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Abstract We present neural compositing, a deep-learning based method for augmented reality rendering,

which uses convolutional neural networks to composite rendered layers of a virtual object with a real photo-

graph to emulate shadow and reflection effects. The method starts from estimating the lighting and roughness

information from the photograph using neural networks, renders the virtual object with a virtual floor into

color, shadow and reflection layers by applying the estimated lighting, and finally refines the reflection and

shadow layers using neural networks and blends them with the color layer and input image to yield the output

image. We assume low-frequency lighting environments and adopt PRT (precomputed radiance transfer) for

layer rendering, which makes the whole pipeline differentiable and enables fast end-to-end network training

with synthetic scenes. Working on a single photograph, our method can produce realistic reflections in a real

scene with spatially-varying material and cast shadows on background objects with unknown geometry and

material at real-time frame rates.
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1 Introduction

The availability of commercial AR (augmented reality) platforms like ARKit1) and ARCore2) enables
application developers to render virtual objects into real scenes with just a smart phone. Current tracking
technologies estimate camera poses and localize real-world planes with considerable accuracy. However,
making the rendered objects appear real is still far from trivial.

A key challenge is the interaction between virtual objects and the real scene. Virtual objects can cast
spatially-varying shadow and produce reflection on real ones, like in Figure 1. Such illumination effects
are crucial to realism, yet difficult to simulate because it is hard to accurately reconstruct the geometry
and material information of the real scene from limited input images.

In this paper, we introduce neural compositing, a real-time method to render a virtual object into a real
photograph with reflection and shadow effects. Inspired by the production practice of digital compositors,
our method uses CNNs (convolutional neural networks) to composite rendered layers of the virtual object
with the photograph to emulate effects expensive to render physically. The method starts from estimating
the lighting and roughness information from the photograph using CNNs, renders the virtual object with
a virtual floor into color, shadow and reflection layers by applying the estimated lighting, and finally
refines the reflection and shadow layers with CNNs and blends them with the color layer and input
image to yield the output image. We assume low-frequency lighting environments approximated by SH
(spherical harmonics) functions and adopt PRT (precomputed radiance transfer) [1] for layer rendering,
which makes the whole pipeline differentiable and enables fast end-to-end network training with synthetic
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Figure 1 (Color online) Our real-time AR system. Left: a virtual armadillo rendered into a photograph. The system correctly

shows reflection on the table while only casting shadow on the blue paper. Right: a user manipulating a virtual coffee cup on a

laptop at 25 fps.

images. Working on a single photograph, our method can produce plausible reflections in a real scene
with spatially-varying material and cast shadows on background objects with unknown geometry and
material at real-time frame rates. We provide the supplementary video3) to show our results.

In summary, our paper makes the following contributions.

(1) We introduce a neural compositing method for AR rendering that uses CNNs to combine rendered
layers of virtual objects with real images to emulate physically sophisticated effects, sidestepping accurate
reconstruction of geometry and material required by many previous methods.

(2) We propose to use PRT for layer rendering, yielding a differentiable AR rendering pipeline that
can be fast trained end-to-end on a synthetic dataset.

(3) We present an AR system that renders virtual objects into single-view photographs with realistic
shadow and reflection effects in low-frequency lighting environments at real-time frame rates.

2 Related work

Compositing a 3D object into a 2D photograph is a well-researched topic. One class of methods is
harmonization by adjusting brightness and hue of foreground to match the scene. Existing methods
include matching statistics [2–4], gradient-based blending [5, 6], learning-based methods [7–10]. These
methods do compositing in an end-to-end manner without explicit reconstruction of lighting, geometry
and albedo. However, physical correctness is not warranted and virtual objects’ effects on the scene
like shadow and reflection are totally ignored which are critical in AR applications. Another class of
established methods create realistic results using differential rendering [11], where a reconstruction of the
real scene is rendered with and without the virtual objects to generate a differential image additively
blended onto the photograph.

The reconstruction can be performed by photographing light probes [11, 12], labeling lights interac-
tively [11], or be automated with an optimization process [13–15]. Deep neural networks can also learn
relevant information from photographs, including lighting [16–20], geometry and albedo [21], or even
SVBRDF [22–25]. Regardless of how the real scene is reconstructed, though, final compositing still
comes to differential rendering [12,13,18,26–28]. As a result, any rendering artifacts directly go into the
final result, placing a high quality demand on the reconstructed scene.

