
A Data-driven Approach to Four-view Image-based Hair Modeling

Meng Zhang Menglei Chai Hongzhi Wu Hao Yang Kun Zhou

State Key Lab of CAD&CG, Zhejiang University∗

Figure 1: Given four input hair images taken from the front, back, left and right views, our method computes a complete strand-level 3D hair
model that closely resembles the hair in all images.

Abstract

We introduce a novel four-view image-based hair modeling
method. Given four hair images taken from the front, back, left
and right views as input, we first estimate the rough 3D shape
of the hair observed in the input using a predefined database of
3D hair models, then synthesize a hair texture on the surface of
the shape, from which the hair growing direction information is
calculated and used to construct a 3D direction field in the hair
volume. Finally, we grow hair strands from the scalp, following
the direction field, to produce the 3D hair model, which closely
resembles the hair in all input images. Our method does not require
that all input images are from the same hair, enabling an effective
way to create compelling hair models from images of considerably
different hairstyles at different views. We demonstrate the efficacy
of our method using a wide range of examples.

Keywords: hair modeling, image-based modeling, patch-based
texture synthesis

Concepts: •Computing methodologies→ Shape modeling;

1 Introduction

Hair plays a crucial role in producing realistically looking charac-
ters in computer-generated imagery. The generation of compelling
3D hairs, however, requires considerable efforts, due to the intri-
cate hair structures and the wide variety of real-world hairstyles.
It usually takes a few days of manual work by digital artists to
create realistic 3D hair models in the entertainment industry, using
dedicated hair design tools.

Recently, significant research effort has been devoted to hair digi-
talization, to help reduce the laborious work in the hair modeling
process. Multi-view hair modeling [Paris et al. 2008; Luo et al.
2013; Hu et al. 2014a] can generate impressive reconstructions
of challenging, real-world hairstyles from dozens of images un-
der different views, usually captured in a controlled environment.
They often require complex acquisition setups, which are not easily
accessible to average users. On the other hand, single-view hair
modeling approaches [Chai et al. 2012; Hu et al. 2015; Chai et al.

∗Corresponding authors: Hongzhi Wu (hongzhi.wu@gmail.com),
Kun Zhou (kunzhou@acm.org)

2016] only take a single hair image as input, and produce plausible
3D hair models by using various forms of priors. As there is no
input information about the hair at other views, the modeling result
may not match the reality at views distant from the input one. Yu et
al. [2014] propose a hybrid image-CAD system to create a 3D hair
model from two or three images. Their focus is on visually pleasing
results, not close visual matches to the input images.

In this paper, we introduce a novel four-view image-based hair
modeling method, to fill in the gap between existing work on multi-
view and single-view hair modeling. Given four images taken from
the front, back, left and right views as input, our pipeline generates
a complete strand-level 3D hair model that closely resembles the
hair in all input images, with the help of a small amount of user
interaction. We start by estimating the rough 3D shape of the
hair observed in the input images, then synthesize a hair texture
on the surface of the shape, from which the hair growing direction
information on the hair shape surface is calculated and diffused to
construct a 3D direction field in the hair volume. Finally, we grow
hair strands from the scalp, following the direction field, to produce
the 3D hair model.

In designing the above pipeline, we must address one challenging
issue – how to generate a 3D hair model that matches all four
input views with high fidelity. Unlike previous multi-view mod-
eling methods which calculate accurate correspondences between
a set of densely captured images, we cannot get reliable corre-
spondences from the sparse set of four images. Simply projecting
each image onto the hair shape according to its camera specifica-
tion and linearly blending in overlapping regions would blur out
hair details and might leave holes due to insufficient coverage of
the input images. To this end, we propose a novel hair texture
synthesis algorithm to effectively combine images from different
views to generate a consistent hair texture over the hair surface.
Our algorithm is inspired by Image Melding [Darabi et al. 2012],
an effective algorithm for combining independent images via patch-
based texture synthesis. We generalize the original 2D-image-based
algorithm to perform synthesis on a 3D surface from source images
with spatial relationships. 3D hair strands are then grown with the
help of this hair texture.

One major benefit of our method is that it does not require that all
input images are from the same hair, thanks to our multi-source hair
texture synthesis algorithm. This is particularly useful when only a

single-view image of the hair is available. We can search over the
Internet for plausible and similar hair images at other views, which
lowers the requirement for applying our method to create com-
pelling hair models. Furthermore, we could generate interesting
hairstyles, by feeding in images of considerably different hairstyles
at different views. We demonstrate the efficacy of our method with
a wide range of examples.

2 Related Work

Human hair modeling is an extensively studied topic in computer
graphics, due to its importance in a variety of applications, as well
as its inherent difficulties. Please refer to [Ward et al. 2007] for
a comprehensive survey. Here, we limit our discussion to a small
number of representative methods mostly related to our work.

Geometry-based Hair Modeling. Related papers (e.g., [Kim and
Neumann 2002; Yuksel et al. 2009]) introduce design tools to di-
rectly create and edit the hair geometry. Wang et al. [2009] propose
a hair geometry synthesis approach to hair modeling. Given an
input 3D hair model, they can create a novel one with a statistically
similar spatial arrangement of hair strands and geometric details. A
key component of our method is a hair texture synthesis algorithm
that generates a consistent hair texture over the surface of the hair
shape from four input images.

