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Figure 1: From a single photo and a few user strokes (a), our system reconstructs a 3D model that captures the intricate details of the hair
(b) & (c). This model can be used for high-quality portrait relighting with more realistic shadowing effects (d) than the previous method (e).
Original image courtesy of Ross Heale-Whittle.

Abstract

We propose a novel system to reconstruct a high-quality hair depth
map from a single portrait photo with minimal user input. We
achieve this by combining depth cues such as occlusions, silhou-
ettes, and shading, with a novel 3D helical structural prior for
hair reconstruction. We fit a parametric morphable face model to
the input photo and construct a base shape in the face, hair and
body regions using occlusion and silhouette constraints. We then
estimate the normals in the hair region via a Shape-from-Shading-
based optimization that uses the lighting inferred from the face
model and enforces an adaptive albedo prior that models the typical
color and occlusion variations of hair. We introduce a 3D helical
hair prior that captures the geometric structure of hair, and show
that it can be robustly recovered from the input photo in an auto-
matic manner. Our system combines the base shape, the normals
estimated by Shape from Shading, and the 3D helical hair prior
to reconstruct high-quality 3D hair models. Our single-image re-
construction closely matches the results of a state-of-the-art multi-
view stereo applied on a multi-view stereo dataset. Our technique
can reconstruct a wide variety of hairstyles ranging from short to
long and from straight to messy, and we demonstrate the use of
our 3D hair models for high-quality portrait relighting, novel view
synthesis and 3D-printed portrait reliefs.
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ometry and Object Modeling—Geometric algorithms;
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1 Introduction

The growing popularity of digital entertainment, 3D printing, and
virtual reality applications has led to a parallel interest in efficient
ways to create 3D content, especially personalized 3D face and
body models. Despite the recent progress in high-quality 3D acqui-
sition via scanning, most 3D scanning systems require expensive
equipment [Beeler et al. 2010; Beeler et al. 2012] or lengthy scan-
ning processes [Paris et al. 2008]. Photos, on the other hand, are
easy to capture, and the ability to reconstruct 3D human models
directly from single photos can enable 3D content creation for ev-
eryone. Hair plays a particularly important role in the way people
perceive each other, and modeling the structures of a hairstyle from
a single photo is an important and challenging task for 3D content
creation.

While human faces can be reconstructed well from a single photo
using parametric 3D models [Blanz and Vetter 1999], such paramet-
ric models for hair are difficult to find. This is because faces tend
to vary in very constrained ways making it possible to represent
them using low-dimensional models. Hair on the other hand can
exhibit extreme variability and geometric complexity, and current
single-view hair reconstruction methods [Chai et al. 2012; Chai
et al. 2013] rely on local cues such as hair occlusion and strand
smoothness to reconstruct approximate hair models. While these
hair models are adequate for image-based rendering and editing
tasks, they lack the geometric accuracy for more demanding appli-
cations such as relighting (see Fig. 1).

Shape from Shading (SFS) methods can recover detailed geometry
(in the form of surface normals) for general objects from a single
photo given lighting and material (albedo) estimates [Johnson and
Adelson 2011]. Previous techniques have used SFS to refine the
geometric details of a rough 3D model by using the lighting inferred
from the rough model [Valgaerts et al. 2012; Garrido et al. 2013;
Suwajanakorn et al. 2014]. These techniques typically assume that
the surface albedo is piece-wise constant – an inaccurate assump-
tion for hair because most hairstyles have smoothly varying hair
color. Another challenge in applying SFS-based techniques to hair
is that they typically assume a diffuse shading model. Hair, on
the other hand, exhibits specular appearance and high-frequency
shadowing, leading to reconstruction errors.

The goal of our work is to reconstruct a high-quality hair depth map



from a single portrait photo with minimal user input. Our technique
achieves this by combining three components: a coarse depth map
reconstructed using occlusions and silhouettes constraints, detailed
surface normals inferred from shading, and a novel 3D helical pri-
or that enforces the geometric structures that are typical of hair.
We initialize our 3D model by fitting a parametric morphable face
model to the input portrait photo and constructing a base shape in
the face, hair and body regions using the boundary constraints be-
tween these regions based on occlusion and silhouette cues. Next,
we estimate the detailed normals by performing SFS computation
using the lighting inferred from the face model as well as an adap-
tive albedo model that accounts for the typical color and occlusion
variations of hair. Finally, we introduce a 3D helical hair prior that
reinforces the hair geometric structure, and can be automatically
estimated from the input photo. While applying any of these cues
individually will lead to poor reconstructions, by combining them,
our system is able to produce robust, accurate 3D hair models.

We show that our system can reconstruct a wide variety of hair
models ranging from short to long and from straight to messy.
Furthermore, it can handle portrait photos captured in the wild, with
varying pose and unknown illumination; all the results in this paper
have been created from photos downloaded from the Internet. Our
method produces significantly better reconstructions than previous
single-image methods. It also closely matches a state-of-the-art
multi-view stereo method [Fuhrmann et al. 2014] on a multi-view
stereo dataset. The accuracy of our reconstruction enables applica-
tions like high-quality portrait relighting with realistic shadowing
effects. We also show that our hair models can be used to create
3D portrait models that can be 3D printed as high-relief sculptures
with compelling geometric details.

