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Abstract
The paper proposes a novel generative adversarial network
for one-shot face reenactment, which can animate a single
face image to a different pose-and-expression (provided by
a driving image) while keeping its original appearance. The
core of our network is a novel mechanism called appearance
adaptive normalization, which can effectively integrate the
appearance information from the input image into our face
generator by modulating the feature maps of the generator
using the learned adaptive parameters. Furthermore, we spe-
cially design a local net to reenact the local facial compo-
nents (i.e., eyes, nose and mouth) first, which is a much eas-
ier task for the network to learn and can in turn provide ex-
plicit anchors to guide our face generator to learn the global
appearance and pose-and-expression. Extensive quantitative
and qualitative experiments demonstrate the significant effi-
cacy of our model compared with prior one-shot methods.

Introduction
In this paper we seek a one-shot face reenactment network,
which can animate a single source image to a different pose-
and-expression (provided by a driving image) while keep-
ing the source appearance (i.e identity). We start with the
perspective that a face image can be divided into two parts,
the pose-and-expression and the appearance, which is also
adopted by previous work (Zhang et al. 2019). In face reen-
actment, the transferring of pose-and-expression is relatively
easy because the training data can cover most possible poses
and expressions. The main challenge of face reenactment
is how to preserve the appearances of different identities.
This insight motivates us to design a new architecture, which
exploits a novel mechanism called the appearance adaptive
normalization, to better control the feature maps of the face
generator for the awareness of the source appearance. In
general, the appearance adaptive normalization can effec-
tively integrate the specific appearance information from the
source image into the synthesized image, by modulating the
feature maps of the face generator. Especially, the appear-
ance adaptive normalization learns specific adaptive param-
eters (i.e., mean and variance) from the source image, which
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are utilized to modulate feature maps in the generator. In this
way, the face generator can be better aware of the appear-
ance of the source image and effectively preserve the source
appearance.

The appearance adaptive normalization is inspired by re-
cent adaptive normalization methods (Huang and Belongie
2017; Park et al. 2019), which perform cross-domain image
generation without retraining for a specific domain. This at-
tribute makes adaptive normalization potentially suitable for
one-shot face reenactment, in which each identity could be
seen as a domain. However, there exists a key challenge to
apply these adaptive normalization methods to face reenact-
ment. That is, these existing adaptive normalization meth-
ods are all designed to deal with the pixel-aligned image-
to-image translation problems. For example, in (Park et al.
2019) they propose spatially-adaptive normalization for syn-
thesizing photorealistic images given an input semantic lay-
out. However, in the scenario of face reenactment, the source
and driving images are not pixel-aligned. Such pixel mis-
alignment makes it difficult to optimize the adaptive nor-
malization layers during training in existing methods. Con-
sequently, the existing methods will yield distorted images
after reenactment, and we will show it in the experiments.
To tackle this challenge, one key insight of our work is that
instead of learning individual adaptive parameters for differ-
ent adaptive normalization layers using independent archi-
tectures, we can use a unified network to learn all the adap-
tive parameters from the source image in a global way. The
benefit of such paradigm is, by jointly learning the adaptive
parameters, the different adaptive normalization layers can
be globally modulated rather than being modulated locally.
In this way, we can effectively optimize the adaptive nor-
malization layers and control the feature maps of face gen-
erator to keep the source appearance. Specifically, we design
a simple but effective skip-connected network to predict the
adaptive parameters from the source image, which can ex-
plicitly promote the relations within adaptive parameters for
different adaptive normalization layers, and thus effectively
propagate the appearance information throughout the net-
work during reenacting.