Multi-view Hair Modeling. This category of methods creates
high-quality 3D hair models from images taken from a large num-
ber of different views. They often require complex acquisition
setups, such as a number of cameras as well as related controllers.
Wei et al. [2005] take as input about 40 images of the same hair, and
calculate correspondences among all input images to estimate hair
orientations. Paris et al. [2004] recover 3D fiber orientations for
hair reconstruction by analyzing image sequences with difference
lighting conditions, taken from four views. Paris et al. [2008]
propose an active hair capturing system, which can acquire the
positions of exterior hair strands with high precisions. Jakob et
al. [2009] capture detailed arrangement of fibers in a hair assembly
by growing the strands within the diffused orientation field from the
scalp to the exterior hair layer. In [Luo et al. 2013], coherent and
plausible structure-aware wisps are reconstructed from multi-view
images, which are used to robustly synthesize hair strands. Herrera
et al. [2012] use thermal imaging to generate strands by growing
from the boundary of the captured hair. Recently, Hu et al. [2014a]
propose a strand fitting algorithm to find structurally plausible con-
figurations among the locally grown hair segments using a database
of simulated examples. Cao et al. [2016] constructs a coarse geo-
metric proxy as a morphable hair model from 32 images for a user.
All these multi-view modeling methods require densely captured
images to calculate dense correspondences between images and
solve for the hair geometry. We tackle the unique challenge of
unreliable correspondences among a sparse number of views using
a hair texture synthesis approach.

Yu et al. [2014] propose a hybrid image-CAD system to create and
edit hair models from two or three images. In a concurrent work,
Vanakittistien et al. [2016] introduce a lightweight system, which
takes as input 8 photos and generates a 3D hair model via guide
strand tracing on a 3D orientation field computed from multi-view
photos using [Wei et al. 2005]. Here one key difference is that these
methods model 3D hair that is visually pleasing but not necessarily
faithful to input in details, while our results visually resemble all
input images captured at different views. Moreover, in our system,
an average user can easily create novel hairstyles by combining
different hair images from different subjects. It is not known how to
efficiently perform the same task in [Yu et al. 2014; Vanakittistien
et al. 2016].

Single-view Hair Modeling. Considerable progress has been
made to the development of single-image-based hair modeling tech-
niques. Chai et al. [2012] introduce an effective high-precision 2D
strand tracing algorithm, which is used to further create 3D strands
that match inter-strand occlusions. The system is extended to han-
dle single video input in [Chai et al. 2013]. Hu et al. [2015] first
retrieve a 3D model from a large database, and then perform joint
optimization on strands taking into account 2D similarity, physical
plausibility and orientation coherence. Chai et al. [2015] exploit
shading cues in the input image to produce high-quality results.
More recently, a fully automatic single-view hair modeling pipeline
is proposed in [Chai et al. 2016], which uses deep neural networks
to estimate the hair region and hair growing directions. However,
it is not clear how to extend their paper to our multi-view case.
Due to the potentially complex interactions between hair and body
(e.g., Fig. 1), it is much more difficult to find a good detailed hair
model that matches all four views in a limited database, using the
mask-based search in [Chai et al. 2016]. It is even more difficult to
combine physically inconsistent hairstyles at different views.

One problem with single-view hair modeling techniques is the lack
of control over the final result at views distant from the input one
(e.g., the back view), as there is no input information at all. In
comparison, our method lets the user explicitly provide additional
hair images at the side and back views, which enables full control
over the final hair model at different views.

PatchMatch-based Texture Synthesis. Our hair texture synthesis
algorithm is motivated by the PatchMatch algorithm [Barnes et al.
2009; Barnes et al. 2010], which efficiently computes a Nearest-
Neighbor Field (NNF) that stores the correspondences between
patches of a 2D image, as well as the Image Melding technique that
builds on PatchMatch to combine inconsistent 2D images [Darabi
et al. 2012]. We adapt the original PatchMatch and Image Melding
algorithms to our specific domain, where the input is four images
and their spatial relationships are described by corresponding cam-
era specifications.

3 Overview

Given four hair images taken from the front, back, left and right
views as input, our method first constructs a rough 3D hair shape:
we segment the regions that contain the hair in all input images,
and roughly specify the view condition for each image; then we
search in a predefined 3D hair database and select a model that best
matches the hair contours at different views; the model is further
deformed to better align with the hair contours and clipped against
the hair-face boundaries. Next, we synthesize a consistent hair tex-
ture over the surface of the hair shape, by fusing information from
different hair images. We subsequently compute hair directions on
the hair shape surface and propagate them into the entire volume,
which results in a 3D direction field. Guided by this direction field,
we trace and generate 3D hair strands from the scalp, and refine
the details by piecewise helix fitting. The output of our method
is a consistent, detailed strand-level 3D hair model, which closely
resembles the hair in the input images.

4 Our Hair Modeling Pipeline

We describe our hair modeling pipeline in details. Please refer to
Tab. 1 in the appendix for a list of notations used in this section.

Hair Segmentation. Given four input images {Ii}, (i = 1, 2, 3, 4)
that depict the hair from the front, back and two side views, the
first step in our method is to segment the regions that contain the
hair. We adopt the user-assisted tool in [Li et al. 2004] to efficiently
perform this task. Other popular segmentation tools can also be

Figure 2: Camera specification. For the four images shown on the
left (with hair contours marked), the user roughly adjusts their sizes
and orientations in a 3D coordinate system with a reference head
model. Our UI is shown on the right. Camera parameters Ti for
each image can be computed once the adjustment is finished.

used here. The resultant binary hair mask is denoted as {MI
i }. We

set the value of a pixel of the mask to 1 if it is in the regions that
contain the hair and 0 otherwise.

