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Fig. 1. Given a character mesh and its associated skeleton hierarchy in rest pose (left), our method automatically predicts skin weights (middle), which can
produce high-quality deformations comparable to those generated by artist-painted weights (right).

We present a deep-learning-based method to automatically compute skin
weights for skeleton-based deformation of production characters. Given
a character mesh and its associated skeleton hierarchy in rest pose, our
method constructs a graph for the mesh, each node of which encodes the
mesh-skeleton attributes of a vertex. An end-to-end deep graph convolution
network is then introduced to learn the mesh-skeleton binding patterns from
a set of character models with skin weights painted by artists. The network
can be used to predict the skin weight map for a new character model, which
describes how the skeleton hierarchy influences the mesh vertices during
deformation. Our method is designed to work for non-manifold meshes with
multiple disjoint or intersected components, which are common in game
production and require complex skeleton hierarchies for animation control.
We tested our method on the datasets of two commercial games. Experiments
show that the predicted skin weight maps can be readily applied to characters
in the production pipeline to generate high-quality deformations.
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1 INTRODUCTION
Skinning techniques, such as Linear Blend Skinning (LBS) [Kavan
and Žára 2005] and Dual Quaternion Skinning (DQS) [Kavan et al.
2007], are widely used in game production and supported by stan-
dard modeling software. In a typical skinning pipeline, an artist
first creates a mesh model and specifies a skeleton hierarchy for the
model. Skin weights are then painted onto the mesh to indicate how
the mesh vertices deform with the skeleton. For complex character
models in production, it is a time-consuming process to paint skin
weights to produce satisfactory deformations even for professionals.
For example, it took more than eight hours for an artist to paint the
skin weights for the character shown in Fig. 1.

A few techniques have been proposed to automatically compute
skinning weights using heat diffusion [Bang et al. 2015; Baran and
Popović 2007; Wareham and Lasenby 2008], elastic deformer [Kavan
and Sorkine 2012], or geodesic voxel binding [Dionne and de Lasa
2013]. They either work only for manifold meshes or assume that a
skeleton bone has high influence weights on mesh vertices near to it.
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Fig. 2. Example production characters. These characters contain sleeve swings, dresses, cloaks, ribbons and so on. As an example, it is hard for previous binding
solutions to separate sleeves from dresses because of the intersection between them. The left three are from Game A and the right two are from Game B.

Character models in game production, however, are often equipped
with many pieces of accessories such as garments and armors, which
could be non-manifold meshes and contain multiple disjoint or in-
tersected components. In order to animate such characters through
skinning, artists usually design complex skeleton structures consist-
ing of a standard bipedal rig for the torso and auxiliary bones for
accessories. For example, the character shown in Fig. 1 contains long
sleeve swings, skirts, and ribbons, and some are non-manifold. The
sleeves intersect with the skirts, and the skirts may intersect with
legs. Many skeleton bones of this character are designed to control
the deformation of the garment. It is difficult for previous techniques
to properly deal with such models. In production, it largely relies
on artists to resolve these difficult situations and manually paint
the skin weights to generate satisfactory deformations.
In this paper, we seek a data-driven approach to automatically

compute skin weights for game production characters. We assume
that a set of character meshes have been rigged with skeletons and
the skin weights have also been painted by artists. From this dataset,
we aim to learn a model that can precisely depict the binding pat-
terns between the meshes and skeletons, and thus can automatically
infer the skin weights for a new character mesh with its associated
skeleton hierarchy, which may not appear in the training dataset.
The key challenge in developing such an inference model comes
from two ends. First, as aforementioned, production meshes have
complex, varying shapes and topologies. Characters, even in the
same game, could be dressed with dramatically different garments
(see Fig. 2). Second, although the basic bipedal rig for different char-
acters is the same or very similar, the auxiliary bones could vary
significantly as different characters have different accessories, lead-
ing to skeletons with different structures and different numbers of
bones (see Fig. 14). It is thus difficult to formulate these two varying
factors into a learning-based framework to find the binding patterns
between them.

To this end, we introduce a deep-learning-based method to auto-
matically compute skin weights for production characters. Given a
character mesh and its associated skeleton hierarchy in rest pose,
we construct a graph for the mesh, each node of which encodes the
mesh-skeleton attributes of a vertex. We design an end-to-end deep

graph convolution network to predict the skin weights for a charac-
ter model, which is trained from a set of models with skin weights
painted by artists. To account for non-manifold meshes with various
topologies, our method leverages a graph-based convolutional unit
that mimics the convolution and pooling operations in images for
effective feature learning. The graph convolution unit, combined
with multi-layer perceptron, enables our network to effectively learn
the mesh-skeleton binding patterns. It also makes the network in-
sensitive to the graph size and topology. To account for the varying
skeleton structures in the training dataset, we propose the super
skeleton and bone masks as a unified representation for all skeleton
structures in the training set. Specifically, each bone of a skeleton
in the training set is assigned a label, indicating its semantic usage
(e.g., ‘Spine’ of the bip). The super skeleton is defined as a virtual
configuration of the semantic union of all bones in the training set.
The structure of an individual skeleton is then represented by a
mask, indicating its valid bones in the super skeleton configuration.
This representation enables us to handle various skeleton structures
that may or may not be contained in the training dataset, as long as
they are a subset of the super skeleton.
We have qualitatively and quantitatively evaluated our method