Contributions. In summary, our main contributions are:

• A complete system to reconstruct accurate 3D hair models from
single photos and sparse input by combining cues based on
shading, occlusions, silhouettes and a helical hair prior.

• A novel method to fit helices to a hair photo and a 3D helical hair
prior that captures the characteristic geometry of hair structures.

• An adaptive albedo model for effective SFS-based estimation of
detailed normals on hair.

2 Related Work

Most single-view reconstruction techniques can be categorized into
two main classes: model-based methods that assume certain prior
knowledge about the object being reconstructed, and Shape from X
methods that infer depth from various image cues (as represented by
X), such as shading, contours and occlusions. Here we only review
those techniques that are most relevant to our goal of reconstructing
3D hair models from single portrait photos.

Model-based reconstruction. The variation in the shape of hu-
man faces is constrained and can be well characterized by a low
dimensional space. This has lead to a plethora of parametric mor-
phable face models that can capture the identities and expressions
of the human subjects from single-view inputs [Blanz and Vetter
1999; Vlasic et al. 2005; Cao et al. 2014].

However, it is very difficult, if not impossible, to find a “morphable
hair model” for single-view hair reconstruction due to vast varia-
tions in the appearance and geometric complexity of hair. Most
existing methods rely on low-level primitives, boundary cues, oc-
clusion and orientation cues to reconstruct hair on the strand, or
wisp level. Chai et al. [Chai et al. 2012; Chai et al. 2013] demon-
strated systems to create a 3D hair model from a single view using
hair orientation and face-hair occlusion relationships for creative

manipulation on portrait images and videos. From a 2D sketch of
hair, Wither et al. [2007] inferred simulation parameters based on
the super-helices model [Bertails et al. 2006] to generate a 3D hair
model that matches an input sketch. Bonneel et al. [2009] proposed
a method to infer the parameters of a hair appearance model to gen-
erate hair renderings matching a single photograph. By analyzing
hair geometry and orientation with geometric primitives, simulated
and procedural examples, Luo et al. [2013] and Hu et al. [2014a;
2014b] demonstrated 3D hair capture systems that preserve plau-
sible hair structures. Another thread of work focus on fine-scale
geometric detail refinement based on mesoscopic image features
for face models [Beeler et al. 2010] and hair models [Echevarria
et al. 2014].

Our approach is inspired by the super-helices hair model [Bertails
et al. 2006] that approximates hair structures as piece-wise helices
from the input photo. These found helices can then be used to
regularize the reconstruction and reinforce the hair structures. This
approach is related to previous work on helix curve-fitting from
sketches [Cherin et al. 2014] which optimizes for piecewise helical
parameters to fit single 2D sketch curves. However, our technique
differs from this method in a number of aspects. First, in our case,
the 2D helix projections on an input photo are not precisely defined,
and we need to first reliably detect local curve tangents from the
photo. Second, capturing long-range hair structures requires us to
enforce a global 3D helical prior, making local curve information
insufficient by itself. We account for this by proposing a novel
solution to merge sparse local cues into global clusters that cor-
respond to long helices. Finally, the inherent ambiguities in fitting
3D helices to noisy 2D projections can lead to over-fitting and many
false connections. To avoid this, we reduce the optimization space
by using a restricted homogeneous helix model and robustly fit as-
long-as-possible helix curves with regularization.

In concurrent work, Hu et al. [2015] demonstrate an interactive
system to model 3D hair model from a single photo by effectively
combining examples from a database of hairstyles. In comparison,
our work focuses on improving reconstruction accuracy by relying
on image-based cues (such as shading, silhouettes, and gradients).
A validation on a multi-view stereo dataset shows that our tech-
nique compares favorably with a state-of-the-art multi-view stereo
algorithm [Fuhrmann et al. 2014].

Shape from X methods. In the single-lighting case concerned
in this work, Shape from Shading (SFS) algorithms analyze the
shading in photos to recover high-resolution geometry in the form
of surface normals. This is done by expressing observed image
intensities as a function of scene properties (reflectance, illumi-
nation, geometry) and invert this function to estimate geometry.
Since this is a highly under-constrained problem, most SFS tech-
niques make strong assumptions about the scene, like the com-
monly known Lambertian albedo and directional lighting [Zhang
et al. 1999]. SFS has been shown to be better constrained un-
der natural illumination [Johnson and Adelson 2011]. Barron et
al. [2012] design complex priors on reflectance, illumination, and
geometry to further constrain the optimization, but they can only
recover coarse geometry. Additional information (such as coarse
geometry [Han et al. 2013]) often helps to improve the robustness
and quality of SFS reconstruction. As a result, SFS methods are
often used to refine the coarse geometry captured in 3D acquisition
systems [Wu et al. 2011; Valgaerts et al. 2012; Garrido et al. 2013;
Suwajanakorn et al. 2014]. These systems typically reconstruct
coarse geometry, use it to estimate illumination, which is then used
for SFS computation. To handle albedo variations, these systems
assume piece-wise constant albedo or a sparse set of albedo values.
These assumptions are especially inaccurate for hair because most
hairstyles have smoothly transitioned hair color. Instead, we intro-
duce an adaptive albedo model for normal estimation using SFS
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Figure 2: Overview of our method. Given a single input photo,
our method uses a single optimization framework to create the
final 3D portrait that incorporates the base shape obtained from
the boundary constraints, the normal map estimated by SFS (SFS-
normals), and the helical hair prior of fitted helices to the input
photo. Original image courtesy of vgm8383.

that can handle albedo variations and ambient occlusion effects on
hair.