We make another key observation that, compared with
reenacting the whole faces with largely varying appearances
and expressions, reenacting the local facial components (i.e.,
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Source Driving Result Source Driving Result

Figure 1: Generated examples by our method. The source image provides the appearance and different driving images pro-
vide different expressions and head poses. The reenacted face has the same appearance as the source and the same pose-and-
expression as the driving. Both the source and driving images are unseen in the training stage.

eyes, nose, and mouth) is a much easier task for the network
to learn. It is because the space of appearance and pose-and-
expression is significantly reduced for these local regions.
To this end, we can learn the reenactment of these local
regions first, which can in turn provide explicit anchors to
guide our generator to learn the global appearance and pose-
and-expression. Especially, the landmarks are utilized to lo-
cate the source and target positions of each face component,
so the network only needs to learn the reenactment of these
components locally. After local reenacting, the synthesized
face components are transformed to the target positions and
scales with a similarity transformation and fed to the global
generator for the global face synthesis.

In summary, we propose a novel framework for one-shot
face reenactment, which utilizes appearance adaptive nor-
malization to better preserve the appearance during reenact-
ing and local facial region reenactment to guide the global
synthesis of the final image. Our model only requires one
source image to provide the appearance and one driving im-
age to provide the pose-and-expression, both of which are
unseen in the training data. The experiments on a variety of
face images demonstrate that our method outperforms the
state-of-the-art one-shot methods in both objective and sub-
jective aspects (e.g., photo-realism and appearance preser-
vation).

The main contributions of our work are:

1) We propose a novel method for one-shot face reenact-
ment, which animates the source face to another pose-
and-expression while preserving its original appearance
using only one source image. In particular, we propose an
appearance adaptive normalization mechanism to better
retain the appearance.

2) We introduce the reenactment of local facial regions to
guide the global synthesis of the final reenacted face.

3) Extensive experiments show that our method is able to
synthesize reenacted images with both high photo-realism
and appearance preservation.

Related Work
Face Reenactment
Face reenactment is a special conditional face synthesis task
that aims to animate a source face image to a pose-and-
expression of driving face. Common approaches to face
reenactment could be roughly divided into two categories:
many-to-one and many-to-many. Many-to-one approaches
perform face reenactment for a specific person. Reenact-
GAN (2018) utilizes CycleGAN (2017) to convert the facial
boundary heatmaps between different persons, and hence
promote the quality of the result synthesized by an identity-
specific decoder. Face2Face (2016) animates the facial ex-
pression of source video by swapping the source face with
the rendered image. The method of Kim et al. (2018) can
synthesize high-resolution and realistic facial images with
GAN. However, all these methods require a large number of
images of the specific identity for training and only reenact
the specific identity. On the contrary, our method is capable
of reenacting any identity given only a single image without
the need for retraining or fine-turning.

To extend face reenactment to unseen identities, some
many-to-many methods have been proposed recently. Za-
kharov et al. (2019) adopt the architecture of Big-
GAN (2018) and fashional meta-learning, which is capable
of synthesizing a personalized talking head with several im-
ages, but it requires fine-tuning when a new person is in-
troduced. Zhang et al. (2019) propose an unsupervised ap-
proach to face reenactment, which does not need multiple
poses for the same identity. Yet, the face parsing map, an
identity-specific feature, is utilized to guide the reenacting,
which leads to distorted results when reenacting a different
identity. Geng et al. (2018) introduce warp-guided GANs for
single-photo facial animation. However, their method needs
a photo with frontal pose and neutral expression, while ours
does not have this limitation. (Pumarola et al. 2018) gener-
ates a face guided by action units (1978), which makes it
difficult to handle pose changes. X2Face (2018) is able to
animate a face under the guidance of pose, expression, and
audio, but it can not generate face regions that do not exist in
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Figure 2: The architecture of generator of our proposed method.

original images. MonkeyNet (2019a) provides a framework
for animating general objects. However, the unsupervised
keypoints detection may lead to distorted results in the one-
shot case. MarioNetTe (2019) proposes the landmark trans-
former to preserve the source shape during reenactment, but
it does not consider how to retain the source appearance.
Different from previous many-to-many methods, our goal is
to synthesize a high-quality face image, by learning the ap-
pearance adaptive parameters to preserve the source appear-
ance and utilizing the local component synthesis to guide the
global face synthesis.