on character models from two commercial games. Experimental
results show that the skin weight maps predicted by our method
can yield satisfactory deformations, and compare favorably with
those generated by alternative solutions. Our method has also been
integrated into commercial software (3Ds Max) and deployed in
a game production pipeline, greatly reducing the time and efforts
spent on skin painting.

In the following, we first review relatedwork (Sec. 2), then overview
the pipeline of our method (Sec. 3). The method and implementation
details are explained in Sec. 4. Experiments are described in Sec. 5.
Finally, Sec. 6 concludes the paper.

2 RELATED WORK
Skin Deformation. Skinning techniques can be roughly divided

into physics-based [Kim et al. 2017; Mukai and Kuriyama 2016; Si
et al. 2014], example-based [Le and Deng 2014; Loper et al. 2015], and
geometry-based methods [Kavan et al. 2007; Kavan and Žára 2005].
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Fig. 3. The pipeline of our method. We first construct a graph for the input character mesh with its associate skeleton hierarchy. Each graph node encodes the
mesh-skeleton attributes. The graph and node attributes are fed into our graph convolution net to predict the skin weight map.

Because of the computational efficiency and simplicity, geometry-
based techniques, such as LBS and DQS, are widely used and sup-
ported in real-time applications such as video games.
In geometry-based techniques, the deformation quality heavily

depends on the skin weights, and a few techniques have been pro-
posed to compute weights automatically. Earlier methods exploit
heat diffusion [Baran and Popović 2007], illumination models [Ware-
ham and Lasenby 2008], Laplacian energy [Jacobson et al. 2011], and
elastic energy function [Kavan and Sorkine 2012] to compute the
skinning weights. Later methods utilize geodesic voxel binding to
compute weights, which are capable of handling non-manifold and
degenerated meshes [Dionne and de Lasa 2013, 2014]. Tomohiko
and Shigeru [2016] propose a method for dynamic skinning with a
helper bone rig, which is built with nuclear norm optimization and
Binh [2016] reduces the joint-bulging artifact of DQS by estimat-
ing an optimized center of rotation (CoR) for each vertex. Bang et
al. [2018] provide a spline-based skinning interface which integrates
with an interpolation-based method and a diffusion-based model to
compute skin weights. One common problem of these techniques is
that they assume that a skeleton bone has high influence weights on
mesh vertices close to it. The assumption, however, dose not hold
well for production characters that may contain multiple intersected
components, such as those shown in Fig. 1 and Fig. 2.

Example-based skinning methods (e.g., [Le and Deng 2014]) typ-
ically require multiple poses/meshes of a character as input and
compute the skin weights for this specific character only. In this
paper, we learn the mesh-skeleton binding patterns from a set of
character models with skin weights painted by artists. We automat-
ically predict skin weights for a new character, taking the character
mesh and its associated skeleton hierarchy in rest pose as input.

Deep-learning-based Deformation. A few attempts have beenmade
to extend deep neural networks to work with mesh deformations. In
[Tan et al. 2018], a mesh-based autoencoder is proposed to extract
localized deformation components with sparsity constraints. Bailey
et al. [2018] propose a deep learning method to approximate the non-
linear portion of a character deformation with fully-connected net-
works. Luo et al. [2018] describe a re-usable deep neural network to
add displacements to the results simulated from the linear elasticity
so that the final results approximate nonlinear elastic deformations
well. Qiao et al. [2018] introduce a GCNN-LSTM framework to cope
with mesh animation sequences that the trained model improves the
generation of mesh sequences. Different from these techniques, our
method automatically computes skin weights for skin deformations
using deep graph convolution networks.

Deep Graph Convolution. There is an increasing interest in gen-
eralizing convolutional networks for graph inputs in recent years.
Attempts in this direction can be roughly categorized as spectral
approaches [Bruna et al. 2013; Defferrard et al. 2016; Henaff et al.
2015; Kipf and Welling 2016] and spatial approaches [Boscaini et al.
2016; Hamilton et al. 2017; Masci et al. 2015; Monti et al. 2017;
Veličković et al. 2018]. Our method falls into the second class. Spatial
approaches define convolutions directly on the graph, operating con-
volution groups of spatially close neighbors. For example, Geodesic-
CNN proposed in [Masci et al. 2015] is an early attempt at applying
convolution directly to manifolds by representing manifolds with a
set of patches represented in geodesic polar coordinates. Anistorop-
icCNN proposed in [Boscaini et al. 2016] introduces an alternative
way to extract patches on manifolds by using anisotropic heat ker-
nels. Monti et al. [2017] provide a mixture model network which
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allows designing convolution operations on both manifolds and
graphs. GraphSAGE [Hamilton et al. 2017] is provided to compute
node representation in a graph with a sampled fixed-size neighbor-
hood. [Veličković et al. 2018] propose graph attention networks to
aggregate an arbitrary number of neighbors to represent the current
node with an attention mechanism. In our work, the skin meshes
are converted into graphs and we take graph attention networks
for reference to construct our graph convolution network.