Besides shading, contours are informative cues to infer 3D shape.
Karsch et al. [2013] studied how well different contour cues (e.g.
folds, silhouettes and self occlusions) inform shape reconstruction.
Sykora et al. [2014] generate global illumination renderings of
hand-drawn characters using only the contours and the layering re-
lationships of the components. We augment our hair reconstruction
using silhouette constraints.

3 Overview

Given a single portrait photo, our goal is to build a 3D model. In
particular, we use a depth map representation for the geometry; this
allows us to effectively combine the detailed normals from SFS
and various depth cues derived from the input photo in a single
optimization framework. To aid us in the reconstruction, we rely
on the user to roughly annotate the hair and the body regions in the
photo.

To initialize our reconstruction with a rough shape estimate, we
construct a base shape (Sec. 4) for the face, hair and body regions.
We start by fitting a bilinear 3D face model to the detected facial
landmarks in the photograph [Blanz and Vetter 1999; Cao et al.
2014]. This gives us the base shape of face with the right pose,
identity and expression of the subject. Projecting this model on to
the image gives us the face region, Ω f . We then compute the base
shape for body and hair regions specified by the user – Ωb and Ωh
respectively – using the face model, and occlusion and silhouette
constraints. The body region is then constructed based on the body
silhouettes and the hair region is built from hair silhouettes, depth
constraints of the face model and face-hair occlusion relationships.
This step gives us a base shape depth map, that we denote as db.

To use SFS to estimate detailed surface normals on hair region
(referred to as SFS-normals from now on), we first need to esti-
mate the environment lighting. We use the (low-resolution) surface
normals of the face model to infer the environment lighting from
the observed images intensities (Sec. 5.1). We then use SFS to
estimate per-pixel face and hair surface normals from the observed
image intensities based on this inferred lighting. We regularize the
albedo in this optimization using a novel adaptive albedo model that

accounts for the albedo variations on the hair (Sec. 5.2). We denote
the surface normals reconstructed using this step as nSFS.

Combining the base shape and SFS-normals recovers only incom-
plete and blurred hair structures (Fig. 6); this is due to the ap-
proximations that these models make about hair appearance. To
better capture the hair structures in the reconstruction, we introduce
a helical hair prior inspired by the super-helices model [Bertails
et al. 2006] that hair strands can be modeled as piece-wise helices.
To formulate the prior, we discover helical hair structures from the
input photo using a novel RANSAC-based approach. We cluster
the pixels of the hair into super-pixels based on hair orientation and
proximity using k-way graph cuts (Sec. 6.1). Each super-pixel is
then fit with the best 2D projection of a 3D helix on a set of rotated
axes. Adjacent super-pixels that can be fit with the same helix are
iteratively combined to construct long 2D helix projections. Finally,
we recover the true 3D helix parameters for these 2D helix projec-
tions, and use the 3D helices as the helical hair prior to constrain the
optimization to match these hair structures (Sec. 6.2). We denote
the depth of the 3D helical structures that we recover by dh.

Finally, we reconstruct the final depth map, d, by minimizing an
energy function that combines the base shape, SFS-normals, and
3D helical hair prior:

E(d) = λbEb + λnEn + λhEh

= ∑
p

λb
∥∥dp − db

p

∥∥2
+ λn

∥∥∇dp − nSFS
p

∥∥2
+ λh

∥∥dp − dh
p

∥∥2
, (1)

where Eb, En and Eh are the energies for the base shape, SFS-
normals and the helical hair prior respectively. Eb constrains the
depth map to lie close to the base shape (and is enforced more
strongly in the face and body regions), En requires the gradients
of the depth map to explain the SFS surface normals, and finally,
Eh enforces the 3D helical hair prior estimated in the hair region.
Fig. 2 shows an overview of our system.

4 Base Shape

While SFS reconstruction can capture fine detail in surface recon-
structions, they are prone to gross low-frequency errors because the
small errors in per-pixel normal estimates accumulate when being
integrated. We avoid these errors by computing a base shape using
the user strokes specifying the body and hair regions. This base
shape serves as a large-scale regularizer on the subsequent SFS-
based geometric refinement. We fit a morphable face model to the
detected facial landmarks in the photograph. Then we construct
different regions of the base shape in a back-to-front occlusion
order, i.e., background, face, body and hair, by enforcing boundary
constraints based on occlusion and silhouette relationships.

