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Figure 1: From a set of sparsely captured images of a user, we construct our image-based dynamic avatar, consisting of a face blendshape
and a hair morphable model, which represent the corresponding coarse geometry. The captured images are warped and blended under
the guidance of the coarse geometry to generate real-time facial animation with fine-scale details. From left to right: input images, the
reconstructed coarse geometry for face and hair, rendering results of our avatar with different poses and expressions.

Abstract

We present a novel image-based representation for dynamic 3D
avatars, which allows effective handling of various hairstyles and
headwear, and can generate expressive facial animations with fine-
scale details in real-time. We develop algorithms for creating an
image-based avatar from a set of sparsely captured images of a
user, using an off-the-shelf web camera at home. An optimiza-
tion method is proposed to construct a topologically consistent mor-
phable model that approximates the dynamic hair geometry in the
captured images. We also design a real-time algorithm for syn-
thesizing novel views of an image-based avatar, so that the avatar
follows the facial motions of an arbitrary actor. Compelling results
from our pipeline are demonstrated on a variety of cases.

Keywords: facial animation, face tracking, virtual avatar, image-
based rendering, hair modeling

Concepts: •Computing methodologies → Animation; Motion
capture;

1 Introduction

A personalized dynamic avatar is a custom face rig that matches
the geometry, appearance and expression dynamics of a user at dif-
ferent poses. Combined with real-time face tracking techniques
(e.g., [Weise et al. 2011; Cao et al. 2014a]), facial animation gener-
ated using a personalized avatar helps convey the realism of a per-
son, in contrast to avatars of pre-defined virtual characters, which
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is useful and important in many real-world applications, including
virtual reality, gaming or teleconferencing.

One major related challenge is how to easily create compelling
user-specific avatars with fine-scale details for non-professionals
with commodity hardware at home. Excellent recent work [Ichim
et al. 2015; Garrido et al. 2016] introduces techniques that fo-
cus on modeling the face and head from image/video recordings
of a user. The main idea is to use a geometry-based approach to
adapt a coarse-scale generic blendshape model to the captured im-
ages/video, and then estimate fine-scale facial details with shape-
from-shading. While very impressive results are demonstrated,
only the face and head are explicitly modeled; hair, a non-negligible
part of a user’s appearance, is simply approximated as a diffuse tex-
ture map on the head model. A more expressive model is needed.

In this paper, we introduce a novel image-based representation for
personalized, dynamic 3D avatars with hairs. Our representation
is expressive, easy-to-construct and run-time efficient. We take a
set of sparsely captured images of a user with predefined poses and
expressions as input, and create a face blendshape model and a mor-
phable hair model to represent the coarse dynamic geometry. Other
components such as eyes and teeth are represented as billboards.
During runtime, we generate novel views of the avatar by warping
and blending pre-captured images under the guidance of the coarse
dynamic geometry, based on the rigid head transformation and fa-
cial expressions estimated by a real-time face tracker. Different
components of the avatar are then seamlessly integrated to render
the final result. Our image-based avatars naturally exhibit all fine-
scale facial details such as folds and wrinkles, since the captured
images intrinsically record all related information.

To create an image-based avatar as described above, we need to
construct coarse-scale face and hair geometries from a small set
of images. The face model can be easily constructed by fitting a
generic blendshape model to the captured images, in a way similar
to the one used in existing work. The construction of the hair model,
however, is challenging. There is no generic template models for
hairs – different users may have dramatically different hairstyles.
We have to build the model solely from the input images. Further-
more, hairs, especially long ones, may exhibit non-rigid deforma-
tions among different head poses, due to the effect of gravity or
interaction between the body and hairs. Constructing the hair as a
static geometry from the input images using structure-from-motion
(SfM) techniques may result in a model that does not match the in-
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put well, leading to undesirable animation results. To tackle these
challenges, we propose a method to build a morphable hair model
that approximates the dynamic hair geometry well and is sufficient
to guide the image warping and blending at runtime. We first infer
depth information of the hair region in each image independently.
All depth maps are then refined in a joint optimization, taking into
account the inter-image consistency. Finally, we construct a topo-
logically consistent morphable model from all depth maps. The
constructed model is compact and allows high runtime efficiency.

During runtime animation, for each frame, we use a real-time face
tracker to calculate the parameters of facial motion, which are then
used to construct the coarse 3D geometry of the avatar. Next, the in-
put images are warped and blended to generate a novel view of the
avatar, guided by the coarse geometry. To this end, we introduce a
real-time algorithm that makes use of the coarse geometry to deter-
mine the per-pixel weight for each warped image, ensuring smooth,
seamless integration of different image regions. We demonstrate
compelling results from our algorithm on a variety of cases with
different hairstyles and headwear.

In summary, the main contributions of our work include:

• We introduce a novel image-based representation for dynamic
3D avatars, which allows effective handling of various hairstyles
and headwear, and can generate expressive facial animations with
fine-scale details.

• We develop algorithms for creating an image-based avatar from
a set of sparsely captured images of a user. In particular, we pro-
pose an optimization method to construct a topologically consis-
tent morphable model to approximate the dynamic hair geometry
in the captured images.

• We design a real-time algorithm for synthesizing novel views of
an image-based avatar so that the avatar follows the facial mo-
tions of an arbitrary actor.