3 OVERVIEW
Fig. 3 illustrates the pipeline of our method. The input is a character
mesh with its associated skeleton hierarchy, all in rest pose. The
output is the the skin weights for the character so that the mesh can
be deformed along with the skeleton as desired. We first construct
a graph for the mesh, with each graph node representing a vertex
and encoding the mesh-skeleton attributes. The graph then is fed
into a graph convolution network. The network first transforms
the node attributes into features through a Multi-Layer Perceptron
(MLP) layer and a graph convolution unit. Next, the learned features
are fed into two network branches: a global branch which consists
of multiple MLP layers and a Max Pooling layer, and a local branch
which consists of multiple graph convolution layers. The trans-
formed features are concatenated and fed into another MLP layer to
finally get the skin weights. We consider the skin weight map as a
label distribution – for each mesh vertex its weight vector is a selec-
tion of different bones with different probabilities. The loss function
of our network is defined to minimize the difference between the
prediction distribution and the ground truth distribution.

Our network is designed to consider both the locality and global-
ity of the learned feature for mesh-skeleton attributes. It contains a
global branch with MLP and Max Pooling to aggregate information
across all the nodes to learn global features, and a local branch with
attention-driven graph convolution and graph pooling for learning
local spatial features. The global pooling operation provides two ad-
vantages. First, the learned feature can distinguish itself from others
even though the local geometric structures are similar. Second, the
global features of different character models are different, which
can handle the problem of diversity of skin weights across differ-
ent shapes. We have evaluated various network components (the
convolution and pooling operations) and compare with alternatives
(see Sec. 5.3).

4 THE METHOD
We first describe how to construct the graph for the input mesh
and its skeleton. Then we explain the individual components, loss
function and implementation of our network in details.

4.1 Graph Construction
LetM be a mesh withN vertices, and its skeleton hierarchy B has |B |
bones. We construct a graph G = (V, E,A), in which V indicates
a set of nodes that correspond to vertices in the mesh, E ⊆ V ×V

indicates the edges, A is a (0, 1) adjacency matrix of size N × N
that indicates the connectivity of vertex pairs in the mesh with
a(i, j) ∈ {0, 1} for each undirected edge (i, j) ∈ E. For a node vi ∈ V
its neighborhood set is denoted by N(i).

A. 
C. 
E. 
G. 

B. 

H. 

D. 
F. 

A.

B.

C.

E.

F.

G.

H.

D.

Spine
Left Clavicle
Left Cloak01
Left Cloak03

Neck
Left UpperArm
Left Cloak02
Left Cloak04

Fig. 4. The skeleton hierarchy used in Game A. Black: bip bones for body
control; yellow : support bones for dresses; green: support bones for sleeves;
blue: support bones for cloaks; red : support bones for hair-style.

Node attributes. We assign a mesh-skeleton attribute vector to
each graph node to encode the geometry information of the cor-
responding mesh vertex and its relative position to the skeleton.
Specifically, for a node vi ∈ V , its attribute vector is defined as
vi = [pTi ,n

T
i ,d

T
i ], in which pi ∈ R3 is the vertex position in the

Cartesian coordinate system, ni ∈ R3 is the normal of the vertex,
and di ∈ R |B | is the distance vector to the skeleton bones, i.e., di , j
is the shortest distance from pi to the line segment of the j-th bone.
The dimension of vi is 6 + |B |.

Super skeleton and skeleton mask. The structure and the number
of bones could vary among skeletons in the training set. As the
input and output of our network all assume a fixed bone number
|B |, we construct a super skeleton s̆ as the union of all skeleton
structures in the training set, and fix |B | to be the size of s̆ . Note
that s̆ is a virtual configuration and does not have actual geometry
layout. Any individual skeleton structure in the training set can be
represented by s̆ and a mask vector indicating the validity of each
bone in s̆ . Specifically, for each bone in individual skeletons, we
manually assign a semantic label of five classes, including bip, dress,
sleeves, cloaks, and hair-style. Each bone can be further assigned a
label indicating its actual usage in its class, such as ‘Spine’ and ‘Neck’
in the bip class and ‘Left Cloak01’ in the cloaks class (see Fig. 4). We
then group and align bones of the same usage label together to get
the super skeleton. For an individual skeleton, a (0, 1) mask vector
M of size |B | is generated to indicate its valid bones.
Before constructing graphs, all models need to be normalized.