4.1 Face Fitting

We use a morphable face model to estimate the 3D face model
from the input photograph. Morphable face models represent face
geometry as a linear combination of low-dimensional basis vectors,
which are computed using principle component analysis on 3D face
geometry data and are designed to capture the variation in face
geometry over different identities and expressions. Given a set
of detected facial landmarks on an input photograph, we recover
the rigid pose and the coefficients of the morphable face model
that minimize the distance between the projected landmarks and
the detected ones. The recovered rigid pose and basis coefficients
define the full face model. In our work, we use a morphable face
model trained on FaceWarehouse [Cao et al. 2014], and estimate the
identity and expression coefficients using an iterative optimization.
For more details, please see [Cao et al. 2014].
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Figure 3: Base shape construction. We use a set of boundary
constraints (a) to construct the base shape (b): the depth of the face
model, the occlusion relationships between face and hair, the hair
silhouettes and the body silhouettes.
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Figure 4: Face fitting and lighting estimation. We fit a face model
to the input photo (a), and then use the computed pure skin region
Ωs (b) to estimate the environment lighting (c).

4.2 Boundary Constraints

Face and background. We directly assign the depth from the fit
face model as the base shape in the face, Ω f , and set the background
depth to the depth of the center-line of the head.

Body. To construct the base shape in the body region, Ωb, we use
the body silhouettes specified by the user strokes along the body
boundary ∂Ωb (Fig. 3). The body base shape can then be obtained
by solving:

min
dp

∑
∂Ωb

(
∥∥dp − d∗p

∥∥2
+ ‖np − ∇Ωb‖2) + ∑

(p,q)∈Ωb

‖np − nq‖2, (2)

where d∗p denote the background depth values, ∇Ωb denotes the gra-
dient of the body silhouette, n denotes the normals corresponding to
the base shape. The first term sets the body base shape depth along
the silhouette to the background. The second term enforces that the
normals np along the silhouette lie in the same direction as ∇Ωb,
or in other words, orthogonal to the viewing direction. Finally, the
third term encourages the normals to be smooth.

Hair. The base shape in the hair region, Ωh, can be constructed
using a modification of Eqn. 2. The term d∗p denotes the depths
of the face and body that have been constructed previously and
ensures that the hair that touches the face and the body stays on
it. Finally, the normal constraints on ∂Ωh apply to the normals of
the hair silhouettes.

Combining the depths estimated in the face, body, and hair regions
give us the base shape, db that is used to constrain the final recon-
struction following Eqn. 1. Fig. 3 shows the hair and body boundary
constraints indicated by the user input and the corresponding base
shape constructed from them.

5 Shape from Shading

The base shape reconstructed in the previous section (Fig. 3) cap-
tures the gross shape of the hair, but does not capture any of the
detail in the geometry. In this section, we should how we infer
per-pixel surface normals in the hair region to augment the base
shape. To do this, we estimate the lighting in the photograph using
the morphable face model, and use this lighting in a SFS-based
scheme to recover surface normals while enforcing an adaptive
albedo model that accounts for variations in hair color.

5.1 Lighting Estimation

Fig. 4 shows the morphable face model fit to the photograph gives
us very coarse geometry that is restricted to the face region. We
use this face geometry to estimate the lighting in the image and use
this lighting to perform SFS computation to recover per-pixel SFS-
normal nSFS

p in the hair region.

We project the 3D face model back to the image plane to estimate
a per-pixel depth, d f

p , and normal, n f
p, in the face region, Ω f . We

average the the pixel intensities in the region to estimate the average
skin color cs. To remove the regions with different albedo color
(eyes, mouth, facial hair) or shadows, we shrink Ω f to estimate the
pure skin regions, Ωs, by clustering the chrominance values of the
pixels in the face region. Fig. 4 shows an example of our face model
fitting and skin area segmentation.

While classic SFS from images captured under frontal white point
light source is an ill-posed problem [Zhang et al. 1999; Durou et al.
2008], recent work has shown that shape estimation under natural
lighting is better constrained and far more accurate [Johnson and
Adelson 2011; Oxholm and Nishino 2012; Barron and Malik 2012].
Following the work of Johnson and Adelson [2011], we represent
the scene illumination using a quadratic lighting model, L(A,b, c).
The shading induced by this lighting model at every pixel in the
scene is given by:

Ip = L(A,b, c) ∗ np = nT
p Anp + bT np + c, (3)

where Ip and np are the observed color and surface normal at pixel
p respectively, and A, b, and c are the parameters of the lighting
model. This quadratic lighting model captures a wide range of
lighting (both low-frequency and directional components) and also
allows some deviations from Lambertian reflectance. But note that
the albedo at pixel p is not accounted for in this model; for uniform
albedo regions it gets rolled into the lighting parameters, and later
we show how we can account for variations in the albedo during
normal estimation.

To estimate the parameters of this lighting model, previous meth-
ods have used calibration devices [Johnson and Adelson 2011], or
initial shape estimates [Han et al. 2013; Haque et al. 2014]. In
our case, we use the coarse face geometry reconstructed using the
morphable face model, n f

p, to estimate the lighting parameters. We
estimate the lighting coefficients by minimizing the following linear
least squares system:

min
A,b,c ∑

p∈Ωs

||L(A,b, c) ∗ n f
p − Ip||2. (4)

In practice, we regularize this optimization using λ‖A‖2 + λ‖b‖2 +
λc2, λ = 0.01 for our results. We solve for these three parameters
in every color channel independently, thus we have Al ,bl , cl , l ∈
{R,G,B}. Because the albedo is not accounted for in this model,
we restrict the error function to the detected facial skin region Ωs to
ensure a roughly uniform albedo. Fig. 4 shows an example of the
lighting estimated using this method.
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Figure 5: Normal estimation. We use an adaptive albedo model
(a) to account for the albedo variations on face and hair that de-
fines a relative compensation rp (b) to handle both global albedo
differences between face and hair (blue boxes) and local shading
variation (yellow boxes) within the hair region (green dashed lines).
The estimated normal map is shown in (c). (d) shows the compara-
tive result assuming constant hair albedo.