Adaptive normalization
The idea of adapting features to different distributions has
been successfully applied in a variety of image synthesis
tasks (Huang and Belongie 2017; Park et al. 2019). The
adaptive normalization normalizes the feature to zero mean
and unit deviation first, and then the normalized feature is
denormalized by modulating the feature using the learned
mean and standard deviation. In conditional BN (de Vries
et al. 2017; Zhang et al. 2018), the fixed categorical images
are synthesized using different parameters of the normaliza-
tion layers for different categories. However, unlike the cat-
egorical image generation with fixed categories, the num-
ber of identities is unknown in the one-shot face reenact-
ment. AdaIN (Huang and Belongie 2017) predicts the adap-
tive parameters for style transfer, which is spatially shar-
ing. However, it is insufficient in controlling the global ap-
pearance, since the facial appearance is spatially varying.
SPADE (Park et al. 2019) deploys a spatially varying nor-
malization, which makes it suitable for spatially varying sit-
uations. However, SPADE (Park et al. 2019) is designed for

the pixel-aligned image translation task which uses indepen-
dent blocks to locally predict the adaptive parameters for
different layers. In face reenactment, the source and driv-
ing images are not pixel-aligned, which makes it difficult
to locally optimize the different adaptive normalization lay-
ers. Hence, we propose the appearance adaptive normaliza-
tion mechanism to globally predict adaptive parameters of
different layers using a skip-connected network, which bet-
ter promotes the relations within the adaptive parameters for
different layers during transferring.

Methodology
For convenience, we denote the images in the dataset as
Iji

j=1,. . . ,M

i=1,. . . ,Nj
, where j denotes the identity index and i de-

notes the image index of identity j. M is the number of
identities and Nj is the number of images of identity j.
Sj
i ∈ R68×H×W denotes the corresponding heatmaps for

the 68 facial landmarks of Iji ∈ R3×H×W , where H and W
are the image height and width.

Overview
Our method is a generative adversarial method. We adopt a
self-supervised approach to train the network in an end-to-
end way, where the driving image Id has the same identity as
Is in the training stage (i.e., two frames from a video). The
landmark transformer (Ha et al. 2019) is utilized to improve
the identity preservation. Fig.2 shows the architecture of the
proposed generator, which takes as input the source image
Is and the driving image Id. Our generator is composed of
4 sub-nets, and all the 4 sub-nets are jointly trained in an
end-to-end way. First, to preserve the source appearance, we



send Is to the appearance extractor to learn the appearance
adaptive parameters Θ as well as the encoded appearance
feature Fa, as shown at the top of Fig. 2. Second, to es-
timate the facial movements from the source image to the
driving pose-and expression, the flow estimation module es-
timates the optical flow Fsd from Is to Id , which is then
utilized to warp the encoded appearance feature, as shown
in the middle of Fig. 2. Third, the local net is deployed to
reenact the local facial regions, which provides essential an-
chors to guide the subsequent synthesis of the whole face, as
shown at the bottom of Fig. 2. Finally, the fusion net fuses
the adaptive parameters Θ, the reenacted local face regions
Î locald and the warped appearance feature F̂a, to synthesize
the reenacted face. By modulating the distribution of feature
maps in the fusion net using the appearance adaptive param-
eters, we let Fsd determine the pose-and-expression, and Fa

and Θ retain the appearance.

Flow Estimation NetworkLa
nd

m
ar

k 
tra

ns
fo

rm
er

La
nd

m
ar

ks
 E

st
im

at
or

sI

sS

dS

dI

local
sS
local
dS

sdF

local
sS

local
dS

Figure 3: The procedure of flow estimation module.