We guarantee that all models are located in the same Cartesian
coordinate system by moving a common bone (i.e., the spine) to the
origin of the coordinate system, and rotating the models to a fixed
orientation. Then we scale all the models along the height direction
into the range of [0, 1].

4.2 Multi-Layer Transform
In our network, we transform the input node attributes into higher-
level features and preserve the spatial proximity using Multi-Layer
Perceptron (MLP), which is called multi-layer transform in Fig. 3.
The MLP contains a group of fully-connected layers whereas the
number of hidden layers is set through experiments (see Sec. 4.5).
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The MLP is known to allow approximate solutions for extremely
complex problems. As in [Qi et al. 2017], we use shared multi-layer
perceptron to handle unordered input, i.e., all nodes share a single
copy of MLP.

4.3 Graph Convolution Unit
The graph convolution unit takes node features and the adjacency
matrix as input and outputs transformed node features. In our pro-
posed unit, the graph convolution operation is used to learn the
node features by weighting the neighborhood features, and the
graph pooling operation is used to enlarge the receptive field for
every node. We describe graph convolution and graph pooling in
details here.

Graph Convolution. Graph convolution is defined to translate
input node features within the graph to latent features so that, for
every node feature, the output feature aggregates the local features
in the neighborhood weighted by trainable filter coefficients. A well-
defined graph convolution operator should handle the unordered
and size-changed neighborhoods of nodes. Inspired by [Veličković
et al. 2018], we define the graph convolution operator as a masked
self-attention function on nodes.
With the input node features, f = { ®f1, . . . , ®fi , . . . , ®fn }, ®fi ∈ RF ,

where n is the number of input features and F is the input feature
dimension, the output of the graph convolution layer is denoted
as f

′

= { ®f ′1 , . . . ,
®f ′i , . . . ,

®f ′n }, ®f ′i ∈ RF
′

and F ′ is the output feature
dimension. The graph convolution operation is separated into three
steps:
• First, for every input node feature, a linear transformation pa-
rameterized by a weight matrix C ∈ RF

′×F is applied to get
higher-level output,

®hi = C ®fi , (1)

where the weight matrix C is trainable and can be shared over
input features.

• Then a masked attention mechanism is introduced to weight
the importance of different nodes in the neighborhood. Starting
from an attention function ϕ : RF

′

× RF
′

→ R, the importance
of node j to node i is computed as ei j = ϕ(®hi , ®hj ). Instead of
using concatenation as in [Veličković et al. 2018], we set the
attention function ϕ as the dot product, which demonstrates
faster convergence and stable training in practice [Thekumpara-
mpil et al. 2018]. Then the graph adjacency matrix mask A is
applied to the score map to keep the neighborhood locality such
that, for each node i , only the nodes j ∈ N(i) is computed:

ei j = ϕ(®hi , ®hj ) ∗ ai j , (2)

where ∗ means element-wise production and ai j ∈ (0, 1) indi-
cates the connection between vertex i and j . The attention coef-
ficients are then normalized with the softmax function:

αi j = so f tmax j (ei j ) =
exp(ei j )∑

k ∈N(i) exp(eik )
. (3)

• The final output feature for every node is formulated as a linear
combination of the corresponding features in the neighborhood

with the attention coefficient (with nonlinearity σ applied):

®f ′i = σ

( ∑
j ∈N(i)

αi j ®hj

)
. (4)

The multi-head attention introduced in [Vaswani et al. 2017]
is applied here to extend the output feature to stabilize the
learning process. The final output feature is the concatenation
of K independent attention mapped linear transformations:

®f ′i =∥
K
k=1 σ

( ∑
j ∈N(i)

αki jC
k ®fi

)
. (5)

Graph pooling. We have two pooling operations, i.e., the global
Max pooling (c.f. [Qi et al. 2017]) and the local graph pooling. The
later is used to aggregate node features from the neighborhoods.
Specifically, for the node feature ®f ′i , we seek J closest nodes across
the graph based on geodesic distances computed with the input
features and adjacency matrix (in case of graph disconnection, the
geodesic distance is set to infinity), and then apply average pooling
on the neighbor features set to get the local neighborhood informa-
tion AvдPool( ®f ′j |j ∈ J ). Finally, we concatenate the pooled feature
to the node feature to enhance the locality for every node, the output
feature after applying local pooling is

®f ′out = Concat(
®f ′i ,AvдPool(

®f ′j |j ∈ J )). (6)

The size of the local neighbors J indicates the receptive field of this
local pooling operation and the concatenation operation enhances
the locality information to the output features.
We concatenate the output of the proposed unit with the input

feature. As demonstrated in Fig. 3, for the input feature dimension F ,
the convolution output dimension F ′ and the number of heads for
attention K , the output feature dimension of the graph convolution
unit is 2(KF ′) + F .