5.2 Normal Estimation

Given the pre-computed lighting, SFS-normals nSFS
p can be recov-

ered by minimizing the following data term:

Ep(np) = ∑
l∈{R,G,B}

∥∥L(Al ,bl , cl) ∗ np − Il
p

∥∥2
. (5)

There are two issues with the normals estimated using this energy
term. Firstly, optimizing for per-pixel normals independently will
lead to noisy estimates. We resolve this by adding two pair-wise
smoothness terms:

Es(np) = ∑
q∈N (p)

‖np − nq‖2 (6)

Ei(np) = ‖∇× np‖2 . (7)

The first constraint enforces normal similarity between neighboring
pixels, and the second term enforces that the estimated normals are
integrable by penalizing the curl of the normal vector field around
each pixel.

Secondly, because we did not account for the albedo in the lighting
model (Eqn. 3), deviations from the mean skin color (which is
subsumed into the lighting model) will lead to errors in the normal
estimates. This is especially problematic in the hair regions because
the albedo of hair is often dramatically different from that of face,
and hair regions typically have a lot of albedo variation, shadowing,
and ambient occlusion that are not handled in the shading model.
To account for these effects, we introduce an adaptive albedo model
that defines a relative compensation rp at each pixel in order to han-
dle both the global albedo differences and local shading variation:

rp = r0r′p, r′p ∈ [rmin, rmax] , (8)

where r′p indicates the local per-pixel albedo variation at each
pixel, and r0 accounts for global deviations in the albedo from
the mean skin color. The value r0 in the hair region is set
to the ratio of the average color of hair over face, i.e., r0 =
(∑p∈Ωh

Ip/|Ωh|)/(∑p∈Ωs
Ip/|Ωs|). r′p is a per-pixel grayscale com-

pensation term bounded by rmin and rmax that accounts for local
shading and shadowing effects.

We then modify Eqn. 5 to account for rp:

Ep(np) = ∑
l∈{R,G,B}

∥∥rpL(Al ,bl , cl) ∗ np − Il
p

∥∥2
. (9)

To ensure that this optimization is well-constrained, we impose a
smoothness constraint for rp:

Er(rp) = ∑
q∈N (p)

‖rp − rq‖2. (10)

The final energy combines Ep, Es, Ei and Er and we solve this con-
strained nonlinear least-squares system iteratively on a patch basis.
Within each patch, Levenberg-Marquardt method is adopted with
the unit length constraint on the of normal vectors using the method
in Johnson and Adelson [2011]. During each iteration, patches
are solved in a sweep-line order, allowing updated information to
be propagated across overlapping patches to ensure proper global
constraints.

Fig. 5 shows an example of our normal estimation method. As
this figure shows, our relative compensation term, rp, accounts for
the significant differences between the albedo of the face and hair
regions, as well as smooth albedo variations along the hair using
the relative compensation, giving us accurate surface normals that
are not corrupted by these variations. On the other hand, assuming
a constant albedo, as is done in previous SFS-based techniques,
produces very poor surface normals (Fig. 5(d)).

5.3 Shape Integration

We merge the SFS-normals and the base shape to reconstruct a
depth map with the global shape of the base shape and geometric
details in the SFS-normals. Combining depth and normal infor-
mation can be done in a similar way to Nehab et al. [2005], and
corresponds to the first two terms in Eqn. 1, where the parameter
λn and λb control how strongly the SFS normal or the original base
shape is to be preserved. Visually, we found that enhancing the
details on the face too much tends to lead to artifacts. In contrast,
the hair region requires more enhancement. Therefore, we use
λn = 0.6, λb = 0.4 and λn = 0.1, λb = 0.9 for the hair and face
regions respectively. This integrated shape is used in Sec. 6.2 to
disambiguate the parameters when a 2D helix is projected back to
3D.

Fig. 6(f) shows the result of integrating only the SFS normals and
the base shape. As can be seen, adding the SFS normals to the base
shape brings out a significant amount of detail in the hair, face,
and body regions. In some cases, the details on the face and the
body may not correspond to true geometric structures (for e.g., in
the eyes), but we found that they added to the visual quality of the
result. This is similar to sculptural techniques that use geometry to
depict texture detail (like the iris in sculpted busts).