Flow Estimation Module The procedure of flow estima-
tion module is illustrated in Fig. 3. Firstly, we estimate land-
marks for Is and Id to obtain the source heatmap Ss and
the driving heatmap Sd respectively using OpenFace(Amos,
Ludwiczuk, and Satyanarayanan 2016). We then feed Ss and
Sd into the flow estimation net (FEN) to produce an opti-
cal flow Fsd ∈ R2×H×W , representing the motion of pose-
and-expression. Fsd is then utilized to warp the appearance
feature Fa. Bilinear sampling is used to sample Fsd to the
spatial size of Fa. The warped Fa is denoted as F̂a, which
is subsequently fed into the fusion net to synthesize the final
reenacted face. Besides, we also build the heatmaps of local
regions for source and driving images based on the land-
marks, denoted as Slocal

s and Slocal
d respectively. The archi-

tecture of FEN is an hourglass net (Yang, Liu, and Zhang
2017), composed of several convolutional down-sampling
and up-sampling layers. Notably, large shape differences be-
tween the source identity and the driving identity will lead to
severe degradation of the quality of generated images, which
is also mentioned by (Wu et al. 2018). To deal with this
issue, we additionally adopt the landmark transformer (Ha
et al. 2019), which edits the driving heatmap Sd so that Sd

has a shape close to Ss. For more details, please refer to (Ha
et al. 2019).

Local Net The local net Glocal is built with the U-Net
structure (Ronneberger, Fischer, and Brox 2015). We reenact

the left eye, right eye, nose and mouth with 4 independent
networks Geyel, Geyer, Gnose, and Gmouth. Each of them
is a U-Net with three down-convolution blocks and three
up-convolution blocks. The inputs of each local generator
are I locals , Slocal

s and Slocal
d , where local refers to the cor-

responding parts (i.e., left eye, right eye, nose and mouth)
on the image and heatmap. The reenacted face local regions
serve as anchor regions that can effectively guide the fusion
net to synthesize the whole reenacted face.

Appearance Extractor The source image Is is fed into
the appearance extractor Ea(Is) for predicting the adaptive
parameters Θ and the appearance feature Fa. Here Θ =
{θi = (γi, βi), i ∈ {1, 2, ..., Na}}, where i is the index of
the adaptive normalization layer andNa denotes the number
of adaptive normalization layers in the fusion net. For a fea-
ture map Fi ∈ Rc×h×w in the fusion net, we have the cor-
responding γi, βi ∈ Rc×h×w to modulate it. The encoded
source appearance feature Fa is warped to F̂a using the opti-
cal flow Fsd, and Θ and F̂a are fed to the fusion net for face
synthesis by controlling the distributions of feature maps.
We employ the U-net (2015) architecture for the appearance
extractor, because the skip-connection in appearance extrac-
tor can effectively promote the relations between adaptive
parameters.
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Figure 4: The fusion block of the proposed method.

Fusion Net The fusion net Îd = Gf (Î locald , F̂a,Θ) aims
to decode the reenacted local regions I locald and the warped
appearance feature F̂a to a reenacted face image Îd under
the control of adaptive parameters Θ. Gf is a fully convolu-
tional network, which performs decoding and up-sampling
to synthesize the reenacted face. Gf consists of several fu-
sion blocks to adapt the source appearance, followed by sev-
eral residual-connected convolution layers to produce the
final result. The architecture of fusion block is illustrated
in Fig. 4. Fi denotes the input feature map of i-th fusion
block, γi and βi denote the i-th adaptive parameters and
FBi denotes the i-th fusion block. Before fed into the fu-
sion block, the reenacted local regions Î locald are similarly
transformed to the target scale-and-position. In this way, the
aligned face regions provide explicit anchors to the genera-
tor. These aligned Î locald are then resized to the same spatial
size as Fi using bilinear interpolation. At last, Fi and Î locald
are concatenated along the channel axis and fed into next



block of Gf . In this way, the formulation of fusion block
can be written as:

Fi+1 = FBi([Fi, Î
local
d ], γi, βi). (1)

The core of our fusion net is the appearance adaptive
normalization mechanism. Specifically, the feature map is
channel-wisely normalized by

µi
c =

1

NHiW i

∑
n,h,w

F i
n,c,h,w, (2)

σi
c =

√
1

NHiW i

∑
n,h,w

[(F i
n,c,h,w)2 − (µi

c)
2], (3)

where F i
n,c,h,w is the feature map value before normaliza-

tion, and µi
c and σi

c are the mean and standard deviation
of the feature map in channel c. The index of the normal-
ized layer is denoted as i. Notably, the denormalization in
adaptive normalization is element-wise, where the normal-
ized feature map is denormalized by

γic,h,w
F i
n,c,h,w − µi

c

σi
c

+ βi
c,h,w. (4)

Here γic,h,w and βi
c,h,w are the scale and bias learned by

the appearance extractor from Is. Besides, instead of us-
ing the transposed convolutional layer or the bilinear up-
sampling layer followed by a convolutional layer to expand
the feature-map (Isola et al. 2017; Wang et al. 2018), we
adopt the pixel-shuffle (Shi et al. 2016) to upscale the fea-
ture map.

Discriminator
There are two discriminators in our method, a discrimina-
tor DL to discriminate whether the reenacted image and the
driving heatmap are matched (pose-and-expression consis-
tency) and a discriminator DI to discriminate whether the
source and reenacted image share the same identity (appear-
ance consistency). DL takes Îd and Sd as input, while DI

takes Îd and Is as input. Îd is concatenated with Sd or Is
along the channel axis, before being fed into DL or DI re-
spectively. To generate a sharp and realistic-looking image,
the discriminators should have a large receptive field (Wang
et al. 2018). In our method, instead of using a deeper net-
work with larger convolutional kernels, we use a multi-scale
discriminator (Wang et al. 2018) which can improve the
global consistency of generated images in multiple scales.

Loss function
The total loss function is defined as:

Ltotal = arg min
G

max
DL,DI

λGANLGAN + λcLc

+λlocalLlocal.,
(5)

where Lc denotes the content loss, LGAN denotes the adver-
sarial loss and Llocal denotes local region loss. The adver-
sarial loss is the GAN loss for DL and DI :

LGAN = EIs,Îd,Sd
[logDL(Id, Sd) + log(1−DL(Îd, Sd))]

+ EIs,Îd,Id
[logDI(Is, Id) + log(1−DI(Is, Îd, Id))] .

(6)

The content loss is defined as:

Lc = L1(Id, Îd) + Lper(Id, Îd), (7)

where L1(Id, Îd) is the pixel-wise L1 loss, measuring the
pixel distance between the generated image and the ground-
truth image. Lper(Id, Îd) is the perceptual loss (Johnson,
Alahi, and Fei-Fei 2016), which has been shown to be use-
ful for the task of image generation (Ledig et al. 2017). We
make use of the pre-trained VGG (Simonyan and Zisserman
2014) to compute the perceptual loss, and Lper is written as:

Lper(Id, Îd) = Ei∈X [||Φi(Id)− Φi(Îd)||1], (8)

where X represents the layers we use in VGG and Φi(x)
denotes the feature map of the i-th layer in X .

The local region loss penalizes the perceptual differences
between the reenacted local regions and the local regions on
the ground-truth and is defined as:

Llocal = Lper(Ieyel, Îeyel) + Lper(Imouth, Îmouth)

+ Lper(Inose, Înose) + Lper(Ieyer, Îeyer).
(9)

Experiments
Implementation
The learning rate for the generator and discriminator are set
to 2e−5 and 1e−5 respectively. We use Adam (Kingma and
Ba 2014) as the optimizer. Spectral Normalization (Miyato
et al. 2018) is utilized for each convolution layer in the gen-
erator. We set λGAN = 10, λc = 5 and λlocal = 5 in the
loss function. The Gaussian kernel variance of heatmaps is
3.