Camera Specification. The next step is to roughly specify the cam-
era configuration for each image, assuming that the camera is ortho-
graphic. We develop a simple user interface to facilitate this task.
Please see Fig. 2 for an illustration. For each segmented hair image,
the user first roughly selects a view direction (i.e., front, back, left-
side or right-side); then the hair contour of the image, obtained from
the previous segmentation step, is projected onto a 3D plane, which
orients toward the user-specified view direction that passes through
the center of a reference 3D head model. The transformation of this
reference head model is computed with [Blanz and Vetter 1999]
for the subject in the front-view image to match the facial feature
points. With all contours from different views visualized along with
the reference head model, the user can further fine-tune the view
direction, or translate, rotate or scale each hair contour to make it
consistent with others. The corresponding camera parameters Ti
for each image Ii can be directly computed, once the user finishes
adjusting the hair contour in the 3D space. Note that our modeling
algorithm does not require accurate specifications of the camera
parameters, which will be demonstrated in Sec. 5.

4.1 Rough Hair Shape Construction

Once we obtain estimations of camera configurations for all four
input images, we use this information along with the hair contours
to build a rough 3D shape that represents the coarse-scale hair
geometry. The detailed hair strands are generated in later stages of
our pipeline, where issues like potential inconsistencies in the hair
among different input images are resolved. Note that constructing
a 3D shape solely from as few as four images is highly challenging.
Therefore, similar to previous work [Hu et al. 2015; Chai et al.
2016], we use a data-driven approach to build the shape with the
help of a predefined database of 3D hair models, detailed as follows.
An example of the construction process is shown in Fig. 3.

Database Model Search. We search in the 3D hair database
of [Chai et al. 2016] for the model GDB that minimizes the sum
of distances between the input hair masks MI

i and the hair masks
in the databaseMH

i , based on the distance fieldDI
i of the hair mask

MI
i as:

dist({MI
i }, {MH

i }) =
∑
i

∑
j∈MI

i ⊕M
H
i
|DI

i (j)|
A(MI

i)
, (1)

where i denotes the view, MH
i is a binary mask generated by ren-

dering a database model using the camera parameters Ti, and A(·)
computes the area of a mask. MI

i ⊕MH
i represents the symmetric

difference between two masks. Please refer to the supplemental
material for a visualization of the database.

Figure 3: Rough hair shape construction. From left to right, the
front-view image with hair contour marked, the model retrieved
from the database, the result after detail removal and mask-based
deformation, and the final hair shape after visibility- and boundary-
based clipping.

High-frequency Detail Removal. Once the best database model
GDB is retrieved, we need to remove its excessive high-frequency
geometric details, as typically they are not consistent with the hair
in the input images, even though the rendered masks of the model
{MH

i } are close to the hair masks {MI
i } at different views. To

do so, we first convert GDB into a Signed Distance Field (SDF)
with a resolution of 100×100×100 over the bounding cube of the
model [Zhao 2005]: after the voxelization step of the conversion,
we blur the details by filtering the voxels (0 for empty voxels and 1
for non-empty ones) with a 3D Gaussian kernel (σ = 3

100
b, where

b is the length of the bounding cube of the model), and perform
thresholding to transform the result back to a binary form. Finally,
we apply the marching cube algorithm [Lorensen and Cline 1987]
to obtain a closed triangular mesh GMC from the SDF.

Mask-based Deformation. Due to the complexity of real-world
hairstyles, it is inevitable that the database model we retrieve does
not align perfectly with the hair contours in segmented images.
Moreover, the high-frequency detail removal step introduces addi-
tional changes to the shape. To alleviate this issue, we deform our
current mesh GMC to match the hair masks from different views,
by extending the formulation in [Chai et al. 2016] to the multi-
view case. Specifically, we deform each vertex p in GMC to p′

by minimizing the following energy:

arg min
p′

∑
pj∈GMC

[
∑

i=1,2,3,4

||Pdi(pj
′ −Wi(pj))||2

+ λ||∆pj ′ −
δj
|∆pj ′|

∆pj
′||2], (2)

where Pd projects a vector along a direction d:

Pd(p) = p− (p · d)d.

Here the first term in Eqn. (2) measures the deviation of a vertex
to its deformation target along each view direction di, and the
second is a regularization term to preserve local geometric features
in the original shape. Wi is a warping function computed with
thin plate spline, ∆ is the discrete mesh Laplacian operator based
on the cotangent formula, and δj is the magnitude of Laplacian
coordinates of vertex vj in GMC . We set λ = 1 in all experiments.
The result after the deformation is denoted as GDEF .

Visibility- and Boundary-based Clipping. We first remove the
inner surface of the rough hair shape GDEF : we connect a line
segment from the center of the head to each vertex; if this line
segment intersects with another part of G, we keep the vertex as it
belongs to the outer surface of G; otherwise we remove the vertex.
Furthermore, we clip the result against the hair-face boundaries
in {Ii} for each view. This step further improves the geometric
quality, resulting in the final 3D rough hair shape G. An example
can be found in Fig. 3.

Figure 4: Remeshing results by uniformly sampling new vertices
with different densities, which will later be used in hair texture
synthesis.

4.2 Hair Texture Synthesis from Multiple Sources

After the rough hair shapeG is obtained, we synthesize a consistent
hair texture over its surface using the input images as sources. This
texture will be used to construct a 3D direction field that guides the
hair strand generation. The simplest way to obtain a hair texture is
to project each Ii onto the hair shape based on its camera Ti and
linearly blend in overlapping regions. But the quality of the result
would be limited: due to unreliable correspondences among input
images, direct linear blending is likely to blur intricate hair details,
which leads to inaccuracies in subsequent hair direction estimation;
there might be holes due to insufficient coverage of input images.
To produce a high-quality hair texture from multiple sources, we
propose a patch-based hair texture synthesis approach inspired by
Image Melding [Darabi et al. 2012].