Our method approaches the AR rendering problem from a different angle by directly improving the
final compositing. Specifically, we use neural networks to post-process challenging shadow and reflection
layers to hide artifacts and match the photograph, before blending them onto the final result. This
allows us to significantly weaken the quality requirement of the rendered images, sidestepping challenging
reconstruction tasks. The inspiration comes from the production practice of digital compositors, who
enhance renderer output in image processing software for the same purpose.

A different direction is neural rendering, which replaces most or all of the shading process with neural
networks [29, 30]. Such methods can synthesize realistic appearance from latent, semantic or geometric
features, an attractive feature when handling real or reconstructed objects. However, this feature does not

3) https://zjumsj.github.io/NCRTAR.github.io/.
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Figure 2 (Color online) The pipeline of our method and network architectures. Some images have been enhanced to improve

legibility. The pipeline is composed of three U-Nets [37] like networks (roughness network, reflection network and shadow network),

a light network resembling DeepLight [18], a conventional real-time renderer and several fixed-function blending steps.

apply as well to virtual objects, where authored materials make latent models less necessary. Our post-
processing networks are analogous to neural renderers. However, the input to our networks is reference
shadow and reflection layers produced by a conventional real-time renderer instead of raw features.

Differentiable rendering is an essential utility when training neural networks for graphics tasks, and our
system requires one such renderer. There are many fully generic frameworks offering differentiability for
all scene parameters [31–33]. However, their per-iteration Monte Carlo sampling is too expensive for our
application which does not require such generality. While non-physical light transport approximations
can be made for significant acceleration [34,35], they also diverge from our training target where physical
correctness is critical. Instead, we focus on light differentiability and use PRT [1] to reduce light transport
to a differentiable linear process while maintaining physical correctness, analogous to the inverse cloud
rendering framework of Dobashi et al. [36].

3 The method

3.1 Problem setting

Our method works on a single image of the real world. We assume the AR platform has provided a
corresponding camera pose and located an infinitely large plane which we call the floor. Virtual objects
are positioned on the floor. To disambiguate object albedo from light intensity, we assume the floor has
a fixed albedo of 0.5 and the lighting is monochrome, which has a side benefit of providing a reference for
virtual materials. We further assume the virtual objects, or foreground objects, are positioned in front
of all real objects, also referred as background objects in the image.

3.2 Overview

As illustrated in Figure 2 [18,37], our algorithm consists of four neural networks, one rendering step, and
a few fixed-function blending steps. Given the real image, we first estimate the lighting and roughness
information with the light network and roughness network respectively. The reconstructed low-frequency
SH lighting is then used to render the virtual object and a virtual floor into a color layer, shadow layers,
and reflection layers for three predefined reference floor materials, one diffuse, one glossy and one specular.

The reflection network is used to combine the rendered reflection layers on predefined materials with
latent features extracted by the roughness network to synthesize a refined reflection layer where the
sharpness is consistent with that in the real image. The shadow network is used to combine the rendered
shadow layers with the input image to correct for non-floor objects, removing shadows occluded by them
while adding shadows for objects that appear close to the virtual one. Finally the refined layers and the
color layer are blended with the input image to generate the final output. The intermediate and final
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Figure 3 (Color online) Intermediate results in a compositing process. From left to right: the input image, the reflection mask,

the color layer (with the estimated SH lighting shown as inset), the refined reflection layer, the refined shadow layer, and the final

output image.

results of one complete compositing are visualized in Figure 3 to give our readers an intuition on how the
pipeline works.

The neural networks are trained end-to-end on a synthetic dataset. We use PRT to render the color,
shadow and reflection layers that are taken by the networks as input. The rendering step is reduced to
simple linear combinations, and thus it is differentiable.

3.3 Blending and rendering

The final blending steps in Figure 2 are the key inspiration we take from production practice. Mathe-
matically, given the real image as a background B, a shadow layer S, a reflection layer R, a color layer
C with RGB components and an alpha component A, the final output I is computed as

I = B ◦ (1− S) ◦ (1 −A) + C ◦A+R, (1)

where ◦ indicates element-wise multiplication. This process matches the compositing network that artists
often employ in off-the-shelf software. The shadow term masks out the background through a multipli-
cation of 1− S. C and A are alpha-blended onto the shadowed background and the reflection term R is
simply added at the end.