6 Helical Hair Prior

Combining the base shape with SFS-normals gives us reconstruc-
tions with nice visual detail. However, as can be seen in Fig. 6,
the reconstruction may not capture the rich structural detail in the
hair region. Hair has complex BRDF and local lighting effects
that violate our shading model. Our patch-based reconstruction
is robust to this but at the cost of blurring out some of the hair
detail. In this section, we discuss how we use a geometric prior for
hair to capture intricate hair structures. In particular, we rely on
the observation that hair can be approximated well by piece-wise
3D helices [Bertails et al. 2006]. We infer these structures from
the input photo by clustering pixels with consistent hair orientation
and color and fitting 2D projected helical models to the clusters.
We then use the integrated depth (Sec. 5.3) to recover the true 3D
helices. Finally, we enforce depth continuity along these inferred
3D helices as the energy term Eh in Eqn. 1.

6.1 Super-Pixel Clustering

We first compute a robust orientation map of the photo using a bank
of oriented filters that are uniformly sampled in [0, π). By analyzing
the convolution response at each angle, we choose the orientation
θp with maximum response and calculate the corresponding confi-
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Figure 6: Helix fitting and the helical hair prior. We first perform super-pixel clustering based on color and orientation similarity (a).
Single-cluster fitting (b) fits the best helix for each cluster followed by multi-cluster fitting (c) that merges neighboring compatible helices into
longer ones. These helices are then projected back to the model to resolve ambiguity (d). Using these 3D helices as the helical hair prior, our
optimization can recover intricate hair structures (e), compared to the incomplete and blurred ones without this prior (f).

dence value cp by measuring how distinct it is compared to other
angles, as in Chai et al. [2012].

We then sample a set of cluster seed pixels that satisfies the follow-
ing conditions: its confidence is a) no less than a threshold (i.e.,
cp ≥ cmin), and b) locally maximal in a neighboring window of size
5. We use these samples as cluster centers, and apply k-way graph
cuts [Karypis and Kumar 1998] to segment the image into super-
pixels, C , using both color and orientation distance:

w(p,q) = wc |cp − cq|+ wθ |θp − θq| . (11)

6.2 Helix Fitting

Single-Cluster Helix Fitting. A single 3D helix H can be
parametrized within a local frame (with its main axis aligned with
the z-direction) in terms of a coordinate t.

H (t) =


x(t) = a cos(t) + mx,

y(t) = b sin(t) + my,

z(t) = c t + dz.

(12)

Projecting it to a 2D plane (while denoting
rotation about y-axis with φ ) gives us a
generalized trochoid curve H ∗ (We assume
an orthogonal projection to simplify the
formulation):

H ∗(t) =

{
x(t) = a sin(φ) cos(t) + c cos(φ) t + mx,

y(t) = b sin(t) + my,
(13)

with the tangent given by:

Ḣ ∗(t) =
b cos(t)

−a sin(φ) sin(t) + c cos(φ)
. (14)

We fit the 2D helix model to each super-pixel cluster, Ci, estimated
in the previous step. Given the super-pixel points with 2D position
p and orientation tangent ṗ, we can fit a single helix to them by
solving the following minimization problem:

min
tp,H ∗

∑
p
‖p− H ∗(tp)‖2 +

∥∥ṗ− Ḣ ∗(tp)
∥∥2

+ wr ‖tp‖2, (15)

where the last term penalizes over-fitting by minimizing the param-
eter coordinate of every point.

The fitting process also needs to determine the local orientation of
the 2D frame in which the helix is defined. Incorporating it in the
energy term above will complicate the optimization significantly.
Instead, we uniformly sample a set of helix axes, and estimate the
remaining parameters by solving Eqn. 15 for each axis. The axis

with the minimal fitting error is chosen. We found that uniformly
sampling 32 orientations was sufficient for our experiments.

Multiple-Cluster Helix Fitting. The 2D projected helices fit to
single super-pixel clusters are often too short and ambiguous to gen-
erate 3D helices that are long and accurate enough to extract large-
scale hair structures (see Fig. 6(b)). Therefore, we construct long
helices by incrementally merging compatible neighboring single-
cluster segments into multi-cluster helices.

In each iteration of this process, we start with a single-cluster helix
H ∗i , collect all its neighboring clusters CH ∗ , and for each pair of
clusters, re-fit a new helix, H ∗i+1. We measure the fitting score as
the average fitting error across all the merged clusters:

e(H ∗) =
∑p∈CH ∗

‖H ∗(tp)− p‖2

|CH ∗ |
. (16)

If the fitting score is below a set threshold e ≥ emin (set to about 25),
the clusters are merged and used for further extension. When this
iteration is terminated for every helix, we further remove redundant
helices that belong to an identical set of initial clusters (only keep
the one with minimal fitting error), and all helices with length less
than a threshold lmin, which is set to 50 pixels.

To improve the fitting performance, we make the assumption that
the new helix, H ∗i+1, shares the same axis as the previous helix H ∗i ,
so that we don’t need to sample axes again as in the single-cluster
fitting. Fig. 6(c) shows the multi-cluster 2D helices that we are able
to detect using this method.

Depth-Guided 3D Helix Estimation. Up to this point, we have
inferred a set of sparsely distributed 2D helix projections. We now
recover their corresponding 3D structures by making use of the
estimated depths using the base shape and SFS normals (Sec. 5.3),
and enforce this 3D structure in the portrait reconstruction process.
In order to recover a 3D helix from the 2D projections we have
inferred, we still need to estimate the rotation angle relative to the
projection plane, φ , and the displacement vector dz along the pro-
jection axis (see Eqn. 12). The value φ encodes the convex/concave
ambiguity when a 3D helix is projected on to a 2D plane, and plays
a critical role in resolving the 3D structure.