Datasets and metrics
Both the FaceForensics++ (Rössler et al. 2019) and Celeb-
DF (Li et al. 2019) datasets are used for quantitative and
qualitative evaluation. The OpenFace (Amos, Ludwiczuk,
and Satyanarayanan 2016) is utilized to detect the face and
extract facial landmarks. Following the work of Marion-
NetTe(2019), we adopt the following metrics to quantita-
tively evaluate the reenacted faces of different methods.
Frechet Inception Distance (FID) (Heusel et al. 2017) and
structural similarity index (SSIM) (Wang et al. 2004) are
utilized to measure the photographly similarity between the
reenacted images and the ground-truth images. Those two
metrics are only computed in the self-reenactment scenario
since the ground-truth is inaccessible when reenacting a dif-
ferent person. Then we evaluate the identity preservation
by calculating the cosine similarity (CSIM) of identity vec-
tors between the source image and the generated image. The
identity vectors are extracted by the pre-trained state-of-the-
art face recognition networks (Deng et al. 2019). To inspect
the model’s capability of properly reenacting the pose and
expression of driving image, we calculate PRMSE (Ha et al.
2019) and AUCON (Ha et al. 2019) between the generated
image and the driving image to measure the reenacted pose
and expression respectively.
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Figure 5: Qualitative comparison with state-of-the-art one-shot methods. Our proposed method generates more natural-looking
and sharp results compared to previous methods.

Table 1: Quantitative comparison in the self-reenactment
setting. Up/down arrows correspond to higher/lower values
for better performance. Bold and underlined numbers rep-
resent the best and the second-best values of each metric
respectively.

Model CSIM↑ SSIM↑ FID↓ PRMSE↓ AUCON↑
FaceForensics++ (2019)

X2face(2018) 0.689 0.719 31.098 3.26 0.813
NeuralHead-FF (2019) 0.229 0.635 38.844 3.76 0.791

MarioNETte (2019) 0.755 0.744 44.390 3.13 0.825
FirstOrder (2019b) 0.813 0.723 36.124 3.79 0.886

Ours 0.823 0.730 30.394 3.26 0.831

Celeb-DF (2019)

X2face (2018) 0.676 0.473 14.186 4.10 0.679
NeuralHead-FF (2019) 0.511 0.586 17.973 6.09 0.747

MarioNETte (2019) 0.650 0.508 15.762 3.98 0.714
FirstOrder (2019b) 0.687 0.613 13.620 3.15 0.839

Ours 0.753 0.667 12.597 3.12 0.751

Quantitative and qualitative comparison
Table 1 lists the quantitative comparisons with existing one-
shot reenactment methods when reenacting the same iden-
tity, and Table 2 reports the evaluation results when reen-
acting a different identity. It is worth mentioning that the
method that, following (Ha et al. 2019), we re-implement
(Zakharov et al. 2019) using only the feed-forward net-
work in the one-shot setting. Differ from other competitors,
FirstOrder (2019b) require two driving image to perform
the relative motion transfer, one image provide the initial
driving pose-and-expression and another one to provides the
target driving pose-and-expression. We use the source im-
age to provide the initial driving pose-and-expression when
reenacting the same identity to perform the relative motion
transfer, and the absolute motion transfer is adopted when
reenacting different identities as the initial driving image is
lacked for all competitors.

Table 2: Quantitative comparison of reenacting a different
identity.