Strictly speaking, Eq. (1) is not physically correct. The optical effects casted by virtual objects in
the real image are far more complicated than just subtracting a shadow and adding a reflection. The
equation is more of a best-effort approximation that turns out to work well in practice, especially when
the S and R layers were manually tweaked. For example, when a virtual shadow needs to be casted onto
a real object, an artist could rotoscope a new patch of shadow and add it to S. We seek to replicate such
a compositing process with our neural networks.

The rendering step and the two following networks have to produce layers that eventually become
meaningful when substituted into (1). The color and alpha layers are straightforward to produce and we
will focus the discussion on the shadow and reflection layers. Consider a point x on the floor, we denote
its radiance in the real image as B(x) and its radiance after rendering the virtual object as I(x). Since
x lies on the floor, we ignore foreground color C and alpha A to simplify (1) into

I(x) = B(x) (1− S(x)) +R(x), (2)

where S and R correspond to the shadow and reflection layers respectively.
The above terms can be written as hemispherical integrations:

B(x) =

∫

LB(x, ω)HB(x, ω)VB(x, ω)dω, (3)

I(x) =

∫

LB(x, ω)HB(x, ω)VB(x, ω) (1− SF(x, ω)) dω +R(x), (4)

R(x) =

∫

LF(x, ω)HB(x, ω)SF(x, ω)dω, (5)

where subscripts B and F indicate background and foreground terms respectively. LB(x, ω) is the real-
world radiance at point x from direction ω, HB is the floor BRDF term, and VB refers to real-world
visibility. SF(x, ω) is a foreground shadow term that is 1 if an ray from point x along direction ω would
intersect a foreground object and 0 otherwise. LF(x, ω) is the radiance from foreground objects when seen
from point x along direction ω, i.e., the inter-reflection. At a high level, Eq. (4) simply decomposes the
post-AR radiance into a shadowed background integration term and a reflected foreground term R(x).
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To derive S(x), we substitute (4) into (2):

S(x) = 1−
I(x)−R(x)

B(x)

= 1−

∫

LB(x, ω)HB(x, ω)VB(x, ω)(1 − SF(x, ω))dω
∫

LB(x, ω)HB(x, ω)VB(x, ω)dω

=

∫

LB(x, ω)HB(x, ω)VB(x, ω)SF(x, ω)dω
∫

LB(x, ω)HB(x, ω)VB(x, ω)dω
. (6)

Note that LB, HB and VB are real-world values thus unavailable to the renderer, and we have to
provide substitutions. Utilizing the PRT [1] formulation, we approximate LB(x, ω) with a global lighting
represented as order 3 SH L̃B(ω) =

∑

l<3 c̃l,mYl,m(ω) where Yl,m(ω) is the SH basis functions, and c̃l,m
is the SH coefficients reconstructed by the light network. The foreground radiance LF(x, ω) can be itself
written as the dot product of incident lighting L̃B and a transfer function TF(x, ω

′, ω). For HB, we render
three reference materials H̃diff , H̃glossy, H̃spec, which are respectively a Lambertian BRDF, a glossy GGX
BRDF [38] and a specular BRDF. All reference materials use the assumed floor albedo of 0.5. And we
simply ignore VB. Substituting the approximations into (5) and (6) yields

R̃i(x) =

∫

LF(x, ω)H̃i(x, ω)SF(x, ω)dω

=

∫
(
∫

L̃B(ωi)TF(x, ωi, ω)dωi

)

H̃i(x, ω)SF(x, ω)dω

=

∫∫

L̃B(ωi)TF(x, ωi, ω)H̃i(x, ω)SF(x, ω)dωidω

=
∑

c̃l,m

∫∫

Yl,m(ωi)TF(x, ωi, ω)H̃i(x, ω)SF(x, ω)dωidω, (7)

S̃diff(x) =

∫

L̃B(ω)H̃diff(x, ω)SF(x, ω)dω
∫

L̃B(ω)H̃diff(x, ω)dω

=

∑

c̃l,m
∫

Yl,m(ω)H̃diff(x, ω)SF(x, ω)dω
∑

c̃l,m
∫

Yl,m(ω)H̃diff(x, ω)dω
, (8)