The unknown depth component of the projected 3D helix is then:

d (H ∗(t)) = cos(φ) (a cos(t) + b sin(t)) + c sin(φ) t + mz. (17)

In order to estimate it, we rely on the model depth, dp reconstructed
using only the base shape and SFS-normals in Sec. 5.3. We project
the 2D helices on to this model, and sample the depth at pixels
(tp, dp) along the project 2D helices. We solve for optimal values
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Figure 7: Relighting results. Our method enables realistic hair-
face shadowing and hair self-shadowing effects compared to [Chai
et al. 2013]. See the accompanied video for more results.

of φ and dz that best fit this depth map for complete 3D helices (still
within the local frame that rotates around the z-axis):

arg min
φ ,dz

∑
p
‖d (H ∗(tp))− dp‖2. (18)

The recovered parameters are substituted in Eqn. 17 to recover
the 3D helix depth, dh

p. This 3D helix depth is used in Eqn. 1 to
improve the reconstruction of the final result. Fig. 6(e) shows the
reconstructed geometry with our helical hair prior. In contrast to the
result without this prior, Fig. 6(f), our result faithfully recovers the
intricate geometry in the hair region. Please see more comparisons
in the accompanied video.

7 Results

To demonstrate the robustness of our method, we apply our method
to a variety of portrait photos captured in the wild, with a variety
of hairstyles ranging from short to long and from straight to messy.
The reconstructed hair models are shown in Figs. 1 and 13. For each
example in Fig. 13, we show the input photo, the reconstructed 3D
hair model as well as two side views of the model with and without
the texture. In the accompanied video, we also show our results
in continuous rotation for better visualization. As shown in these
results, our method can faithfully recover both long and continuous
wisp structures thanks to our helical hair prior as well as fine-scale
hair details thanks to the SFS normal estimation and integration.

Our high quality hair model can significantly improve portrait re-
lighting applications. Fig. 7 shows two relighting examples under
changing global illumination with a comparison to the results using
the portrait model generated by [Chai et al. 2013]. In our imple-
mentation, we not only take into account the surface geometry,
but also grow individual hair strands occupying the hair volume
bounded by the surface as in [Chai et al. 2013] and use a realistic
hair appearance model [Marschner et al. 2003] with self-shadowing
to render the relit hair. Thanks to our high quality portrait models,

Figure 8: 3D printed high-relief portraits from different views.
From left to right, original images courtesy of vgm8383, Qsimple
and Denise Mahoney.

our relighting results show better face-hair shadowing and hair self-
shadowing effects as well as realistic moving highlights on the hair
as the lighting changes. In contrast, the relighting results by [Chai
et al. 2013] look flat and unrealistic as if the entire hair region was
on a smooth surface. Please refer to the accompanied video for full
relighting results.

We can create high quality 3D portrait models with our hair models
and produce high-relief portrait sculptures using 3D printing. A
few printed portraits are shown in Fig. 8 from different static views.
These models are shown under dynamic views in the accompanied
video; the added viewing dimensionality becomes quite striking
when compared to the original photograph due to the compelling
geometric details produced by our method.

(a) Synthetic data (b) Real data

Figure 9: Convergence curves of our helix fitting solver on synthet-
ic curves (left), and a real photo (Fig. 6) (right) with average and
worst (the helix with largest error in that iteration) curves shown
respectively. Error is defined as average pixel distance to the pixel
clusters per-iteration.

Analysis of Helix Fitting Solver. To evaluate the convergence
and robustness of our helix fitting solver, we test it on both syn-
thetically generated curves as well as helix clusters from real pho-
tos. For synthetic testing, we generate 1000 2D helix curves with
parameter values randomly chosen within large ranges, and ras-
terize them into pixel clusters (similar to Sec. 6.1). As the fitting
error convergence curves show (Fig. 9), our solver finds correct
solutions for most synthetic samples with close-to-zero errors, and
converges to reasonably good results on real photos. Clusters with
non-uniform helical shapes (varying period or circle radius) can
introduce large errors, due to our uniform helix model. A more
generalized model with varying parameters may be helpful but will
make the optimization more difficult. We chose this uniform model
since we do not seek to recover super long strands but consistent
segments with moderate length to capture local hair structures.
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Figure 10: Comparison with previous methods. Our reconstruc-
tion result reveals both gross geometric structures and realistic fine-
scale details compared to [Chai et al. 2013] and [Echevarria et al.
2014] (applied to our base shape).

Evaluation and Comparison. We first compare our method with
[Chai et al. 2013] and [Echevarria et al. 2014] on reconstruction
quality in Fig. 10. Since Echavarria et al. [2014] is a stylized
refinement method on coarse hair geometry, we apply their method
on the base shape of hair for fair comparison. As shown in the
comparison, although the method of [Echevarria et al. 2014] creates
stylized hair features suitable for 3D fabrication, it lacks reconstruc-
tion accuracy in both aggregate wisp structures and fine-scale hair
details compared to our method. The method of [Chai et al. 2013]
can reconstruct approximate hair shape based on the boundary con-
straints, hair occlusion and strand smoothness cues, but it fails to
recover any fine geometric details of the hair as seen in our result.