Model CSIM↑ PRMSE↓ AUCON↑
Faceforensics++ (2019)

X2face (2018) 0.604 9.80 0.697
NeuralHead-FF (2019) 0.381 6.82 0.730

MarioNETte (2019) 0.620 7.68 0.710
FirstOrder (2019b) 0.614 6.62 0.734

Ours 0.658 7.04 0.706

Celeb-DF (2019)

X2face(2018) 0.400 6.52 0.400
NeuralHead-FF (2019) 0.352 8.30 0.480

MarioNETte (2019) 0.460 5.16 0.662
FirstOrder (2019b) 0.432 6.10 0.500

Ours 0.463 5.10 0.660

Notably, the results show that our method outperforms
other methods in many metrics, demonstrating our method
can synthesize highly realistic faces while effectively retain-
ing the source appearance and faithfully reenacting the pose-
and-expression. Fig. 5 illustrates typical qualitative exam-
ples, all of which are randomly selected from the testing set.
We can see that X2face (2018) is unable to generate face re-
gions that do not exist in the source images, so it may result
in large artifacts. As the state of art, MarioNETte (2019) can
effectively preserve the source shape, but there may still be
some appearance artifacts in some regions. Our method fixes
this issue by introducing the appearance adaptive normaliza-
tion and local region reenacting.

We also qualitatively compare our method with re-
cently proposed methods of Zhang et al. (2019) and FS-
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Figure 6: Comparison of our method with FSGAN(2019),
source andn driving images are cited from FSGAN(2019)

Source Driving Zhang et al. Ours

Figure 7: Comparison of our method with Zhang et
al.(2019), source andn driving images are cited from
Zhang et al.(2019).

GAN(2019), demonstrated in Fig. 6 and Fig. 7. We can ob-
serve blurriness and color-inconsistency in the results of FS-
GAN(2019). Also the images synthesized by Zhang et al.
(2019) have distorted face shapes and artifacts in bound-
aries, because Zhang et al. (2019) utilize the face parsing
map, which is an identity-specific feature, to guide the reen-
acting. On the contrary, with the help of appearance adaptive
normalization and local region reenacting, our method can
achieve more detailed and natural-looking results.

Ablation study

Table 3: Quantitative ablation study for reenacting a differ-
ent identity on the Faceforensics++ dataset (Rössler et al.
2019).

Model CSIM↑ PRMSE↓ AUCON↑
- local net 0.615 7.293 0.698

- AAN + SPADE 0.558 11.030 0.660
Ours 0.658 7.04 0.706

To better evaluate the key components within our net-
work, we perform the ablation study by evaluating the fol-
lowing variants of our method:
• −LocalNet. The local net is excluded from the full

Source Driving - LocalNet
 -  AAN
+ SPADE Ours

Figure 8: Qualitative results of the ablation study. Our full
model leads to better results than other variants.

model.

• −AAN + SPADE. To validate the effectiveness of ap-
pearance adaptive normalization, we use the spatially-
adaptive normalization to replace it, and all the other com-
ponents are the same as our model.

The qualitative results are illustrated in Fig. 8 and quan-
titative results are listed in Table 3. We can see that our full
model presents the most realistic and natural-looking results.
The local net can help reduce the pose-and-expression er-
ror, as it explicitly provides anchors for local face regions
to guide the reenacting. The appearance adaptive normaliza-
tion can effectively improve image quality and reduce arti-
facts by globally modulating the appearance features. Com-
pared to the spatially-adaptive normalization (2019), our
appearance adaptive normalization can better preserve the
source appearance and leads to more realistic results. It val-
idates our appearance adaptive normalization is more suit-
able for face reenactment.

Conclusion and future work
In the paper, we propose a novel method to deal with the
challenging problem of one-shot face reenactment. Our net-
work deploys a novel mechanism called appearance adap-
tive normalization to effectively integrate the source ap-
pearance information into our face generator, so that the
reenacted face image can better preserve the same appear-
ance as the source image. Besides, we design a local net to
reenact the local facial components first, which can in turn
guide the global synthesis of face appearance and pose-and-
expression. Compared to previous methods, our network ex-
hibits superior performance in different metrics. In the fu-
ture, we plan to explore the temporal consistency in the net-
work design to facilitate the face reenactment in videos.
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