S̃i(x)B(x) =

∫

L̃B(ω)H̃i(x, ω)SF(x, ω)dω

=
∑

c̃l,m

∫

Yl,m(ω)H̃i(x, ω)SF(x, ω)dω, (9)

where i ∈ {glossy, spec}.
The R̃(x) and S̃(x) terms are what the renderer produces and what the neural networks take as

input. S̃i(x)B(x) signifies the absolute radiance shadowed by foreground objects and is also taken as the
networks’ input (detailed in Subsection 3.4). Since c̃l,m are the only terms dependent on background,
we can pre-compute the Yl,m-related terms, which correspond to rendering the layers under SH basis
lighting:

R̃i(x) =
∑

c̃l,mR̃
l,m
i (x), (10)

S̃diff(x) =

∑

c̃l,mS̃
l,m
diff,n(x)

∑

c̃l,mS̃
l,m
diff,d(x)

, (11)

S̃i(x)B(x) =
∑

c̃l,mS̃
l,m
i (x). (12)

Following the PRT framework, our renderer pre-computes the SH layers on the right side of (10)–(12)
and only needs to perform linear combination during interactive rendering and network training. For
reflection, the interactive renderer simply renders a mirror image of the virtual objects as R̃spec and

S̃specB(x). The mirror image rendering is then projected onto a camera-facing billboard perpendicular
to the floor. The GGX reflection of this billboard is sampled in a shader to approximate the glossy layers
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R̃glossy, S̃glossyB(x). For diffuse shadow, the layer is split into two pre-computed terms, S̃diff,n and S̃diff,d,
which are referred as numerator and denominator from now on.

Discussion. Note that while more accurate approximations are possible, the current over-simplified
method is intentionally chosen. We assume that the neural networks can handle the more advanced
effects we approximate away better. Also, while the actual denominator of (8) is simply B(x) and can
be fetched precisely from the background image, we choose to use an approximate version for better
consistency with the numerator which leads to improved generalization.

3.4 Network architectures

To refine the approximate renderings R̃i and S̃i, we define a shadow network σs, a reflection network σr

and a roughness network σm that computes reflection mask M and latent features F . The SH lighting
coefficients c̃l,m in Subsection 3.3 also need to be reconstructed using a light network σl. The role of our
neural networks are summarized as

cl,m = σl(wl, B), (13)

S = σs

(

ws, B,
c̃l,mS̃

l,m
diff,n

∑

c̃l,mS̃
l,m
diff,d

)

, (14)

(

M

F

)

= σm(wm, B) (15)

R = M ◦ σr(wr, F, R̃glossy − S̃glossy ◦B, R̃spec − S̃spec ◦B), (16)

where wl, ws, wf and wr are network weights. The ◦ operator in the specular and glossy shadow terms

S̃i ◦B is not actually evaluated in our implementation as S̃i ◦B can be directly calculated by (12).
We combine shadow layers S̃glossy ◦B and S̃spec ◦B with respective reflection layers and send them to

the reflection network σr because the appearance of said layers resembles specular reflection R̃spec more

than diffuse shadow S̃diff . The roughness network σm is factored out of σr as an optimization since it only
involves the background image B and is relatively expensive to evaluate. The SH layers S̃l,m

diff,n are sent
to the shadow network σs individually after multiplying lighting coefficients and dividing the combined
denominator, and their combination is performed by the network. We found this input layout generalizes
better than just passing one combined shadow layer.

Figure 2 illustrates our network architectures. We use the encoder part of DeepLight [18] for light
estimation and replace their decoder with a few fully-connected layers to generate SH coefficients instead
of a full environment map. The roughness, shadow and reflection networks resemble U-Nets [37]. All
color images involved using the linear color space and appropriate conversion is done during acquisition
of B and display of I. To handle input with higher resolution than the input size of 128 × 128, we
downsample the network input layers and upsample their output layers to the original resolution with
bilinear interpolation.

3.5 Training dataset

We train our networks on a set of ∼80000 synthetic images. We generate training scenes with randomized
geometry, material, lighting and camera poses, and then render them to yield training images. Figure 4
illustrates some example scenes used in training.