Directly applying the image melding technique to our problem is
not feasible, due to two key differences. First, the original tech-
nique generates a regular 2D image as output, while our resultant
texture is defined on a non-regular 3D surface. Second, the sources
in [Darabi et al. 2012] are independent 2D images, while each of
our source images is associated with a camera that describes its
spatial relationship with other images. We thus develop a texture
synthesis algorithm that takes into account these differences, de-
scribed as follows.

Preprocessing. Specifically, we first perform remeshing by uni-
formly sampling new vertices {pj} over the surface of G via the
method in [Valette and Chassery 2004]. An example is shown
in Fig. 4. Next, we compute a uv-mapping of G using the UVAtlas
tool [Microsoft 2017], to parameterize the hair texture. For each
pj , we define its associated patch of the size m×m, by projecting a
region of the texture around pj along the normal direction to its tan-
gent plane. A patch can be viewed as a local resampling of the hair
texture, following previous work such as [Wei and Levoy 2001].
Each pixel on a patch corresponds to a 3D point on G, which sub-
sequently corresponds to a texel based on the uv-parameterization.
Note that multi-resolution versions of vertices and the texture are
created for later processing. We use four scales in all experiments.
The hair texture I is initialized by projecting each Ii on to G and
then update corresponding texels; the closest view with respect to
the surface normal is selected, if a texel corresponds to multiple
projections; for holes not covered by the projections of input im-
ages, we fill them using interpolations from hole boundaries with
inverse distance weighting [Wexler et al. 2007].

Main algorithm. Similar to [Darabi et al. 2012], our hair tex-
ture synthesis algorithm repeats the following process for a user-
specified number of iterations at each scale in a coarse-to-fine fash-
ion. First, we perform single-source patch-based synthesis (denoted
as SingleSourceSynthesis in Algorithm 1 and described in Sec. 4.3)
separately for each input image Ii, to fill in the regions of surface
on G not covered by the projection of Ii. Second, the colors and
gradients from the synthesis results of each input image are blended
based on view-dependent weights αi, computed as the dot product

Figure 5: Progress of our hair texture synthesis (cf. the second row
of Fig. 14 for input images). The left image is the texture after the
initialization, the center image is the intermediate result after half
of the total iterations, and the right image shows the final synthe-
sis result. Our synthesis algorithm resolves the inconsistencies in
the initial texture due to multi-view sources, and produces a high-
quality final result.

ALGORITHM 1: Hair texture synthesis algorithm

for scale = 1→ 4 do
for iteration = 1→ n do

for i = 1→ 4 do
Ii ← SingleSourceSynthesis(I , Ii)

end for
I = α1I1 + α2I2 + α3I3 + α4I4
j ← argmaxαj |OIj |
OI ← OIj
I ← ScreenedPoisson(I , OI)

end for
end for

between a vertex normal corresponding to a texel and the inverse
view direction, and further normalized to ensure that

∑
i αi = 1.

Finally, we update the hair texture colors based on the gradients by
solving the screened Poisson equation [Bhat et al. 2008]. Please
see Algorithm 1 for details. An example of the synthesis result is
shown in Fig. 5.

4.3 Single-source Patch-based Synthesis

Now we describe in details the single-source patch-based synthesis
for each input image Ii, denoted as SingleSourceSynthesis(R,S),
which is the key part in hair texture synthesis from multiple sources.
Similar to [Darabi et al. 2012], our goal is to fill the contents in
a target region R with those from the source S. To do so, we
minimize the sum of squared differences between corresponding
texels via patch-based optimization:

E(R,S) =
∑

U(C(X))∈R

min
U(C(Y))∈S

||Y −X||2. (3)

Here we divide the resultant texture into S and R. We determine
if a texel belongs to S by testing the following two conditions:
(1) the corresponding 3D point on G can be back-projected with
no obstacles to MI

i under the camera Ti; (2) the angle between
the corresponding normal and the direction of back-projection is
below a threshold θ (θ = π

4
in our experiments). C(·) returns

the center point p corresponding to a patch, U(·) returns the texel
corresponding to a 3D point based on the uv-parameterization onG.
Y is an m×m patch, and X = f(N(p)) is an m×m patch after
applying a geometric transformation f on a small neighborhood N
around a source point p. We define f to be the concatenation of
an in-tangent-plane scaling in the range of [0.9, 1.1], and an in-
tangent-plane rotation in the range of [− π

15
, π
15

].

To solve this optimization, we alternate between two steps, patch
search and color voting, as in [Darabi et al. 2012]. We first define a
source patch X as a patch that satisfies ∀x ∈ X , U(x) ∈ S. Any

patch that does not meet this condition is classified as a target patch.
In the patch search step, we find the most similar source patch for
every target patch. Next, in the color voting step, each patch casts
votes on every texel, which are then weighted averaged to generate
a new texture.

4.3.1 Patch Search

The first step in the optimization is to search for the source
patch that best matches a given target patch. Generalized Patch-
Match [Barnes et al. 2010] is adopted in [Darabi et al. 2012] to per-
form this task efficiently. However, PatchMatch works on regular
2D images and cannot be extended to our problem in a straight-
forward manner. Therefore, we develop an approach that changes
the following key components in the original algorithm, in order to
adapt to our domain.