2 Related Work

Dynamic Avatar Creation. In comparison with facial muscle sim-
ulation (e.g., [Venkataramana et al. 2005]) and parametric mod-
els (e.g., [Jimenez et al. 2011]), data-driven approaches are more
widely used to create dynamic avatars in practice, as they produce
realistic facial motions at modest computational costs. For exam-
ple, Amberg et al. [2007] use a morphable model [Blanz and Vet-
ter 1999] to reconstruct a static 3D face from multi-view images.
The multi-linear models [Vlasic et al. 2005; Cao et al. 2014b] that
capture a joint space of identity and expression are often used to
create a user-specific blendshape model by optimizing the identity
coefficients to fit a set of input images [Cao et al. 2013] or video
frames [Cao et al. 2014a]. Dynamic geometry variations to the
blendshape model can also be linearly modeled in real-time while
tracking RGBD videos [Bouaziz et al. 2013; Li et al. 2013]. These
linear models, while suitable for real-time face tracking and anima-
tion, are unable to capture facial details such as wrinkles.

In high-end production, special hardware setups (e.g., the Light
Stage system) have been used to create photorealistic dynamic
avatars with fine-scale skin details [Alexander et al. 2009; Alexan-
der et al. 2013]. Jimenez et al. [2010] compute dynamic skin ap-
pearances by blending hemoglobin distributions captured with dif-
ferent expressions. In their subsequent work, expression-dependent
normal maps are interpolated to add realistic wrinkles to an ani-
mated face [Jimenez et al. 2011]. Nagano et al. [2015] synthesize
skin microstructures based on local geometric features derived from
high-precision microgeometry, acquired with an LED sphere and a

skin deformer. These custom devices, however, are unaffordable
for average users.

Some techniques aim to create a dynamic avatar from a single im-
age. Taking one image of an avatar and a user as input, Saragih et
al. [2011] learn a mapping function between the expressions of the
two. At runtime, the user’s face is tracked by fitting a deformable
face model, which is then used with the learned map to generate
the corresponding shape for the avatar’s face. Cao et al. [2014b]
introduce a technique to animate a still face image with the facial
performance of an arbitrary actor. It first uses a multi-linear face
model to fit a blendshape model for the subject in the image, and
then textures the model with the image. At runtime, the tracked
head motion and expressions of the actor are transferred to animate
the blendshape model, from which a novel image is rendered. To
handle hair, it uses a single-view hair modeling technique [Chai
et al. 2012] to reconstruct a strand-based 3D hair model, which is
also transformed together with the face model and rendered into the
final result. As only one input image is used, the resulting avatars
are not very expressive and do not have fine-scale details such as
dynamic wrinkles. Large head rotations and exaggerated expres-
sions are also problematic to these techniques.

Recent research begins to investigate ways to create fully-rigged
avatars with fine-scale details for average users at home. Ichim
et al. [2015] propose to build a two-scale representation of a dy-
namic 3D face rig from a hand-held video. Using a set of images
of a user in neutral expression, they first fit a morphable face model
to the point cloud extracted with structure-from-motion, resulting
in a user-specific neutral face model. Then, a user-specific blend-
shape model (i.e., the dynamic face rig) is reconstructed by fitting a
generic blendshape template at medium resolution to the static neu-
tral model and the user’s expression in the captured video. Fine-
scale facial details such as dynamic wrinkles are represented as
normal and ambient occlusion maps, estimated with shape-from-
shading. Garrido et al. [2016] propose an automatic approach to
creating personalized 3D face rigs solely from monocular video
data (e.g., vintage movies). Their rig is based on three-scale lay-
ers, ranging from the coarse geometry to static and transient fine
details on the scale of folds and wrinkles. Casas et al. [2015] gener-
ate a user blendshape model with textures using an RGBD camera,
which considers only the front face. It is not clear how to model a
full head that includes ears and hair.

Unlike existing techniques that adopt multi-scale geometric repre-
sentations of face rigs, we represent a rig as a set of images of
the user’s face, along with some coarse-scale geometric informa-
tion needed for runtime animation synthesis. All fine-scale facial
details such as folds and wrinkles are implicitly recorded in our
image-based representation and do not need any special treatment.
More importantly, this image-based representation enables us to ef-
fectively handle hair and headwear, which are crucial parts of a
user’s appearance but largely ignored in existing work.

Face Tracking and Facial Performance Capture. In film and
game production, special equipments, such as facial markers, cam-
era arrays and structured lighting, have long been used to capture
high-fidelity facial performance [Zhang et al. 2004; Weise et al.
2009; Bradley et al. 2010; Beeler et al. 2011; Huang et al. 2011].
Such equipments are usually not available for consumer-level appli-
cations, where only commodity hardware such as video and RGBD
cameras are accessible.

Video-based face tracking have been extensively studied in both
computer vision and graphics [Essa et al. 1996; Pighin et al. 1999;
DeCarlo and Metaxas 2000; Chai et al. 2003; Valgaerts et al. 2012;
Garrido et al. 2013; Shi et al. 2014]. The latest techniques demon-
strate robust real-time tracking and animation from an ordinary web
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Figure 2: Overview of our pipeline. From captured images of the user that sparsely sample over head poses and expressions, we build a
head blendshape and a morphable hair model to represent the corresponding coarse geometry. Other components such as eyes and teeth are
expressed as billboards. During runtime, an actor can drive our avatar using a single-camera-based face tracker. The captured images are
warped and blended under the guidance of the coarse geometry to generate real-time facial animation with fine-scale details.

camera [Cao et al. 2013; Cao et al. 2014a]. High-fidelity facial
details such as wrinkles can also be reconstructed in real-time us-
ing shading cues [Cao et al. 2015]. Making use of commodity
RGBD cameras, researchers have achieved highly impressive fa-
cial tracking and performance-based animation [Weise et al. 2011;
Baltrušaitis et al. 2012; Bouaziz et al. 2013; Li et al. 2013; Li et al.
2015; Liu et al. 2015]. The head motion and facial expression co-
efficients tracked by these methods can be used to drive the facial
animation of our image-based avatars in real-time.