We choose to focus on diversity and physical correctness instead of visual realism when designing our
training data. The motivation is two-fold. First, synthesizing a realistic scene is an open problem with
its own challenges which we wish to avoid. Instead, we seek to randomize in a “superset of reality”,
i.e., an exaggerated setting more diversified than the real world, in the hope that the trained network
would generalize to its realistic subset. Second, our training process takes advantage of additional output
layers like isolated reflection. Such layers are difficult to obtain from a real photograph while trivial to
synthesize in a renderer. Under this design philosophy, we created a simple set of randomization rules
which we will detail in the following.

Geometry. Our random scene consists of an infinite plane for the floor and 2 to 4 randomly generated
objects placed on top of it. Each object is represented by a zero-clamped combination of SH order 5
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Figure 4 (Color online) Example training scenes. We use image resolution of 128 × 128. Background images are shown in the

upper row and final images are shown in the lower one.

basis with uniformly distributed random coefficients, used as a spherical height map. More precisely,
each object is a point set in the following form:

{

max

(

0,
∑

l<5

xl,mYl,m (ω)

)

ω

∣

∣

∣

∣

∣

xl,m ∼ U(−1, 1), ω ∈ Ω

}

, (17)

where U refers to the uniform distribution. All length units are millimeters.
Scenes with overlapped object bounding boxes are rejected. After all objects in a scene are generated,

the one closest to the camera is selected as the foreground object, which corresponds to the virtual object
in AR rendering. All other objects and the floor form the background, which corresponds to the real
photograph.

Material. For all objects, we use a GGX BRDF combined with a Lambertian BRDF using a Fresnel
term and only randomize the roughness. All surfaces use a procedural wood texture4), which we modify to
exaggerate distortion and replace the original wood-like colors with random, saturated ones. Empirically,
we find that networks trained with more saturated colors and more distorted patterns generalize better.

To emulate spatial variance, we place 0–3 random rectangular patches on the floor. Each patch has
a random material different from the floor itself. Also, while we assume the floor has a fixed albedo
when rendering, the training scenes have floor albedo randomized in a small range 0.3–0.5 to improve
generalization.

Lighting. We use the HDR environment map dataset of Gardner et al. [39] and project the images to
SH order 3, matching the output of our light network. Each training scene is illuminated by combining
1–3 such SH environment maps, each with independently generated random rotation and intensity. Note
that linear combination of rotated and scaled SH lobes does not change the order, and the final lighting
can still be represented in SH order 3.

Camera pose. We use a camera that looks at the origin with zero roll angle from a random point
in space. Assuming the floor plane is XY and the Z+ axis points up, the camera point is uniformly
sampled within the cube (−50, 50)× (−1300,−1100)× (600, 700). The camera FOV is uniformly sampled
within the range (46◦, 48◦), which resembles typical square pictures taken by smart phones.

Rendering. We built a custom physically-based path tracer to render the generated scenes. Each
scene is rendered in three passes, one with background objects only (noted as “BG”), one with the
foreground object and a placeholder floor (noted as “FG”), and the last one with all objects combined
(noted as “ALL”). To facilitate pre-training steps that will be explained in Subsection 3.6, the render
produces several layers in addition to the final image, as listed in Table 1.

Most layers direct correspond to equation terms in Subsection 3.3. In the FG pass, the floor is a
placeholder object that intersects rays but does not have a fixed material. All three reference materials

4) Procedural solid wood. Antovsky. Retrieved from Shadertoy BETA.
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Table 1 Rendered layersa)

Pass Term Description

BG B Background layer

FG A Foreground alpha

FG C̃l,m Foreground color under SH basis lighting Yl,m

FG R̃l,m
spec Specular reflection under Yl,m

FG R̃
l,m

gloss
Glossy reflection under Yl,m

FG S̃l,m
spec ◦ B Specular shadow under Yl,m

FG S̃
l,m

gloss ◦ B Glossy shadow under Yl,m

FG S̃
l,m

diff,n Diffuse shadow numerator under Yl,m

FG S̃
l,m

diff,d Diffuse shadow denominator under Yl,m

ALL I Ground truth final image

ALL R Ground truth floor reflection

ALL S Ground truth shadow

ALL M Pre-training reflection mask

a) BG refers to the background pass, FG refers to the foreground pass, ALL refers to the combined pass.

(diffuse, glossy and specular) are sampled when it is hit by a camera ray and non-camera-ray hits are
dropped. Reflection layers are rendered by filtering camera-floor-foreground paths with a path expression.
The shadow layers are computed by sampling the light probe directly on floor-reflected rays that intersect
the foreground object. The pre-training reflection mask M is approximated as one minus the GGX
roughness.