NNF. Similar to PatchMatch, we compute an NNF over all vertices.
At each vertex pj , the NNF stores a 2D coordinate on the input
image Ii, denoted as gj .

Initialization. If U(pi) ∈ S, then we can directly obtain gj by
back-projecting pi to the image plane. Otherwise, the offsets are
initialized with random coordinates inside the hair mask.

Scan Order. We no longer have a native
scan order for applying PatchMatch over
vertices on a 2-manifold, while the origi-
nal work processes in the scan-line order.
To solve this issue, we start with a vertex
on the top of the rough hair shape of hair,
and then travel its n-th ring neighborhood
in the counter-clockwise order (n = 1, 2,
...), until all vertices are processed. An
example is shown in the inset figure, with each ring visualized in a
same color.

Propagation. The NNF at a vertex pj could get improved by prop-
agating the information from its one-ring neighborhood. However,
it is not trivial to apply the original 2D image-based propagation:
the offset between two 3D vertices (pj and its spatial neighbor)
is not of the same measure as the offset on the input 2D image.
To tackle this problem, we harness the additional information of
the camera Ti associated with Ii and convert the 3D offset into
a 2D one via a transformation. Please see Fig. 6 for a graphical
illustration. Specifically, we suppose that the patch match error at
a vertex pk is smaller than that at pj . To update the NNF gj with
gk, we first project the pixel on Ii corresponding to gk to G using
Ti, and denote the projected 3D point on G as q = Tigk. Next,
we compute an affine transformation T̂k (translation and rotation),
which transforms the local frame at pk to that at q. Then we can
update gj as gj = T−1

i T̂kpj . Note that in analogy to the original
work, we check the visited / unvisited one-ring neighborhood in
counter-clockwise order at odd / even iterations. The tangent at
each vertex is computed as the normalized cross product of the
normal and the positive y direction. This simple method works well
in all our experiments. More advanced techniques such as [Fisher
et al. 2007] can also be employed here.

Random Search. A similar problem arises in directly applying
the original random search to our domain, due to the mismatch in
3D and 2D offsets. We also tackle this issue with the help of Ti.
Specifically, we try to improve the NNF gj corresponding to the
vertex pj , by testing the differences between the current patch Xj
and a series of candidate patches {Zk}. To construct a Zk, we first
compute a random offset uk as:

uk = gj + wβkrk, (4)

G

Ii pj

pk

Tk•pj
ˆ

Tk
ˆ

Tk
ˆ

q

Ti
-1

Ti

nk

nq

tq

tkZkTiuk

Xj

gk

gj

Figure 6: An illustration of propagation and random search. To
propagate the offset gk of pk to pj , we first compute T̂k that trans-
forms the local frame at pk to q. Then we apply the same transform
to pj and back-project to the image plane, resulting in the updated
offset gj . To perform random search, we first compute a random
offset uk, and then obtain its associated patch Zk by projecting
from the image plane onto the rough hair shape G. Next, Zk is
compared with Xj to check if it can improve the NNF at pj .

where rk is a 2D uniform random variable in [−1, 1]2, w is a
maximum search distance (w = the dimension of Ii), and β = 0.5 is
a fixed ratio between search window sizes. The process is repeated
until wβk is below one pixel. Once uk is computed, we project it
onto G using Ti, and denote the patch centered at the intersection
as Zk. Please see Fig. 6 for a graphical illustration.

4.3.2 Color Voting

Once the patch search is finished, the second step in our single-
source synthesis is color voting. Similar to [Darabi et al. 2012],
the optimal texture Ii is computed as the weighted average of the
corresponding pixels in all overlapping patches:

Ii(t) =

∑
j γjXj(p(t))∑

j γj
. (5)

Here t represent 2D texel coordinates, and p(t) is the 3D point
on G that corresponds to the texel Ii(t). {Xj} is the set of all
patches, whose projection onto G contains p(t). We denote the
patch texel on Xj , whose projection is p(t), as Xj(p(t)). γj is a
view-dependent weight, computed as the dot product between the
normal at p(t) and the normal of the patch Xj ; the result is further
clamped to zero, if it is less than 0.5.

4.4 Hair Direction Field Construction

After we obtain a hair texture over the surface of the hair shape G,
we compute a 3D hair direction field to guide hair strand generation
in the subsequent stage, similar to existing work such as [Chai et al.
2013].

First, we apply the iterative refinement method in [Chai et al. 2012]
on each texel of the hair texture to obtain a hair direction texture.
Note that here we work on the tangent plane at the 3D point corre-
sponding to a texel, rather than in the texture space directly. We then
render the result at five different views: front, back, left-side, right-
side and top. Directional ambiguities due to issues like imperfection
of the imaging process are resolved by user strokes on individual
views, which roughly indicate the hair growth directions, similar
to [Chai et al. 2013]: the user strokes are projected onto the hair
direction texture, based onG; if there are more than one user stroke
over a texel, we select one from the closest view with respect to the
normal corresponding to the texel. With user strokes as directional
constraints, we update the hair direction texture via binary integer
programming, as in [Chai et al. 2013]. Finally, we construct a
uniform 3D direction field inside the volume of the closed mesh

Figure 7: Detail refinement. The left image shows a model without
detail refinement, and the right one is generated with the refinement,
exhibiting richer details.

GDEF , using the hair direction texture as constraints on the sur-
face of the rough hair shape and minimizing a least-squares energy
function as in [Chai et al. 2013].