Image-based Rendering. Our work is closely related to image-
based rendering [Shum et al. 2007], in particular view morph-
ing [Seitz and Dyer 1996] and view interpolation [McMillan 1997].
To generate a novel view of an object from images taken at dif-
ferent views, with or without the help of extra geometric infor-
mation of the object, these techniques typically start with estab-
lishing correspondences among images; then images from nearby
views are warped into the novel view based on the correspondences,
and blended to obtain the final result. For example, Stich et al.
[2008] synthesize novel views of general images captured at differ-
ent views and times. Xu et al. [2011] generate novel motion/view
of human performance, using a database of multi-view video se-
quences.

Face prior can be incorporated in novel-view image synthesis as
extra source of information to improve the quality of the result.
Zanella et al. [2007] use Active Shape Model (ASM) to identify
facial feature points on images, and then linearly interpolate their
locations for frontal view morphing. Yang et al. [2012] propose a
method to morph two images with the help of a reconstructed 3D
face model. Large rotation and expression changes between the two
images can be handled. None of these techniques can create fully
rigged dynamic avatars as achieved in this paper.

Image-based Hair Modeling. Our work is also related to image-
based hair modeling algorithms [Wei et al. 2005; Paris et al. 2008;
Luo et al. 2013; Hu et al. 2014a; Hu et al. 2014b]. Techniques
in this category typically reconstruct a static, 3D geometric model
of hair, based on multiple images taken from different view points
or under different illuminations. Recently, hair modeling methods
based on just a single image [Chai et al. 2012; Chai et al. 2013;
Chai et al. 2015; Hu et al. 2015] are proposed to make hair model-
ing more accessible to non-professional users. Dynamic hair geom-
etry can also be acquired from multi-view inputs using spacetime
optimization [Xu et al. 2014]. One major difference between our
work and existing image-based hair modeling work is that we do
not model the hair geometry to the strand level. Instead, we take a
hybrid approach that uses a 3D morphable hair model for the coarse

geometry, and images to capture fine details.

3 Overview

Our approach constructs a personalized dynamic avatar from a
set of sparsely captured images of the user’s face. Unlike previ-
ous techniques that represent avatars as textured geometries [Ichim
et al. 2015; Garrido et al. 2016], we represent avatars using the cap-
tured images, along with some coarse geometry information of the
images. During real-time animation, the images are warped and
blended under the guidance of the geometry information to make
avatars exhibit the facial motions of an arbitrary actor. As the cap-
tured images contain all fine-scale facial details, we do not need to
reconstruct multi-scale geometric details as in [Ichim et al. 2015;
Garrido et al. 2016]. Furthermore, this image-based representation
enables us to effectively handle the user’s hair.

The pipeline for building and using an image-based dynamic avatar
is shown in Fig. 2. It has three main steps: image acquisition, avatar
construction (§4) and real-time animation (§5). The geometry in-
formation in our avatar representation consists of two main compo-
nents: a face blendshape model and a morphable hair model. The
construction of the face model is relatively easy: geometric priors
from existing 3D facial expression databases can be utilized to fit
a generic blendshape model to the captured images (§4.2). For the
hair model, such priors are not available – different users may have
drastically different hairstyles. We need to construct the hair model
solely from the captured images (§4.3). For other components, such
as eyes, teeth and body, we adopt a billboard-based approach to
model them from the input images (§4.4). During runtime, we use
the motion parameters computed by a state-of-the-art face tracker
to drive the face blendshapes, as well as the morphable hair model
(§5.1). We then warp and blend the captured images with the guid-
ance from the coarse geometry (§5.2). Other facial components are
seamlessly integrated to complete the final result (§5.3).

Image Acquisition. To construct an image-based avatar, we cap-
ture 32 images for a particular user with a web camera: 15 for dif-
ferent prescribed head poses, and 17 for different expressions.

The predefined head poses consist of head rotations over a set of
angles with a neutral expression. Specifically, the set of rotations,
expressed in Euler angles, are as follows: yaw from −60◦ to 60◦

at 20◦ intervals (with pitch and roll at 0◦); pitch from −30◦ to 30◦

at 15◦ except for 0◦ (with yaw and roll at 0◦); and roll is sampled
similarly as pitch. Essentially, the user sweeps her head three times
along different axes, to get to the prescribed angles. Note that head



rotations in exact angles are not required from the user; a rough
approximation is sufficient for our algorithm.

To capture images of different expressions, the user is asked to keep
the neutral head pose and perform the following 17 expressions:
mouth stretch, smile, brow down, brow raise, disgust, squeeze left
eye, squeeze right eye, roar, mouth left, mouth right, grin, mouth
up, lip pucker, lip funnel, teeth, cheek blowing, eye close.

4 Image-based Avatar Construction

We build the image-based avatar representation from the captured
images {I1, I2, ...I32} of a user, where I1 corresponds to the im-
age of neutral expression under the neutral head pose. Our repre-
sentation is made up of preprocessed images and crude geometric
proxies for various components of the avatar. We first apply user-
assisted segmentation and facial landmark labeling to the captured
images. Next, we build a face blendshape model and a morphable
hair model from the images, as well as billboards for the rest parts,
to represent the coarse geometry.

4.1 Image Preprocessing

We perform two steps in preprocessing: segmenting the captured
images into different components, and landmark labelling that fa-
cilitates subsequent construction of geometric models.

Segmentation. The first step is to segment the images into several
layers: head, hair (including headwear), eyes, teeth, body and back-
ground. We employ Lazy Snapping [Li et al. 2004] to perform the
segmentation with minimal user assistance. In our experiments, a
few strokes are sufficient to complete the decomposition. As the
hair may overlap with other regions in a complex fashion, we fur-
ther perform image matting [Levin et al. 2008] on the hair layer to
refine the segmentation. This results in an additional alpha channel
for the hair layer (see Fig. 3).