4.4 Loss Function
Depending on different applications, the skin weight mapW output
by our network merits different constraints. Basically, it is required
to be convex, i.e.wi j ≥ 0 and

∑ |B |

j wi j = 1, wherewi j ∈ [0, 1] indi-
cates how much the j-th bone’s rotation and translation influence
vertex pi during deformation. In addition, the weight map is always
sparse for the computation efficiency of deformation. Instead of
enforcing these constraints in the loss function, we apply a softmax
layer in the network to scale the weight to [0, 1] before computing
the loss. The final weights are further thresholded and normalized
to enforce sparsity and convexity, i.e., we only keep the top κ most
influential bones for each vertex, where κ is a dataset-dependent
parameter (see details in Sec. 5).
For the loss function, a simple choice is the regression loss such

as the Euclidean distance between the predicted weight map and
the ground truth. However, it is known that such an L2 loss function
tends to blur the prediction results [Isola et al. 2017]. In our situa-
tion, we consider the weight map as a label distribution so that, for
every vertex vi with the whole skeleton hierarchy B |B | , the weight
vector {wi j |j ∈ |B |} is a selection of different bones with different
probabilities. The learning target here is converted to minimize
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the difference between the prediction distribution and the ground
truth distribution. f -divergence, specifically, the Kullback-Leibler
divergence is widely used to measure the distance between two
distribution. In our case, based on the nature of our problem, we use
the Kullback-Leibler divergence loss, L =

∑N
i=1

∑ |B |

j=1wi j (log wi j
w ′
i j
)

to minimize the distance between the predicted distribution and the
ground truth distribution.

4.5 Implementation Details
In this section, we provide some implementation details of the pro-
posed network.

As shown in Fig. 3, the network is divided into two stages. In the
first stage, we feed the node attributes to a multi-layer perceptron
with hidden feature sizes of 128 and 64, then apply the first graph
convolution unit to the resulting features with the hidden feature
size of 64, the heads number of 4, and graph pooling receptive size
of 16. In the global featuring branch of the second stage, the features
are transformed with a multi-layer perceptron with the hidden size
of [512, 1024]. The following max pooling layer operates over all
input features, leading to the feature size of [1, 1024]. Subsequently,
this feature is duplicated N times to get the feature size of [N, 1024]
(the top branch in Fig. 3). In the local branch, the input features are
processed by two graph convolution units with the hidden feature
size of [64, 64], the heads number of [2, 2], and pooling receptive size
of [24, 64]. The local features, together with the replicated global
feature, are taken as input to the classifier unit represented by three
fully connected layers with the hidden feature size of [1024, 512,
|B |].
During the training phase, we set the batch size as 12 and choose

the Adam solver for optimization, with the initial learning rate of
lr = 10−3. The learning rate decays once every 200 epochs with a
decay rate of 0.99.
It is noteworthy that, similar to PointNet, our network architec-

ture is not affected by the number of graph nodes or vertices (N ).
During training, we randomly select N vertices from each character
model as a training sample for stable training and also saving of
GPU memories. The adjacency matrix for each sample is updated
accordingly. Once trained, the network is directly applied to the
original mesh of a new character model, without sub-sampling ver-
tices. In our experiments, we found that N = 2048 can suffice to
capture the mesh connectivity (which affects the graph convolution
operation) and produce satisfactory results. Training with more
vertices does not provide obvious improvement. Note that the MLP
operation is agnostic to the number of input vertices.

5 EXPERIMENTS
We have conducted a group of experiments to evaluate the proposed
method with two datasets from commercial games. We name the
two datasets as Game A and Game B, respectively. We train our
network separately on the two datasets. All characters in the datasets
have been skinned by professional artists and can deform with high
quality even under extreme poses. The artists constructed some
complex skeleton hierarchies, including bipedal bones to animate
the torso, and other bones to animate the dresses, sleeves, streamers
and so on (see Fig. 4). The characters in the datasets can be deformed

Fig. 5. Example poses of a character in Game A. The top row is the ground
truth meshes deformed by artist-painted weights, and the bottom row is
the meshes deformed by our predicted weights.

Fig. 6. Example poses of a character in Game B. The top row is the ground
truth meshes deformed by artist-painted weights, and the bottom row is
the meshes deformed by our predicted weights.

with a group of skeletonmotions, such as dancing andwalking. Fig. 5
and Fig. 6 show some example motions. More examples are shown
in the supplementary material. We also make public the datasets
to facilitate further academic research in this field 1. The details of
datasets are listed below.