To quantitatively evaluate our reconstruction accuracy, we al-
so compare our method to a state-of-the-art multi-view stere-
o method [Fuhrmann et al. 2014] on a multi-view dataset used
for high quality hair reconstruction in Hu et al. [2014a]. We
choose to evaluate our method on a real dataset instead of syn-
thetic ones because real datasets reflect the complex nature of real-
world hairstyles and lighting conditions. While we use all of the
56 multi-view images for the multi-view stereo reconstruction, we
only use one selected frontal photo to reconstruct our model. The
difference map is computed as the depth difference after optimal
rigid alignment is applied to the model as shown in Fig. 11. Our
average reconstruction difference compared to the multi-view re-
construction result is about 2cm. Despite the overall better recon-
struction accuracy of multi-view stereo methods, the result is noisy
and discontinuous which reaffirms the difficult nature of hair as
a reconstruction target. Visually, our result looks more coherent
and smooth thanks to our helical hair prior for reinforcing the hair
structures. In addition, our result reveals very fine-scale hair detail
as a result of our novel helix prior and SFS pipeline; this is not
recovered by the multi-view stereo method.

Input Resolution. In our experiments, higher resolution input
photos can produce visually better results with finer details and
clearer hair structures, but the computation cost will also increase
proportionally. As a practical choice, all results in this paper are
generated from input photos of about 800× 600 pixels, which can
produce good results within acceptable time.

User Interaction. The only user interaction needed is to guide
image segmentation with simple strokes. It takes less then a minute
for an untrained average user to finish so. And in practice, since
this interaction is quite straightforward, different user inputs led to
almost identical results and had little influence on following steps.
Please see the accompanying video for an example user interaction
session.

Parameters. We use the default set of parameters for all our
examples except the multiple-cluster merge threshold emin and the
regularization weight wr in Eqn. 15 when denser and curlier helix
fitting are desired for some highly curly hairstyles. emin can be

λb λn λh rmin rmax wc wθ cmin wr

0.4 0.6 0.1 0.25 4 1 0.1 0.3 0.1
Eq. 1 Eq. 8 Eq. 11 Eq. 15

Table 1: Parameter values used in our experiments.

Image Our method

5cm

Difference map Multi-view stereo

Figure 11: Comparison with multi-view stereo. Our single-view
reconstruction result closely matches the result of the state-of-the-
art multi-view stereo method [Fuhrmann et al. 2014] on a multi-
view dataset (with an average difference of 2cm) and preserves
more coherent and detailed hair structures.

Figure 12: Limitations. For frizzy hairstyles our method may
fail to generate a reliable helical hair prior resulting in loss of
geometric details. Original image courtesy of Peter Grifoni.

decreased to allow longer and denser helices; and wr can be relaxed
to allow more curly helices. We summarize important parameters
in Table. 1 for easy look-up.

Timings. For a typical input photo of 800× 600 pixels, our proto-
type system takes about 10 minutes to process all subsequent steps,
including about 5 minutes for normal estimation, about 5 minutes
for helix fitting and less than 1 minute for final shape integration.

Limitations. While our technique can handle a wide range of
hairstyles, it has problems with frizzy ones (Fig. 12). The silhou-
ettes for such examples are not well defined and the hair strands
are too wavy to be resolved by our helix fitting method. And our
technique may not be able to generate accurate structures for some
styled hairstyles such as braids. Another limitation is that our mor-
phable face model [Cao et al. 2014] cannot fit profile portraits since
landmark detection may fail. For relighting, the highlights may



Figure 13: More results. For each example, we show the input photo, the 3D hair model and its two side views with and without texture.
From top to bottom, original images courtesy of Qsimple, Denise Mahoney, Qsimple, Chris Zerbes and Alex Masters.

look static because they are partially baked into the albedo layer.
A robust method for single image specularity decomposition would
help to resolve this issue but is still a very challenging problem.

8 Conclusion

We have demonstrated a system for high quality 3D hair reconstruc-
tion from a single photo with minimal user input. By effectively
combining single-view depth cues such as shading, silhouettes and
occlusions as well as a novel helical hair prior in an optimization
framework, we are able to achieve reconstruction accuracy close-
ly matched to a state-of-the-art multi-view stereo algorithm on a
multi-view dataset. Our method can handle a variety of hairstyles
in the wild, from short to long and from straight to messy. Our
accurate hair models enable high-quality portrait relighting with
realistic shadowing effects on the complex hair structures. We can
create high quality 3D portrait models with our hair models and

produce high-relief portrait sculptures using 3D printing.

In the future we would like to further enhance our system to cover
a broader range of content. By applying stronger shape priors, such
as a hairstyle database, we can extend our method to build a full 3D
hair model beyond a depth map. By extending our shape templates
to include the torso and body, we can reconstruct portraits that
capture more of the human pose and expression. Finally, our sys-
tem is tuned to generate compelling results from frontal portraits,
additional exploration is needed to handle both profile and extreme
views which may have more challenging occlusions.
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