In each render pass, all layers are computed from the same set of path samples to ensure consistency.
These include layers that could have been computed analytically like S̃

l,m
diff,d.

For dataset generation, we develop an offline renderer based on the Intel Embree framework [40]. We
use resolution of 128×128 and sample 512 paths per pixel per pass. The layers are saved as multi-channel
OpenEXR5) files using its default compression setting.

3.6 Training

The use of PRT makes our entire pipeline differentiable with respect to network weights, since the
rendering step only involves simple linear combination as in (10)–(12). This facilitates end-to-end training.
To accelerate convergence, though, we also pre-train individual networks before putting them together.
Using synthetic data allows us to generate ground truth values of intermediate output, which significantly
boosts the pre-training performance.

We start by pre-training the light network. For each scene, we save the ground truth light coefficients
cl,m and use them as the target label. Then we pre-train the shadow network by feeding the ground truth
light coefficients and reflection into the blending pipeline to make the network concentrate on shadows.
The loss is still computed on the final image I.

The training of roughness and reflection networks is more sophisticated. First, we train the roughness
network up to the latent feature layer and the reflection network using image loss, with the shadow
layer replaced with ground truth and the reflection mask fixed to all-ones. Then we train the mask part
of the roughness network in isolation using the latent features generated in the previous step as input,
and compute the loss between the mask output and the pre-training mask M . Discrepancy between the
inverted roughness and the actual reflection mask is corrected during the final end-to-end training.

We use TensorFlow to train our models using Adam [41] optimizer with a learning rate of 1 × 10−4,
β1 = 0.9, β2 = 0.999 and a batch size of 16 in both pre-training stage and final end-to-end training stage.
We use L1 loss for pre-training light network with light coefficients and Laplacian pyramid L1 [42] loss
for image space loss. We find Laplacian pyramid loss works better than naive pixel-wise loss. We train
our models on a single NVIDIA GTX 1080Ti GPU. It takes about 20 h for pre-training the light network,
10 h for shadow network, 14 h for the front part of roughness network as well as reflection network and
6 h for the mask part of the roughness network. The final end-to-end training takes about 10 h.

5) OpenEXR. Version 2.4.0. Academy Software Foundation. 2019.
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Table 2 Quantitative comparisons of L1 and L2 loss on synthetic dataseta)

Loss All effects Raw shadow Raw refl.

L1 0.0088 0.0301 0.0135

L2 0.0247 0.0840 0.0384

a) “All effects” runs the full pipeline. “Raw shadow” replaces refined shadow with the raw shadow layer. “Raw refl.” simply

uses a specular reflection instead of refined reflection. The best scores are highlighted.

Background                               All effects                                           Rawshadow                                          Raw refl.

Figure 5 (Color online) Ablation study. The “All effects” column runs our full pipeline. The “Raw shadow” column disables

the shadow network and blends with the raw shadow layer. The “Raw refl.” column disables both the reflection network and the

roughness network and adds the specular reflection directly. The background images in the first three rows are real-world photos

while that in the fourth row is synthetically rendered.

4 Experimental results

We have implemented a real-time rendering system using OpenGL for rendering and GPU-based Ten-
sorFlow for neural compositing. Running on a NVIDIA GTX 1050 Ti notebook GPU, our system can
render a dynamic AR scene on a fixed background image of 1280× 720 at 25 fps. The light and rough-
ness networks run only once for each image taking about 28 ms. Layer generation as well as shadow
and reflection networks forward propagation is performed each frame taking about 40 ms in total, where
OpenGL pipeline takes about 12 ms and running networks takes about 23 ms. The rest time is mainly
for data transfer between CPU and GPU. Please see the live demo in the supplementary video.

Ablation study. We performed ablation studies both quantitatively on a synthetic dataset and
qualitatively on real photos to demonstrate the effects of our shadows and reflection networks.

The synthetic dataset contains 3000 images generated with the same method for training dataset and
is unseen to the neural networks. We use average per-pixel L1 loss and average per-pixel L2 loss in image
space to measure differences between final compositing and ground truth image. Table 2 demonstrates
the full pipeline with refined shadow and reflection gives the best compositing result.