Landmark Labeling. Similar to [Cao et al. 2013], we semi-
automatically label a few facial landmarks Si for each image Ii.
These landmarks indicate the 2D positions of a set of facial fea-
tures, such as the contour of mouth and eyes, and the silhouette of
face (see Fig. 3). Specifically, we use the face tracker [Cao et al.
2014a] to automatically locate these landmarks, and then manually
adjust them with a drag-and-drop tool.

4.2 Face Blendshapes

We represent the coarse, dynamic geometry of the face (along
with the head) with a blendshape model, using the labeled images
{Ii, Si} as input. The blendshape model helps warp and blend seg-
mented images to obtain the final appearance of face in our avatar.
First, we compute an initial static 3D face model F initi for each
image, based on the FaceWarehouse database [Cao et al. 2014b],
which includes the 3D face geometry of 150 different individuals,
each with 47 expressions. Then, F initi is refined by mesh deforma-
tion to obtain Fi. Finally, we compute the expression blendshapes
{Bj} from {Fi}.

Initial Modeling by Tensor Fitting. For each image Ii, we com-
pute the initial face model by interpolating the 3-mode tensor C
of FaceWarehouse, using the global identity coefficients wid and
per-image expression coefficients wexp

i :

F initi = C ×2 wid ×3 wexp
i , (1)

where ×2 and ×3 are the tensor contraction operations of second
and third mode. In order to generate F initi , we need to determine
wid and wexp

i .

Figure 3: Image preprocessing. From left to right: a captured
image, segmented layers, the hair layer after matting, and facial
landmarks.

Observe that F initi is related to its 2D image-space projection F imi
as:

F imi = Π
(
Ri · F initi + Ti

)
. (2)

Here (Ri,Ti) is the object-to-camera-space transformation, and Π
maps a point from the camera space to the image space, based on
the intrinsic matrix of the camera. To compute the unknown wid

and {wexp
i ,Ri,Ti}, we employ the method in [Cao et al. 2013],

which minimizes the error between the labeled landmarks Si and
the corresponding mesh vertices of F imi :

Eld =
∑
k

‖vk − Si,k‖2 . (3)

Here vk a vertex in F imi , Si,k is the landmark corresponding to vk
in Si .

Geometry Refinement by Mesh Deformation. The initial face
model interpolated from FaceWarehouse is only a rough approxi-
mation. To further refine the accuracy of the model, we optimize
the positions of all mesh vertices by minimizing Eqn. (3) plus a
Laplacian regularization term [Huang et al. 2006] defined as fol-
lows:

Elap =
∑
k

∥∥∥∥∆vk −
δk
|∆vk|

∆vk

∥∥∥∥2

. (4)

Here ∆ is the discrete mesh Laplacian operator based on the cotan-
gent formula [Desbrun et al. 1999], δk is the magnitude of the
Laplacian coordinates of vertex k in F initi . We denote the refined
results as {Fi}.

Blendshape Generation. In the previous step, we have improved
the quality of the 3D face model in each image. The blendshapes
obtained from the FaceWarehouse database using wid can be also
refined to create more accurate, dynamic geometry. Thus, we em-
ploy an example-based face rigging method [Li et al. 2010] to com-
pute the refined blendshapes {Bj} from {Fi}.

4.3 Morphable Hair Model

The construction of the hair model is more difficult than that of
the face model. Different users may have considerably different
hairstyles. There are no generic templates available to model them.
We have to construct the hair model solely from the captured im-
ages. Moreover, hairs, especially long ones, may exhibit non-rigid
deformations when the head is rotating, due to the effect of gravity
or interaction between the body and hairs. Representing the hair
as a static geometry with rigid transformations may not match the
captured images well and could result in undesirable animation re-
sults. Therefore, we build a morphable model to approximate the
dynamic geometry of hair.

Due to the relatively low image quality of ordinary web cameras,
hair strands are not distinguishable in the captured images. Thus
it would be difficult to calculate accurate, strand-level correspon-
dences among this sparse set of images. So unlike previous tech-
niques that aim to construct an accurate geometry down to the



strand level for a static hair [Wei et al. 2005; Paris et al. 2008; Luo
et al. 2013; Hu et al. 2014a; Chai et al. 2012; Hu et al. 2015], we
only construct a coarse geometric proxy that is sufficient to help
warp and blend related image segments during runtime animation.
To build the model, we first infer depth information of the hair re-
gion in each image independently. All depth maps are then refined
in a joint optimization, taking into account the inter-image consis-
tency. Finally, we build a topologically consistent morphable model
from all depth maps.

Single-Image Depth Estimation. We adapt the single-view hair
modeling technique in [Chai et al. 2012], which minimizes a sil-
houette and a smoothness energy function. Initially, the hair silhou-
ettes ∂Ωh is identified in the segmented hair region Ωh. The initial
depth D0 is set as follows: for a pixel on the interior silhouettes,
we directly assign the depth of the corresponding point on the head
model Fi; for a pixel on the exterior silhouettes, we assign the aver-
age depth of points on the exterior silhouettes of Fi. The silhouette
energy term is defined as:

Esil =
∑
p∈∂Ωh

(∥∥Dp −D0
p

∥∥2
+ ‖np −∇Ωh‖2

)
, (5)

where Dp is the per-pixel depth we would like to solve, np is the
normal and ∇Ωh denotes the image gradient along the hair silhou-
ette. Next, the smoothness term, which encourages the smoothness
of hair depths and normals, is defined as:

Esm =
∑
p∈Ωh

∑
q∈N(p)

(
ωd‖Dp −Dq‖2 + ωn‖np − nq‖2

)
, (6)

where N(p) denotes the 4-connected neighbors of p, ωd / ωn is the
parameter that controls the depth / normal smoothness. By mini-
mizing the energy of Esil + Esm, we obtain the depth map Di for
each image Ii.