4.5 Hair Strand Generation

With the help of the hair direction field, we generate 3D hair strands
using a two-step method. In the first step, similar to [Chai et al.
2013], we uniformly sample a default scalp region on the reference
head model to grow 2,000∼2,500 guide strands, according to the di-
rections stored in the hair direction field. The growing is terminated
when a maximum curve length is exceeded or the strand is outside
of GDEF . The second step adds new strands that are as visually
and physically plausible as the guide strands, in order to fill in the
remaining empty space in the volume. For each new strand, we
again uniformly sample the scalp region as the starting point, then
copy the nearest guide strand. After that, we adopt the linear blend
skinning approach in [Hu et al. 2015] to deform the new strand to
be coherent with neighboring ones. Note that we enforce the mask
constraints in strand generation, so that the projection of each strand
using Ti must stay inside the hair mask MI

i for i = 1, 2, 3 and 4.
We use a fixed strand number of 30,000 in our experiments.

4.6 Detail Refinement

As our hair direction texture is defined over the surface of G, the
hair direction at each point lies within the corresponding tangent
plane; there is no information about the component of the hair
direction along the normal direction. We alleviate this problem by
extending the detail refinement technique in [Hu et al. 2015] from
a single image domain to a 2-manifold, which fits piecewise helix
curves to the guide strands. Please see Fig. 7 for an example.

Specifically, we first propagate the normals from the surface of
G to the entire hair shape volume, using the same method as we
construct the hair direction volume from the hair texture [Chai
et al. 2013], which results in a normal volume that indicates the
directions of refinement. Next, for each guide strand, we compute
the normal at each of its vertex by interpolating from the normal
volume, and divide the strand into a few segments based on normal
variations: for each segment, the angle between the normal at each
vertex and the average normal is below a threshold (we use 25◦ in
all experiments). Finally, we project each strand segment to a plane
perpendicular to the average normal, and fit a piecewise helix curve
with the method of [Cherin et al. 2014].

5 Experimental Results

All experiments are conducted on a workstation with an Intel i5-
4590 CPU and 32GB of memory. For a typical input set of four

Figure 8: Hair texture synthesis results from different views. Input
images are from the first row of Fig. 14, the last row of Fig. 17,
Fig. 11 and Fig. 1, respectively.

800×800 images, the total processing time using our unoptimized
pipeline is about 25 minutes. The majority of time spends on the
patch-based synthesis of a hair texture of 2048×2048, which takes
14 minutes. We use 20, 10, 5 and 2 iterations for 4 scales in hair
texture synthesis, respectively. It takes about 6 minutes in total to
finish all user interactions in our pipeline, including hair segmen-
tation, camera specification and hair direction disambiguation. We
show the user input for each example in this paper, as well as a
video on a complete interactive editing session, in the supplemental
materials.

Modeling. We first demonstrate in Fig. 1 and 17 the effectiveness
and generality of our method with the modeling results on a variety
of hairstyles, ranging from short / straight to long / curly. Each
result is computed using four-view images of the same hair. As
shown in Fig. 1 and 17, the 3D strand-level hair models produced
by our method closely resemble the hair at all input views, and the
resultant hair strands are spatially consistent. Please also refer to
the accompanying video for more details.

Thanks to our multi-source patch-based synthesis algorithm, we do
not require that the input images are from exactly the same hair, as
the slight inconsistencies among the input images can be resolved in
the hair texture synthesis. This enables a novel application for hair
modeling using Internet images: given a single-view hair image,
the user can manually search over the Internet for images taken
from other views, which look similar to the hair in the first image.
Our approach produces plausible 3D results in this case, as shown
in Fig. 14. Furthermore, we can even “meld” highly different hairs
at different views, to create novel, interesting hairstyles, such as

Figure 9: A failure case due to multi-view inconsistency. Input
images are shown in the top row, and the modeling result in the
bottom. The main reason for the failure is that physically there is
no rough hair shape that can match the hair masks in all views.

Figure 10: A failure case on a highly curly hairstyle. From left
to right, the front / back input images, and the modeling results at
corresponding views.

one that is curly at the front view and straight at the back, shown in
Fig. 14. Again the considerable inconsistencies are well resolved,
using our hair texture synthesis algorithm. Please also refer to the
accompanying video for demonstrations.

Although our pipeline can combine different hairs, we require that
the hair masks at four input images roughly correspond to a plau-
sible 3D shape. Otherwise, it is physically impossible to satisfy all
the mask constraints, which leads to poor results shown in Fig. 9.
In addition, highly curly hairstyles are known to be challenging for
single-image-based hair modeling. Our approach cannot produce
high-quality results for such hairstyles. A failure case is shown in
Fig. 10.

Comparisons. We first compare our method with AutoHair [Chai
et al. 2016], a state-of-the-art single-view-based hair modeling
technique, in Fig. 15. AutoHair relies on the retrieved model from
a 3D hair model database to generate hair strands at the back or
side views, where there is no input information. In comparison,
our approach explicitly takes as input four images from different
views, and produces a hair model that closely resembles the hair at
all views. Please refer to the accompanying video for more detailed
comparisons.

In Fig. 16, we compare our method with a state-of-the-art multi-
view hair modeling method [Hu et al. 2014a]. The high-quality re-
sult using their method is computed with 66 images, simultaneously
captured with a setup consisting of the same number of DSLRs. In
comparison, we use only 4 of the original images as input to our
algorithm. The result looks plausible and closely matches the input
images. Note that our method does not require any complex setup
for image capturing.