The results on real photos are given in Figure 5. As illustrated in the top row and the last row,



Ma S J, et al. Sci China Inf Sci February 2021 Vol. 64 122101:10

Background                           Foreground                           Result                               Raw shadow                    Refined shadow

Figure 6 (Color online) Visualization of raw shadow layers and refined shadow layers. The “Foreground” column shows the

rendered virtual object, the “Result” column shows the compositing result of our pipeline, the “Raw shadow” column shows the

directly added shadow layers, and the “Refined shadow” shows the refined shadow layers by our network. A gamma correction

(γ = 2.2) is applied to both layers to better visualize details. Shadow on glossy surface is slightly reduced by the shadow network.

Note that the occlusion on non-plane background objects is also learnt automatically by our network.

the shadow network removes excessive diffuse PRT shadow on the reflective table and reduces excessive
occlusion on the nearby non-planar elephant leg. On the other cases, as illustrated in the third row of
Figure 5, the shadow network augments occlusion and learns to cast shadow to real objects. Figure 6
provides evidence that the shadow network learns a non-trivial representation of the scene geometry. In
all examples, the roughness and reflection networks successfully imitate the blurring characteristics of
real objects while the raw rendering looks excessively clear. In the second row, the networks also emulate
the spatial variance of real reflectivity. More results can be found in the supplementary video.

We also prove the necessity of roughness network in Figure 7, where we compare final compositing with
and without reflection mask. These results demonstrate that the reflection mask dims reflection on matte
materials and contributes to the physical correctness of final compositing. More results of reflection mask
on real photos are put in Figure S2 of Appendix A.

Comparison. We compare our rendering results with ground truth images in two cases, one real
scene and one synthetic scene. In the real scene (Figure 8), two photos were captured with and without
a 3D-printed bunny, and a virtual bunny was rendered into the background image. In the synthetic
scene (Figure 9), a physically-based renderer, Mitsuba, was used to render the background and reference
images. In both cases, our method generates realistic results with plausible shadow and reflection. On
the other hand, our shadow and shading are less sharp owing to the low-frequency lighting assumption.

Figure 10 compares our method with the study of Karsch et al. [13], a state-of-the-art offline method
for rendering synthetic objects into photographs. Both methods are automatic. Our real-time shading of
the virtual Lucy is less sophisticated than their offline method. However, our method correctly detects
the floor as reflective surface and produces plausible reflection without any user interaction.

Figures 11 and 12 compare our method with pure lighting reconstruction systems like DeepLight [18]
and the work of Garon et al. [20] as well as harmonization method like Tsai et al. [9]. To make Tsai et
al. [9] comparable with ours, we render the foreground objects with a constant uniform lighting and run
their network to get the results. It is noteworthy that image harmonization merely adjusts the foreground
and is not capable of adding felicitous shadows and reflections. Using a simplified network trained on less
data and focused on low-frequency lighting, our lighting estimation is not as expressive as DeepLight.
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Background                                           Mask                                          with mask                                   without  mask

Figure 7 (Color online) Ablation study of reflection mask. Background images and reflection masks are shown in the first column.

Compositing results with and without reflection masks are shown in the second and the third columns.

(a) (c)(b)

Figure 8 (Color online) Comparison with ground truth (a real photo). (a) Background; (b) our result; (c) real photo.

(a) (c)(b)

Figure 9 (Color online) Comparison with ground truth (a synthetic image). The estimated lighting and the ground truth lighting

are also shown as insets. (a) Background; (b) our result; (c) reference.

However, we are able to produce reflections that resemble the ground truth photograph. More comparison
results are given in Figure S3 of Appendix A.

We also try inserting multiple virtual objects into a scene. Though trained with only one foreground
object, the networks can still generate reasonable results, as shown in the last row of Figure 12. We
attribute it to the guidance of raw shadow and reflection generated by the renderer, which simplifies the
task into a more localized and easier one for neural networks to handle. Occlusions and inter-reflections
among virtual objects are not included in our implementation of real-time layer generation. The artifacts
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(a) (c)(b)

Figure 10 (Color online) Comparison with the work of Karsch et al. [13].

(a) (c)(b)

Figure 11 (Color online) Comparison with DeepLight [18]. The bunny is virtual in (b) and (c).

are often not noticeable in low-frequency lighting environments unless the virtual objects get close enough
to each other. Handling these inter-reflections between virtual objects or between real and virtual objects
is to be solved in future work.