Inter-image Depth Optimization. The above depth estimation is
performed on each image independently, without taking into ac-
count the fact that all depths correspond to the same avatar compo-
nent. This results in less accurate 3D geometry reconstructed from
the depth maps. To address this issue, we propose a joint depth op-
timization to explicitly enforces inter-image consistency. The opti-
mization is solved iteratively in an alternating fashion. In each iter-
ation, we loop over all depth maps; we refine one depth mapDi at a
time, while keeping others fixed. The idea is to constrain the current
depth map with other ones, to enforce the consistency. Specifically,
we transform all other depth maps {Dj}j 6=i to the camera space of
Di, denoted as {D̂j}j 6=i; then the inter-image consistency term is
expressed as the sum of pairwise differences between Di and D̂j :

Econ =
∑
j

∑
p

∥∥∥Di,p − D̂j,p∥∥∥2

. (7)

We solve the refined depth map, by minimizing this consis-
tency term plus the silhouette term Eqn. (5) and the smoothness
term Eqn. (6) defined in the previous subsection.

Now we describe in detail how to transform a depth map Dj to the
camera space of Di, which results in D̂j . For cases like short hairs
that can be well approximated by a rigid proxy, we simply perform
a rigid transformation between camera spaces using the parameters
{Ri,Ti} solved during face blendshape construction as:

P (D̂j,p) = (Ri,Ti) · (Rj ,Tj)
−1 · P (Dj,p), (8)

where P (·) is a 3D point in the camera space, corresponding to a
depth pixel.

Figure 4: A visualization of hair region correspondences. We show
the hair correspondences computed with our method in the right
image, which is a color visualization based on the displacement
vectors from each pixel in the hair region of the left image to a
corresponding pixel in the center image.

For cases like long hair, we need to further perform a non-rigid
transformation to D̂j , as the geometry can no longer be well ap-
proximated as a rigid proxy. Specifically, we establish sparse cor-
respondences Cij between Di and Dj , which will be detailed later.
Then, based on the correspondences, we deform Dj to obtain D̂j ,
by minimizing the following energy:

Ej =
∑

(ci,cj)∈Cij

∥∥∥D̂j,cj −Di,ci∥∥∥2

+ωl
∑
k

∥∥∥∥∆vk −
δk
|∆vk|

∆vk

∥∥∥∥2

,

(9)

where (ci, cj) is a pair of correspondences, vertex vk is the k-th
vertex of the mesh corresponding to the depth map D̂j , and the
Laplacian term is the same as in Eqn. (4). ωl is the parameter to
control the regularization term, which is set to 10 in our experi-
ments.

Correspondence Computation. As aforementioned, hairs may be
non-rigidly deformed when the head moves. Thus, before solv-
ing for Di in the inter-image optimization, we need to determine
correspondences between Di and another depth map Dj , in order
to compute the deformation that produces D̂j . Our algorithm con-
sists of three steps: image-space correspondence computation, low-
quality match pruning, and guided correspondence refinement.

In the first step, we compute dense correspondences between the
hair regions in Ii and Ij , using the PatchMatch algorithm [Barnes
et al. 2009]. The generated correspondences may not be accurate
for all pixels. So in the second step, we prune low-quality matches
and use a deformation algorithm to compute other potential corre-
spondences. To do this, we first construct a regular mesh Ci of the
hair region of Ii, where each pixel is regarded as a vertex whose
depth value is assigned from Di. Next, for each vertex of Ci, if the
PatchMatch errors of all pixels in a 3x3 neighborhood of the vertex
are lower than a given threshold 0.05 and the PatchMatch offsets of
these pixels are similar, we average the offsets of neighboring pixels
to obtain that of the current vertex; otherwise, the correspondence
of the vertex is set as invalid. For the vertices of Ci with valid
correspondences, we set their corresponding points in Ij as posi-
tional constraints, and deform Ci using the Laplacian deformation
algorithm [Huang et al. 2011]. The deformed mesh C′i is rendered
to the image plane of Ij , and each vertex of C′i passing the depth
test can find its corresponding point in Ij . In the final step, we re-
fine the correspondences at vertices of Ci, by searching for the best
matching patch in a local 9x9 neighborhood in Ij . The center of
the neighborhood in patch search is determined by the initial corre-
spondence. If the PatchMatch error at a vertex is still greater than
the threshold, we simply set the correspondence at this vertex as



invalid and leave it out in the optimization of Eqn. (9). An example
of the computed correspondences is visualized in Fig. 4.

Note that we use PatchMatch instead of more traditional approaches
such as optical flow to compute the dense correspondences. The
reason is that our input is images with different head poses and ex-
pressions, which has large inter-image variations; PatchMatch is
more robust in this case, while optical flow is better suited for pro-
cessing data like a video sequence, where the neighboring frames
have small variations.

Morphable Model Generation. We build the morphable hair
model from all hair depth maps. Specifically, we first transform
and deform all depth maps into a common coordinate system, the
camera space of I1. The is achieved by constructing a regular mesh
for each hair region and deforming the mesh using Laplacian de-
formation in the same way we compute the correspondences. Each
pixel in a depth map is then converted into a 3D point. We re-
move the outlier points with the normal’s z direction smaller than
a given threshold 0.5 (i.e., grazing view angles). Next, Poisson
surface reconstruction [Kazhdan et al. 2006] is applied to the point
cloud to generate the coarse hair geometryH1 for I1. As the camera
space transformations and deformations between depth maps are all
known, we transform and deform H1 to the other 14 images {Ii}
of different head poses, resulting in {Hi}i=1,2,...,15. We regard the
set of geometries {Hi} as the morphable hair model, which spans
the space of a user’s coarse geometry of hair with different head
poses. Note that we assume that the facial expression has no effect
over the hair shape.