Game A. There are about 500 characters in this dataset. Fig. 2
(the left three) shows a few examples. As shown, all the models
wear complex, ancient costumes. The number of vertices of a mesh
ranges from 5,000 to 40,000, and most meshes are non-manifold and
composed of multiple disjoint components. There are also intersec-
tions between sleeves and dresses. Table 1 provides the statistics
of five characters shown in Fig. 13. All characters share the same
skeleton hierarchy, which makes the super skeleton unnecessary.
The skeleton consists of 240 bones (see Fig. 4). For computational
efficiency, a vertex is set to be influenced by no more than 4 bones
(i.e., κ = 4). The dataset is randomly divided into a training set of
400 models and a testing set of about 100 models.

Game B. This dataset has 26 different skeleton structures, each
of which is shared by 20-50 characters, resulting in 1171 characters
in total. The number of vertices of a mesh ranges from 1,000 to
5,000, and the number of bones ranges from 80 to 230. Fig. 14 shows
several example characters, and the statistics are listed in Table 2.
The number of bones influencing a vertex is no more than 3. The
super skeleton created for this dataset contains 416 bones. We divide
the dataset into training and testing sets randomly and ensure that
for each skeleton structure, 80% of the characters are in the training
set and others are in the testing set.
1http://fuxi.163.com/en/thesis/NeuroSkinning.html
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Table 1. Statistics for five testing models in Game A (shown in Fig. 13).

Character #Vertices #Parts #Height (cm) #Bones

I 13170 192 162 240
II 10447 190 159 240
III 19342 379 165 240
IV 21104 416 161 240
V 25413 330 155 240

Table 2. Statistics for five testing models in Game B (shown in Fig. 14).

Character #Vertices #Parts #Height (cm) #Bones

I 3348 34 172 111
II 2120 24 170 111
III 3556 82 148 189
IV 2374 33 186 140
V 2839 69 179 133

All results shown and the statistics reported in the following are
on the test characters.

5.1 Quality Metrics
Several metrics are used to evaluate the quality of the predicted
weight maps as well as the resulting deformations. For weight maps,
one important metric is the precision and recall of the selection of
influencing bones for every vertex, as the wrong selection would
cause unexpected deformations. We set the bone selection results
Ipred as

Ipred (i, j) =

{
1, wi j ≥ thres

0, wi j < thres
(7)

where Ipred (i, j) = 1 means the j-th bone influences the i-th vertex,
and thres = 0.0001 is a threshold. For the ground truth weight
maps, the bone selection I is also computed according to Eqn. (7)
with thres = 0. Then the precision and recall scores are computed
between Ipred and I over all testing data. Another direct metric
for evaluating skin weights is the difference between the predicted
weight map and ground truth, i.e., the L1 distance between the
weight vectors for every vertex, which can be visualized as a heat
map over the mesh.
To evaluate the deformation quality, we measure the average

distance error and the max distance error between the deformed
models with the predicted weights and the ground truth weights.
The characters are deformed with a set of action poses first, then
two poses with the largest average errors in the set are selected to
evaluate the deformation quality.

5.2 Results
Results on Game A. For the bone selection, the overall precision

and recall scores of the bone selection are 0.743 and 0.982 respec-
tively. Table 3 lists detailed scores for the five characters shown in
Fig. 13. The results demonstrate that our method can effectively
learn the mesh-skeleton binding patterns from the training data.

Table 3 also shows the errors of the predicted weight maps from
the ground truth. The error distribution over the mesh is visualized

Table 3. Evaluation of the predicted weight maps for five characters in Game
A. precision and recall are the precision and recall scores of bone selection.
mean error is the per-vertex skin weight prediction error on average, and
max error is the max error.

Character precision recall mean error max error

I 0.813 0.982 0.0914 1.32
II 0.847 0.986 0.0427 1.78
III 0.836 0.987 0.0583 1.69
IV 0.707 0.986 0.0726 1.83
V 0.648 0.991 0.0890 1.49

Table 4. Evaluation of the deformation quality for five characters in Game
A. mean dist.1 (max dist.1) is the per-vertex average (max) distance error of
the 1st extreme pose (Fig. 13). mean dist.2 / max dist.2 is the average (max)
error of the 2nd extreme pose. The distance errors are normalized by the
average height of all testing characters.

Character mean dist.1 max dist.1 mean dist.2 max dist.2

I 0.0019 0.0583 0.0021 0.0507
II 0.0011 0.0896 0.0012 0.0482
III 0.0016 0.1499 0.0009 0.2161
IV 0.0014 0.0961 0.0009 0.0596
V 0.0012 0.0921 0.0010 0.0596

in Fig. 7. It can be observed that regions with large errors are always
found in the shoulder, pelvis, and the bottom of the dress. The
deformation of the shoulder and pelvis areas is influenced by more
than two bones. For example, the vertices around the shoulder are
controlled by the spines, clavicle, and upper arm (Fig. 4). In these
areas, different artists could paint different weights for different
characters, which may introduce noises in the training data. The
large errors near the bottom of the dress are caused by the large
variation of geometry in these areas across the training data. We
expect that an argumentation of the training data can alleviate both
problems.
For the deformation quality, the per-vertex distance error on

the testing set is 0.00066 on average, and the max error is 0.21612,
normalized by the average height of all testing characters. Table 4
shows the detailed numbers for five characters. As demonstrated in
Fig. 5 and the supplementary video, our predicted weight maps can
produce high-quality deformations comparable to those generated
by artist-painted weight maps.