User study. In order to evaluate the quality of composed images, we perform a user study in the form
of online questionaires and received 50 valid questionaires (22 females and 27 were familiar with or had
ever used an augmented reality application). The age range is 15–53 (average: 30.7, median: 26.5) in the
valid questionaires. We create a test set of 15 real photographs (11 indoor scenes and 4 outdoor scenes)
and show the subjects compositing results (see Figure S3 in Appendix A) of our method, Tsai et al. [9]
and Garon et al. [20]. The compositing images of each scene were randomly shuffled when presented to
subjects. The participants were allowed to watch images of each scene only once, to evaluate their first
impression. The participants were asked to rate them based on two criteria, consistency between the
virtual object and the background (e.g., position and color of highlight, shadow and reflection) and visual
appeal. The score ranges from 1 to 5 corresponding poor to good.

The results are illustrated in Table 3. The results show that our scores are approximate 0.2 higher
than Garon et al. [20] and are much higher than Tsai et al. [9] at both criteria. It indicates that with
reflections and improved shadows, our method can bring more reality to the compositing results.

While trained only on synthesized tabletop scenes with wood-like materials, our method can plausibly
generalize to scenes with a variety of scales, background objects and surface materials. As illustrated in
Figure S1 of Appendix A, our method can infer reflectivity on marble, painted and water surfaces, and
can handle room-scale to building-scale photographs.

5 Conclusion and future work

We have presented a deep-learning based method for AR rendering with shadow and reflection effects.
Our key contribution is the neural compositing framework that uses CNNs to composite rendered layers
of virtual objects with real images to emulate physically sophisticated effects. We believe that our work
can serve as a useful alternative to the traditional reconstruct-then-render approaches, and expect it
could inspire further research along this direction.
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Background Garon et al. [15] Our resultTsai et al. [44]

Figure 12 (Color online) Comparisons with Tsai et al. [9], Garon et al. [20]. The virtual objects of the first two rows are the

dragon and lucy. Multiple virtual objects (bunny, dragon and buddha) are inserted in the last row to valify our method’s capacity

in a more general case.

Table 3 The user study resultsa)

Tsai et al. [9] Garon et al. [20] Our method

Consistency 2.452 3.475 3.662

Visual appeal 2.641 3.522 3.755

a) The participants were asked to rate images according to consistency between the virtual object and the background and

visual appeal. The average scores are shown in the table with scores (1–5) indicating poor to good. The best scores are highlighted.

Currently, our system only processes a single image and requires a desktop GPU to run the neural
networks in real time. However, handling live video input on a mobile device should be within reach
on next-generation mobile devices. Our system already restricts its input to what mobile AR SDKs
can provide, while significant acceleration can be expected from mobile accelerator chips and network
optimization techniques. In fact, DeepLight has already demonstrated real-time frame rates on mobile
CPUs [18].

We currently focus on the more regular floor reflection instead of general inter-reflection light paths.
It could be worthy to explore non-image layer representations where sophisticated paths could be more
easily post-processed. Also, our method still has a considerable reliance on the light estimation quality.
Problematic light network outputs can lead to shading inconsistency between virtual and real objects, as
illustrated in Figure 13(a).

Another direction is to extend to high-frequency lighting environments. High frequency lighting esti-
mation and PRT methods have already been established [18,43]. However, rendering under such lighting
conditions tends to generate sharp features, challenging our current networks. The networks also fail
to generate compatible sharp reflections on some low roughness surface even in low-frequency lighting
environments, shown in Figure 13(b).

Our method works well in most cases but some complicated interactions still remain unconsidered
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(a) (c)(b)

Figure 13 (Color online) From left to right: (a) problematic lighting estimation leads to inconsistent shading; (b) over blurring

reflection caused by upsampling from the limited network resolution; (c) reflection overlapping artifact. The virtual objects are the

buddha, dragon and mobile phone.

between a virtual object and a real scene. As shown in Figure 13(c), our method is unable to remove
reflections on background. This is a common problem of rendering differential images and blending
which is left for future work. As we assume the virtual objects are placed in the front of all real objects,
occlusions are also not considered. This is also for future study.

Supporting information Appendix A. The supporting information is available online at info.scichina.com and link.springer.

com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy

and content remains entirely with the authors.
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