4.4 Handling Eyes, Teeth and Body

We have described the representations for face and hair in previous
subsections. To complete our avatar, we create simple billboards for
eyes, teeth and body. Unlike face and hair, these components vary
less with different expressions. Therefore, we build the eye and
body billboards based on the image with neutral expression under
frontal view (i.e., I1), and the tooth billboards from the image with
the teeth expression.

Eyes. For each eye, we represent it with two billboards, one for the
iris, and the other for the sclera, following the work of [Saragih
et al. 2011]. We first detect a rectangle of interest using the image-
space bounding box of selected vertices on the head mesh. The po-
sition and size of the iris is automatically determined by the largest
ellipse found inside the rectangle. We then copy the detected iris in
the image to its billboard. For the sclera billboard, we copy from
the eye region of the image, and remove the part that belongs to
the iris. To fill in the missing pixels in the billboard, we apply the
PatchMatch algorithm [Barnes et al. 2009] to synthesize their col-
ors, using the sclera region as the source.

Teeth. We build two billboards for upper and lower jaw teeth, re-
spectively. In the image with the teeth expression, we also iden-
tify a rectangle of interest using the image-space bounding box of
selected vertices on the face mesh. The sizes of teeth billboards
are automatically determined by a general teeth model [Thies et al.
2015] and the face mesh. We also provide a drag-and-drop tool,
for manually refining the selection of billboard contents from the
image.

Body. We approximate the upper body as a single billboard, which
is directly filled with pixels from the body layer of I1. The depth
of body billboard is assigned as the average depth of points on the
exterior silhouettes of the head model.

Algorithm 1 Rendering algorithm for an image-based avatar
Input: rigid head transformation (R,T) and facial expression co-
efficients e, estimated from the face tracker
Output: a rendered image of the avatar
Begin

Render the body billboard;
Compute the head mesh F based on (R,T) and e;
Compute the new head mesh F̂ after neck stablization;
Compute the new head transformation (R̂, T̂) from F̂ ;
Compute the hair model H based on (R̂, T̂) and e;
for captured image Ii do

Warp it to the current view with the guidance of F̂ /H;
Compute per-vertex weights;
Generate a weight map wi using RBF-based interpolation;

end for
Blend all warped images using {wi} and render the result;
Render the billboards for eyes and teeth with computed masks;

End

5 Real-time Animation

We employ the single-camera-based face tracker [Cao et al. 2014a]
to capture facial motions and drive our image-based dynamic avatar.
At runtime, for an input frame, the face tracker automatically com-
putes the parameters of facial motion, including the rigid head
transformation (R,T) and facial expression coefficients e. Based
on these parameters, we construct the coarse 3D geometry of the
avatar for the current frame, and then warp and blend pre-captured
images to get the final result, guided by the coarse geometry.

5.1 Geometry Construction

We describe how to construct the coarse geometry for face and hair,
from the rigid head transformation and the expression coefficients.

Face. With the precomputed face blendshape model {Bj}, we
build the face geometry for an input frame as:

F = R · (B0 +

47∑
j=1

ejBj) + T, (10)

where B0 is the neutral expression blendshape, ej is the j-th coef-
ficient of e.

To make the head seamlessly connected with the neck, we need to
constrain the positions of the vertices near the neck to conform with
the body billboard, which only moves with the translation T. Then
we adjust the positions of the rest vertices, using Laplacian defor-
mation [Huang et al. 2006]. The new head geometry is denoted as
F̂ . We then update the rigid transformation of the new geometry as(
R̂, T̂

)
, via 3D registration between the two meshes F and F̂ .

Hair. We construct the hair geometry H based on the face mesh F̂ ,
to which it is attached. Similar to generating the head geometry, we
obtain the hair geometry by interpolating precomputed hair models
{Hi} as:

H = R̂ · (
15∑
i=1

riHi) + T̂. (11)

Here ri is the weight for Hi, calculated based on the head rotation
transformations of the current frame R̂ and captured images {Ri}



as:

ri =
e−ωr‖R̂−Ri‖2∑15
j=1 e

−ωr‖R̂−Rj‖2
, (12)

where ωr is an interpolation parameter (set to 10 in our experi-
ments). We express R and R̂ as quarternions. Note that we assume
that the shape of the hair depends only on the rotation of the head
model, R̂.

5.2 Image Warping & Blending

We warp the captured images of face and hair regions to the current
frame, guided by the corresponding coarse geometry. The results
are denoted as {Iwarpi }.

Next, each pixel in the final image of the avatar is computed by
blending the warped images, using a weighted average. To deter-
mine the per-pixel weight for each warped image, we compute cor-
responding weights on vertices of the coarse geometry F /H in the
current frame, then interpolate the weights to pixels via radial basis
functions (RBFs).

Specifically, for a warped image Iwarpi , we compute a per-vertex
weight w(vk) as the product of an orientation term, a normal simi-
larity term and an expression similarity term. The idea is to assign
a large weight in cases of similar normals/expressions between the
geometry of the current frame and that of the captured image, and
when the vertex is oriented close to the view direction:

w(vi,k) = e−ωz(1−nz
i,k)2 ·e−ωn(1−ni,k·nk)2 ·αi,ke−ωe(1−ψ(ei,e))2 .