In addition, we compare with the lightweight modeling technique
from [Vanakittistien et al. 2016] using four more photos as input.
Please see Fig. 11 for a detailed comparison. Note that even for
views used as input in [Vanakittistien et al. 2016] but not in our ap-
proach, our result exhibits considerably higher quality with realistic

Figure 11: Comparisons with [Vanakittistien et al. 2016]. From
top to bottom, input images, our result using the first 4 input photos
in the first row, and the result of [Vanakittistien et al. 2016] using
all 8 photos. Our result shows more realistic details even for views
not used in our input (i.e., the second / third column).

details close to those in the photos.

Evaluation. To evaluate the efficacy of our hair texture synthesis
algorithm, we show in Fig. 8 the synthesis results on a variety of
cases, including those with different hairs at different views. The
results are consistent and of high quality, which makes it possible
to generate compelling 3D hair models by applying subsequent
processing steps.

To evaluate the robustness of our approach with respect to errors in
camera specifications of input images, we add unbiased Gaussian
noise to the view directions in one controlled experiment, where
the ground-truth camera parameters are calibrated. Specifically, we
perturb the view direction of each image with an angle sampled
from a Gaussian distribution with a standard deviation of σ. As can
be seen in Fig. 12, our approach is robust with respect to the errors
in view directions. The result is still of visually high quality even
when σ = 25◦.

We also evaluate the impact of the number of input images in
Fig. 13. Thanks to the novel, robust hair texture synthesis algo-
rithm, our system still produces plausible results with as few as two
input images. Adding more input images results in more complete
control over the final hair model, as shown in the figure.

6 Conclusions and Future Work

We have presented a lightweight, image-based hair modeling
method that takes as input only four hair images at the front, back,
left and right views, and produces a high-quality strand-level 3D
hair model. Our result closely resembles the hair at all input views.
The core of our pipeline is a novel patch-based multi-source hair
texture synthesis algorithm, which enables creative hairstyle design
by combining different hairstyles at different views into a consistent
3D hair model.

Our work is subject to a number of limitations, which may inspire
interesting future work. First, it would be desirable to completely
automate our pipeline, by extending the work of [Chai et al. 2016]
with additional training data on side- and back-view hair images, as
well as associated camera parameters. Moreover, it would be inter-
esting to take into consideration the appearance of hair at different

Figure 12: Impact of camera specification errors. Gaussian noise
with σ = 0◦/10◦/25◦ (the first/second/third row) is added to the
ground-truth view direction of each input image (cf. Fig. 2). The
corresponding modeling results are shown in each row.

views, in addition to geometric information, so that cool effects like
multi-color-dyed hairstyles can be created. Finally, unlike [Hu et al.
2014b], we do not handle constrained hairstyles such as braids and
buns. It would be useful to extend our approach to process these
complicated cases.

Acknowledgements

We would like to thank Qi Zhang, Cassandre Bourdon, Linli Huang,
Laura Schmidt, Thauana de Morais, Nanna Carstens and Angelique
Wu for being our hair models, Yanliang Li from RebeccaFashion
for generously providing hair images, Liwen Hu and Hao Li for
help with comparisons, the artists for making their hair models
available on The Sims Resource and Newsea platform, and anony-
mous reviewers for constructive comments. This work is supported
by the National Science Foundation China (U1609215), the Na-
tional Program for Special Support of Eminent Professionals of
China, and the Fundamental Research Funds for the Central Uni-
versities (2017XZZX009-03).

References

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. Patchmatch: A randomized correspondence
algorithm for structural image editing. ACM Trans. Graph. 28, 3
(July), 24:1–24:11.

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The generalized patchmatch correspondence
algorithm. In ECCV’10, 29–43.

BHAT, P., CURLESS, B., COHEN, M., AND ZITNICK, C. L. 2008.
ECCV. 114–128.

BLANZ, V., AND VETTER, T. 1999. A morphable model for the
synthesis of 3D faces. In Proc. SIGGRAPH ’99, 187–194.

Figure 13: Impact of the number of input images. From top to
bottom, our modeling results with 2 (front/back), 3 (front/back/left)
and 4 (front/back/left/right) input images, respectively (cf. input
images in Fig. 1).

CAO, C., WU, H., WENG, Y., SHAO, T., AND ZHOU, K. 2016.
Real-time facial animation with image-based dynamic avatars.
ACM Trans. Graph. 35, 4, 126.

CHAI, M., WANG, L., WENG, Y., YU, Y., GUO, B., AND ZHOU,
K. 2012. Single-view hair modeling for portrait manipulation.
ACM Trans. Graph. 31, 4, 116.

CHAI, M., WANG, L., WENG, Y., JIN, X., AND ZHOU, K. 2013.
Dynamic hair manipulation in images and videos. ACM Trans.
Graph. 32, 4, 75.

CHAI, M., LUO, L., SUNKAVALLI, K., CARR, N., HADAP, S.,
AND ZHOU, K. 2015. High-quality hair modeling from a single
portrait photo. ACM Trans. Graph. 34, 6, 204.

CHAI, M., SHAO, T., WU, H., WENG, Y., AND ZHOU, K. 2016.
Autohair: Fully automatic hair modeling from a single image.
ACM Trans. Graph. 35, 4, 116.

CHERIN, N., CORDIER, F., AND MELKEMI, M. 2014. Model-
ing piecewise helix curves from 2d sketches. Computer-Aided
Design 46, 258 – 262.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image melding: Combining inconsistent
images using patch-based synthesis. ACM Trans. Graph. 31, 4
(July), 82:1–82:10.

FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3
(July).

