UPG to remain unbiased.

To conclude, when applying UPG to a multi-component BSDF, we
first randomly choose a bounded component f̄s,i with probability
pbselect,i defined in Eq. (20). We then sample a tentative ray from
the per-component probability density p̄i, which is achieved by
confining the ray direction within the corresponding angular bound
{Θi,Φi}. The resulting Bernoulli trial countNb is finally scaled by
a factor 1/pb to compute an unbiased estimation of the probability
reciprocal r, where pb is computed using Eq. (24).

Note that the sampling cost is O(h). While h is typically a small
constant in the original scene description, it can become very large
when UPG is combined with particle-guided BDPT, where the im-
portance sampling function is represented as a Gaussian mixture
model potentially reaching hundreds of components. This currently
prevents us from combining the two algorithms efficiently.

References

LAMBERT, J. H. 1760. Photometria Sive de Mensure de Gratibus
Luminis, Colorum Umbrae. Eberhard Klett.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Commun. ACM 18, 6 (June), 311–317.