Results on Game B. In this dataset, the overall precision and recall
scores of the bone selection are 0.803 and 0.945 respectively. The
higher recall scores in both Game A and Game B may be due to

0.0

2.0

Fig. 7. Per-vertex skin weight prediction errors on five models in Game A.
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the fact that our prediction does not enforce the sparsity of the
weights (the ground truth weights are usually sparse). Table 5 lists
the detailed numbers for several testing characters, as well as the
mean and max errors of the predicted weight maps. Fig. 14 visual-
izes the error distribution over the mesh. The results demonstrate
the efficacy and robustness of our method with varying skeleton
hierarchies.

Fig. 6 and Fig. 14 show several deformation results using the pre-
dicted weight maps. The per-vertex distance errors of the deformed
meshes are reasonable (Table 6). As demonstrated in the figures
and supplementary video, there are no noticeable errors. According
to the feedback of our artists, many of the predicted models (e.g.,
the first and the third characters in Fig. 14) can be directly used in
production without any adjustment, while some may require slight
modifications in local regions.

Generalization. Our method is designed to work with characters
having new skeleton structures not contained in the training set.
Fig. 9 shows two such examples (predicted using the network trained
on Game B). As described in Sec. 4.1, we first align the skeleton to
the super skeleton of the dataset and get the skeleton mask. Our
network can then be applied to this character to predict the skin
weight map. We provide side-by-side comparisons of the deformed
meshes in Fig. 9. As shown here and in the supplementary video,
the characters can be deformed well.

Fig. 8. A failure example.

To further evaluate the
generalization ability of
the trained network, we
also tested it with sev-
eral humanoid charac-
ters downloaded from
the Internet. We use the
network trained on the
dataset of Game A to pre-
dict their skin weights.
The results are shown
in Fig. 10 and the corre-
sponding animation can be found in the accompanying video. As
shown, our trained network works well on humanoid characters
whose shapes do not significantly differ from the training examples.
On the other hand, if the geometry varies dramatically, such as the
monster model with long and fat arms shown in Fig. 8, artifacts will
be introduced. The model is deformed slightly away from the rest
pose. The hand region is incorrectly bound to the bones of sleeves.
This verifies the fact that the performance of our trained network
could decrease if the topology and skeleton layout are quite different
from the training set.
As our method is learning-based, it requires sufficient training

data to achieve satisfactory results. In dataset A, we alternatively
reduce our training set size to be 25% and 50% of the original dataset
(while keeping the testing set unchanged) to see how the training
size will influence the performance. We collect the precision and
recall scores for both tests.We get (precision = 0.4967, recall = 0.8488)
for the training size of 25% and (precision = 0.6211, recall = 0.9038)
for the training size of 50%. Indeed, the increasing of training data
will boost the performance.

Table 5. Evaluation of the predicted weight maps for five characters in
Game B.

Character precision recall mean error max error

I 0.903 0.996 0.01135 1.203
II 0.856 0.875 0.1647 1.541
III 0.712 0.992 0.06936 1.674
IV 0.823 0.925 0.1760 1.481
V 0.792 0.936 0.1393 1.548

Table 6. Evaluation of the deformation quality for characters in Game B.

Character mean dist.1 max dist.1 mean dist.2 max dist.2

I 0.0003 0.0748 0.0004 0.0774
II 0.0019 0.0775 0.0023 0.0762
III 0.0011 0.0423 0.0018 0.0436
IV 0.0025 0.0441 0.0027 0.0902
V 0.0022 0.0856 0.0027 0.0902

0.06

0

Ground Truth Our Prediction

Fig. 9. Skin binding for characters that have skeleton structures not covered
in the training set. Notice that the character in the bottom row shows larger
prediction errors, mainly due to the incorrect binding of the skirt to the leg
bone.

Deployment in game production. Our method is being actively
used in game production. Both games mentioned in the paper re-
quire to frequently update characters with new costumes (often
weekly), which is common for popular online games. The network
trained on existing characters is used to compute skin weights for
updated characters, which greatly reduces the manual labors in skin
weight painting. In the future, for a new game which may has char-
acters of dramatically different skeleton structures or geometries,
we can let artists paint skin weights for a small portion of characters,
from which we train a network. This network can then be applied
to other characters to automatically compute skin weights.
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Fig. 10. Two humanoid characters with predicted skinning weights in rest
pose (left). The right three columns show the deformation results. The
character in the bottom row has a very different geometry style from the
training set. Top row: original model courtesy of Pawas Saxena.