HERRERA, T. L., ZINKE, A., AND WEBER, A. 2012. Lighting
hair from the inside: A thermal approach to hair reconstruction.
ACM Trans. Graph. 31, 6, 146.

HU, L., MA, C., LUO, L., AND LI, H. 2014. Robust hair capture
using simulated examples. ACM Trans. Graph. 33, 4, 126.

HU, L., MA, C., LUO, L., WEI, L.-Y., AND LI, H. 2014.
Capturing braided hairstyles. ACM Trans. Graph. 33, 6 (Nov.),
225:1–225:9.

HU, L., MA, C., LUO, L., AND LI, H. 2015. Single-view hair
modeling using a hairstyle database. ACM Trans. Graph. 34, 4,
125.

JAKOB, W., MOON, J. T., AND MARSCHNER, S. 2009. Capturing
hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164.

KIM, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolution
hair modeling and editing. ACM Trans. Graph. 21, 3 (July), 620–
629.

LI, Y., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazy
snapping. ACM Trans. Graph. 23, 3 (Aug.), 303–308.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3d surface construction algorithm. In SIG-
GRAPH ’87, ACM, SIGGRAPH ’87, 163–169.

LUO, L., LI, H., AND RUSINKIEWICZ, S. 2013. Structure-aware
hair capture. ACM Trans. Graph. 32, 4, 76.

MICROSOFT, 2017. Uvatlas. https://github.com/Microsoft/
UVAtlas/.

PARIS, S., BRICEÑO, H. M., AND SILLION, F. X. 2004. Capture
of hair geometry from multiple images. ACM Trans. Graph. 23,
3 (Aug.), 712–719.

PARIS, S., CHANG, W., KOZHUSHNYAN, O. I., JAROSZ, W.,
MATUSIK, W., ZWICKER, M., AND DURAND, F. 2008.
Hair photobooth: geometric and photometric acquisition of real
hairstyles. ACM Trans. Graph. 27, 3, 30.

VALETTE, S., AND CHASSERY, J.-M. 2004. Approximated cen-
troidal voronoi diagrams for uniform polygonal mesh coarsen-
ing. Computer Graphics Forum 23, 3, 381–389.

VANAKITTISTIEN, N., SUDSANG, A., AND CHENTANEZ, N.
2016. 3d hair model from small set of images. In Proceedings
of MIG, ACM, New York, NY, USA, 85–90.

WANG, L., YU, Y., ZHOU, K., AND GUO, B. 2009. Example-
based hair geometry synthesis. ACM Trans. Graph. 28, 3 (July),
56:1–56:9.

WARD, K., BERTAILS, F., KIM, T.-Y., MARSCHNER, S. R.,
CANI, M.-P., AND LIN, M. C. 2007. A survey on hair model-
ing: Styling, simulation, and rendering. IEEE Trans. Vis. Comp.
Graph. 13, 2, 213–234.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbi-
trary manifold surfaces. In SIGGRAPH ’01, ACM, 355–360.

WEI, Y., OFEK, E., QUAN, L., AND SHUM, H.-Y. 2005. Model-
ing hair from multiple views. ACM Trans. Graph. 24, 3 (July),
816–820.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE TPAMI 29, 3, 463–476.

YU, X., YU, Z., CHEN, X., AND YU, J. 2014. A hybrid image-
cad based system for modeling realistic hairstyles. In I3D ’14,
ACM, 63–70.

YUKSEL, C., SCHAEFER, S., AND KEYSER, J. 2009. Hair
meshes. ACM Trans. Graph. 28, 5, 166.

ZHAO, H. 2005. A fast sweeping method for eikonal equations.
Mathematics of computation 74, 250, 603–627.

Appendix

Symbol Description
Ii an input hair image
Ti the camera parameters for Ii
MI
i / MH

i a hair mask
DI a distance field
A(·) computes the area of a mask
G a 3D hair shape
Pd(·) projects a vector along a direction d
Wi a thin-plate-spline-based warping function
δ the magnitude of Laplacian coordinates
pj / q a point on G
I the hair texture
Ii a synthesized texture using Ii as the source
I the texture after blending {Ii} using weights {αi}
OI the gradient of I
S / R the source / target region in texture synthesis
X / Y / Z an m×m patch
x a texel in a patch
C(·) returns the center point of a patch
U(·) returns the uv coordinates of a point
N(·) computes the local neighborhood of a point
f(·) / T̂k an affine transformation
gj the NNF at pj
u / r a 2D random offset / variable
w a maximum 2D search distance
t 2D texture coordinates
γ a weight for color voting

Table 1: Summary of the notation used in hair texture synthesis.

https://github.com/Microsoft/UVAtlas/
https://github.com/Microsoft/UVAtlas/

Figure 14: Modeling with images that depict similar but not exactly the same hair (the top two rows), and even with images of considerably
different hairs in different views (the bottom two rows). The input images are shown on the left, and our modeling results are on the right.

(a) Input images (b) Our results (c) [Chai et al. 2016]
Figure 15: Comparisons with a state-of-the-art single-view modeling method [Chai et al. 2016]. For left to right, our input images, our
results and the results using [Chai et al. 2016].

(a) Input images (b) Our results (c) [Hu et al. 2014a]
Figure 16: Comparisons with a state-of-the-art multi-view modeling approach [Hu et al. 2014a]. For left to right, our input images, our
results, and the results of [Hu et al. 2014a] using 66 input photos.

Figure 17: Our hair modeling results with four-view images. For each row, the input images are shown on the left, and our modeling results
are on the right.