Here vk is a vertex of F /H , vi,k is its corresponding vertex on
the precomputed geometry Fi/Hi for image Ii. ni,k/nk is the
normal of vertex vi,k/vk, nzi,k is the z component of ni,k. ωz ,
ωn and ωe are the parameters to control the relative importance
of each term (we use 5, 10 and 30 respectively in experiments).

αi,k is a manually specified binary
mask for a particular expression,
which is 1 for regions related to the
semantic information of the expres-
sion, and 0 otherwise. Note that we
set α in a simple painting interface,
as shown in the inset figure. This
is only a one-time process performed
on the template blendshapes, inde-
pendent of avatars. ei and e are the

expression coefficients for Ii and I , and ψ(ei, e) measures the sim-
ilarity between them as follows:

ψ(ei, e) =
(ei · e)

‖ei‖‖e‖
. (13)

Here (·) is the dot product of two vectors.

Once we obtain per-vertex weights for each warped image, we com-
pute the per-pixel weights {wi,p} via RBF-based interpolation as:

wi,p =
∑
k

e−ωu‖up−ui,k‖2βkw(vi,k). (14)

Here up is the 2D coordinates of pixel p, and ui,k is the 2D image-
space coordinates of vi,k. ωu is the parameter to control the region
of influence of vi,k. βk is a visibility term, which is 1 if vk is visible
in the current frame and 0 otherwise. wi,p is further normalized to
satisfy that

∑
i wi,p = 1.

Note that in practice, we compute the per-vertex weights on a subset
of original vertices (1/10 of the number of original vertices in our

Figure 5: Seamless integration of eyes and teeth to the avatar. We
composite the billboards of eyes and teeth into the final rendering
result using computed masks.

experiments), obtained with uniform sampling. We find that using
a smaller number of vertices helps smooth the boundaries when
blending different images, resulting in visually satisfactory results.

5.3 Other Components

We describe how to generate the final appearance of eyes, teeth and
body of our avatar in this subsection.

For eyes, we first add two landmarks for pupils as in [Cao et al.
2014a] to accurately track and reproduce the iris at runtime. For the
sclera billboards, we directly apply the rigid transformation (R̂, T̂)
to render them. For the iris billboards, we perform a translation in
addition to (R̂, T̂), estimated from the tracked pupil locations.

For teeth, the billboard of upper jaw teeth are connected to and
move with the head, by applying the rigid transformation (R̂, T̂),
similar to [Cao et al. 2014b]; the lower jaw teeth are connected to
and moved with the tip of the chin.

For the body, we simply translate the corresponding billboard with
T̂ and render it as part of the background, before processing any
other components of the avatar.

To seamless integrate the appearance of eyes and teeth with the rest
of the avatar, we employ masks computed on-the-fly for the image
composition. Specifically, we add new triangles to the head model
by zippering the lids of eyes (or the lips), which are open holes in
the template model. The rendered region of these triangles then
serve as masks for compositing the eye and tooth billboards. Please
see Fig. 5 for an illustration.

The whole rendering algorithm for our image-based avatar is sum-
marized in Algorithm 1.

6 Experimental Results

We have implemented the described algorithms on a workstation
with a quad-core Intel i7 CPU running at 3.6GHz, 32 GB of mem-
ory and an NVIDIA GTX 760 graphics card. All input images
are captured with an off-the-shelf web camera at a resolution of
1280x720. To construct one avatar, it typically takes 10 minutes for
image acquisition, 40 minutes for image preprocessing, and 15 min-
utes for computing the head blendshape model and the morphable
hair model. A completed image-based avatar requires on average
50MB of memory storage. During runtime, it takes about 30ms to
animate and render the avatar for an input video frame. Combined
with the face tracker [Cao et al. 2014a], our CPU-based system
generates real-time facial animation of the avatar at 25 frames per
second. Please refer to the accompanying video for live demos of
our system.

We show in Fig. 13 the main results of our approach on a wide va-
riety of users, with different hairstyles and headwear. Note that the



Figure 6: Validation results. The captured video frames of a user
are shown on the bottom, and the rendering results of our avatars
of the same user are on the top. Our results well match the corre-
sponding video frames.

face blendshape model and the morphable hair model in our algo-
rithm are only used as geometry proxies to warp images. Fine de-
tails of the avatar are encoded in images. In Fig. 13 we demonstrate
fine-scale details such as folds and wrinkles on our avatars. No spe-
cial care is needed to infer a fine-scale detail layer as in previous
work, thanks to our image-based representation. Challenging cases
like large rotations and hair deformations are also well handled, as
our face blendshape model and morphable hair model efficiently
capture such dynamics.

Moreover, we validate our technique by comparing a user’s
recorded video with the animation of the avatar constructed for this
specific user. As shown in Fig. 6, our animation results well match
the recorded video, indicating that our image-based avatars can help
convey the realistic appearance of the individuals being modeled.

Evaluations. We evaluate the key components of our pipeline
through several experiments. First, we demonstrate the effective-
ness of the inter-image depth optimization in Fig. 7. As more itera-
tions of the optimization are applied, we can see that the estimated
hair geometry better approximates the hair in the images. A plot
of the converging energy function is also visualized in the figure.
In Fig. 8, we demonstrate the necessity of inter-image depth opti-
mization, by comparing our results with those generated from the
independent depth estimation, where the coarse hair geometry is
generated by applying Poisson surface reconstruction to the point
cloud produced by transforming the depth maps estimated indepen-
dently to a common coordinate system. As shown, the inconsistent
geometry from different images downgrades the quality of the hair
model, leading to rendering artifacts.

In Fig. 9, we compare our weighting strategy for image blending,
against using uniform weights across all images. Our weighting
scheme produces more realistic results, compared with uniform
weighting, which does not take into account similarity between the
current pose/expression and those in the captured images.