5.3 Comparisons
We compare ourmethodwith theGVBmethod introduced in [Dionne
and de Lasa 2013]). Fig. 11 shows some deformation results using
the skin weights computed by the GVB. As shown, the method fails
to separate the sleeves and dress automatically, and in many cases,
the bindings are too loose to make the character deform correctly
(e.g., human body part always undergoes soft deformation). The
main reason is the lack of the prior knowledge of the dataset. Our
learning-based method makes full use of prior knowledge, and the
resulting character can perform well during deformation. Please see
the accompanying video for animation comparison.
We also conduct experiments to compare the performance of

different network structures used in our method. The first structure
only contains fully-connected layers (i.e., without graph convolu-
tion), with the detailed architecture listed in Table 7. The second
structure is the same as PointNet [Qi et al. 2017]. The third struc-
ture is a modification of our proposed network with graph pooling
removed. The experiments are conducted on Game A. The quantita-
tive results on the predicted weight maps are listed in Table 8, and
we show some deformation results in Fig. 12. As observed, the fully-
connected network fails to separate the dress and sleeves (Fig. 12
left). The PointNet can separate individual parts of the character to

Fig. 11. Deformation results using the skin maps computed by [Dionne and
de Lasa 2013].

Table 7. Architecture of the fully-connected network used in our compari-
son.

Operation BatchNorm Activation Dropout

FC(1024) Yes LeakyReLU(0.1) No
FC(512) Yes LeakyReLU(0.1) Yes(0.6)
FC(512) Yes LeakyReLU(0.1) No
FC(256) No LeakyReLU(0.1) No
FC(240) No No No

Table 8. Evaluation of the predicted weight maps on Game A using different
network structures.

Character precision recall mean
error

max
error

Fully-Connected 0.483 0.851 0.131 1.86
PoinNet ([Qi et al. 2017]) 0.659 0.902 0.182 1.67
Our network (no pooling) 0.723 0.957 0.117 1.71
Our network 0.743 0.982 0.071 1.83

a certain degree, but is still problematic (Fig. 12 middle left). Our net-
work without graph pooling can already generate better results than
PointNet (Fig. 12 middle). With the graph pooling operation inte-
grated into the graph convolution network, the receptive field of the
vertices of different layers in the resulting network is controllable,
resulting in the best result (Fig. 12 middle right). Table 8 further
shows that the precision and recall scores of the bone selection with
different network structures.

6 CONCLUSION
We have introduced the first deep-learning-based method for auto-
matic skin binding using graph convolution networks. Our method
is designed to work with production meshes which are often com-
posed of multiple, disjoint or intersected components and require
complex skeleton hierarchies for animation control. We have demon-
strated the efficacy and robustness of our method on datasets of
commercial games. The skin weight maps predicted by our method
can produce high-quality deformations and are readily applied to
characters in game production.

Our work still has some limitations which need to be explored in
the future. First, our method requires artists to manually specify the
skeleton hierarchy and positions for the input character mesh in rest
pose. It would be interesting to investigate methods for inferring
the skeleton positions together with the skinning weights in a joint
manner, which could further reduce manual labors in the skinning
pipeline. Second, the weight maps predicted by our method are not
guaranteed to be smooth everywhere, which may lead to uneven
deformation in places with complex substructure. Many attempts
have been done to generate smooth weight maps, such as [Bang and
Lee 2018]. However, most of them are introduced as a post-process in
the skinning pipeline. Developing an intuitive end-to-end method to
predict smooth weight maps remains an interesting problem. Finally,
as a deep-learning-based approach, our method relies on a large
set of training samples, and its generalization ability to drastically
different skeleton hierarchies is weak. We would like to explore
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FC [Qi et al. 2017] Our Method
w/o graph pooling Our Method Ground Truth

Fig. 12. Comparisons between different network structures. From left to right: fully-connected, PointNet, our network (no pooling), our network, ground truth.

different representations of the mesh-skeleton attributes as well as
network architectures to achieve better generalization ability.
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Fig. 13. Deformations of five characters in Game A. Side-by-Side comparisons of the ground truth deformation and our predicted deformation in extreme
poses. Each row shows a character. The first and fourth columns are the ground truth deformation. The second and fifth columns are the predicted deformation.
The third and sixth columns are the visualization of the per-vertex prediction errors.
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Fig. 14. Deformations of five characters in Game B. Side-by-Side comparisons of the ground truth deformation and our predicted deformation in extreme
poses. Each row shows a character. The first column is the skeleton hierarchy. The second and fifth columns are the ground truth deformation. The third and
sixth columns are the predicted deformation. The fourth and the seventh columns are the visualization of the per-vertex prediction errors.
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