Comparisons. We compare our technique with related methods.
In Fig. 10, we show our results along with those computed with
one structure-from-motion technique [Jancosek and Pajdla 2011].
As SfM only handles rigid motions, in this example, the user al-
ways keeps neutral expression and his hair can be well approxi-
mated by rigid geometry. Using the same set of captured images as
our algorithm, the reconstructed result using SfM has small holes,
particularly on the hair. Our result generated from 15 images looks
smoother and more visually pleasing than that from SfM even with
64 images. While capturing more images can further improve the
quality of SfM results, it also increases the capturing effort. More
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Figure 7: Progress of the inter-image depth optimization. A plot
of the energy function is shown on top. The bottom row illustrates
the estimated hair geometry, whose quality gets improved as the
iteration of the optimization increases.

Figure 8: Comparisons of inter-image depth optimization and in-
dependent depth estimation. For each image pair, we show our
result on the left, and the result using independent depth estimation
on the right.

importantly, SfM techniques are not suitable for handling non-rigid
face/hair deformations as shown in this paper.

Next, we compare our method with the image-based view morphing
technique [Seitz and Dyer 1996], on a same set of input images. It
is clear that using coarse geometric proxies to guide the warping
and blending of images, as in our method, produces higher quality
results than view morphing, a pure image-based approach. In fact,
the results from view morphing exhibit ghosting artifacts, mainly
due to the sparsity in inter-image correspondences.

In Fig. 12, we compare our method with a single-image-based
avatar technique [Cao et al. 2014b]. Taking multiple images of the
user allows us to properly sample the appearance variation of the
user with different poses and expressions, so that challenging cases
like large rotations or folds and wrinkles can be handled. Such ef-
fects are missing from the result of [Cao et al. 2014b], using only a
single image.

7 Conclusions

We have introduced an image-based representation for dynamic
3D avatars. It allows effective handling of various hairstyles and
headwear, and can generate expressive facial animations with fine-
scale details. We also presents algorithms for constructing such an
image-based avatar from a set of sparsely captured images of a user,
and rendering it for real-time facial animation, driven by the facial
motion of an arbitrary actor.

Our work is subject to a few limitations, which may lead to inter-
esting future research. The avatars constructed in this paper do not
support 360◦ rotations around the neck, where the geometry-based
avatars of [Ichim et al. 2015] are more appropriate. It is possible to



Figure 9: Comparisons of different weighting schemes for image
blending. For each image pair, we show our result on the left, and
the result using uniform weights on the right. Our results look more
realistic as we take into account the similarity between the current
pose/expression and those in the captured images.

Figure 10: Comparisons with one Structure-from-Motion tech-
nique. From left to right: a captured image, our result, SfM results
using 15 and 64 images, respectively. Our results look smoother
and more visually pleasing than SfM results.

address the problem in our framework with more images captured
from the back view. To reconstruct the geometry of the back of the
head, one could estimate the rigid transformation of the head, by la-
beling additional landmarks, such as ears. In addition, our method
does not handle well complex deformations of the hair, especially
those causing significant occlusion changes. This is the limitation
of our morphable hair model. To create a truly realistic hair ani-
mation, a strand-based hair representation is inevitable [Chai et al.
2014]. Finally, our current pipeline directly warps and blends cap-
tured images for novel view synthesis, without considering relight-
ing effects. It is possible to apply intrinsic decomposition jointly
on all images, to factor out the lighting and perform subsequent
relighting.
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Face transfer with multilinear models. ACM Trans. Graph. 24, 3
(July), 426–433.

WEI, Y., OFEK, E., QUAN, L., AND SHUM, H.-Y. 2005. Model-
ing hair from multiple views. ACM Trans. Graph. 24, 3 (July),
816–820.

WEISE, T., LI, H., GOOL, L. V., AND PAULY, M. 2009. Face/off:
Live facial puppetry. In Symp. Computer Animation, 7–16.

WEISE, T., BOUAZIZ, S., LI, H., AND PAULY, M. 2011. Realtime
performance-based facial animation. ACM Trans. Graph. 30, 4
(July), 77:1–77:10.

XU, F., LIU, Y., STOLL, C., TOMPKIN, J., BHARAJ, G., DAI, Q.,
SEIDEL, H.-P., KAUTZ, J., AND THEOBALT, C. 2011. Video-
based characters: Creating new human performances from a
multi-view video database. In ACM SIGGRAPH 2011 Papers,
SIGGRAPH ’11, 32:1–32:10.

XU, Z., WU, H.-T., WANG, L., ZHENG, C., TONG, X., AND QI,
Y. 2014. Dynamic hair capture using spacetime optimization.
ACM Trans. Graph. 33, 6 (Nov.), 224:1–224:11.

YANG, F., SHECHTMAN, E., WANG, J., BOURDEV, L., AND
METAXAS, D. 2012. Face morphing using 3d-aware appear-
ance optimization. In Proceedings of Graphics Interface 2012,
GI ’12, 93–99.

ZANELLA, V., VARGAS, H., AND ROSAS, L. V. 2007. Active
shape models and evolution strategies to automatic face mor-
phing. In Proceedings of the 8th International Conference on
Adaptive and Natural Computing Algorithms, Part II, Springer-
Verlag, Berlin, Heidelberg, ICANNGA ’07, 564–571.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M.
2004. Spacetime faces: high resolution capture for modeling
and animation. ACM Trans. Graph. 23, 3, 548–558.



Figure 13: Our image-based avatars on a wide variety of users, with different hairstyles and headwear. From left to right: one captured
image, reconstructed coarse geometry, and rendering results of the avatar with different poses and expressions.


