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Fig. 1. Three motion transitions generated by the proposed system. For simplicity, the poses are rendered every five frames. The opaque poses are the
keyframes, while the semi-transparent poses are the generated transitions and context frames.

We present a deep learning-based framework to synthesize motion in-
betweening in a two-stage manner. Given some context frames and a target
frame, the system can generate plausible transitions with variable lengths in
a non-autoregressive fashion. The framework consists of two Transformer
Encoder-based networks operating in two stages: in the first stage a Context
Transformer is designed to generate rough transitions based on the context
and in the second stage a Detail Transformer is employed to refine mo-
tion details. Compared to existing Transformer-based methods which either
use a complete Transformer Encoder-Decoder architecture or additional
1D convolutions to generate motion transitions, our framework achieves
superior performance with less trainable parameters by only leveraging the
Transformer Encoder and masked self-attention mechanism. To enhance the
generalization of our transformer-based framework, we further introduce
Keyframe Positional Encoding and Learned Relative Positional Encoding to
make our method robust in synthesizing longer transitions exceeding the
maximum transition length during training. Our framework is also artist-
friendly by supporting full and partial pose constraints within the transition,
giving artists fine control over the synthesized results. We benchmark our
framework on the LAFAN1 dataset, and experiments show that our method
outperforms the current state-of-the-art methods at a large margin (an
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average of 16% for normal-length sequences and 55% for excessive-length se-
quences). Our method trains faster than the RNN-based method and achieves
a four-time speedup during inference. We implement our framework into a
production-ready tool inside an animation authoring software and conduct
a pilot study to validate the practical value of our method.
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1 INTRODUCTION
Traditional handcrafted animation often heavily relies on creat-
ing keyframes while the in-betweening is automatically generated
through spline-based interpolation. Animators have to manually
adjust spline tangents and add extra keyframes to get the desired
transition. Despite the recently proposed method [Ciccone et al.
2019] can simplify the tweaking of spline tangents through opti-
mization, adding extra keyframes is still necessary to enhance the
details of the interpolated transition, making it still time-consuming
for animators. In contrast, deep learning-based methods [Duan et al.
2021; Harvey et al. 2020] can generate more natural transitions
conditioned on keyframes and tackle the scalability issue that tra-
ditional data-driven methods [Chai and Hodgins 2007; Lehrmann
et al. 2014; Wang et al. 2007] have.

Pioneer learning-based work [Harvey and Pal 2018; Harvey et al.
2020] use an augmented LSTM model to synthesize each transi-
tion frame based on its previous frame, target frame, and offset
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from the target. However, the training and inference of RNN-based
methods are relatively slow as they process each frame sequen-
tially on the temporal dimension. CNN-based methods such as [Her-
nandez et al. 2019; Kaufmann et al. 2020; Zhou et al. 2020] use a
fully-convolutional autoencoder architecture to fill missing frames
between keyframes. While they leverage the parallel processing
power of modern hardware, their ability to model long-term depen-
dencies between frames is limited by the sizes of their receptive
fields. Besides, the input size of these networks is often powers of
two so that the output size remains the same. Paddings must be
added to handle variable-length input, either wasting computation
or making the output quality unstable. Compared with CNN and
RNN-based methods, Transformer’s global attention is more suit-
able for modeling long-term dependencies and thus performs better
when generating longer transitions [Duan et al. 2021; Kim et al.
2022; Oreshkin et al. 2022].

In this paper, we introduce a framework that synthesizes variable-
length motion in-betweening in a two-stage manner through two
Transformer Encoder-based networks: a Context Transformer for
generating rough transitions based on the context (stage I) and a
Detail Transformer for refining motion details (stage II). Compared
to existing Transformer-based methods which either use a complete
Transformer Encoder-Decoder architecture [Oreshkin et al. 2022]
or a Transformer Encoder with additional 1D convolution [Duan
et al. 2021] to generate motion in-betweenings, our framework
can achieve better performance with less trainable parameters by
only leveraging the Transformer Encoder and masked self-attention
mechanism. To enhance the generalization of our transformer-based
framework when dealing with longer transitions, we further intro-
duce Keyframe Positional Encoding and Learned Relative Positional
Encoding, making our method more robust in synthesizing longer
transitions exceeding the maximum transition length seen during
training.

To make our framework artist-friendly, our system supports full
and partial pose constraints within the transition, giving artists fine
control over the synthesized results. We implemented our method
into a production-ready tool inside an animation authoring software
to generate high-quality in-between motions. Our framework is
benchmarked against the LAFAN1 dataset, and the results show that
our framework outperforms existing RNN, CNN, and Transformer-
based methods at a large margin. Meanwhile, our method trains
faster than the RNN-based method and achieves a four-time speedup
during inference. We also integrate our method into a production-
ready tool inside an animation authoring software and conduct a
small-scale user study to show the practical value of our tool.

In summary, our contributions are: 1) We demonstrate the effec-
tiveness of a Transformer Encoder-based framework that robustly
synthesizes variable length in-betweenings in a two-stage man-
ner with our proposed Keyframe Positional Encoding and Learned
Relative Positional encoding. 2) We report state-of-the-art motion
in-between benchmark results on LAFAN1, outperforming existing
RNN, CNN and Transformer-based methods.

2 RELATED WORK

2.1 Human Motion Synthesis
Human motion synthesis algorithms have been long-investigated in
computer graphics. Many classical methods fall into the category of
physics-based approaches [Faloutsos et al. 2001; Fang and Pollard
2003; Hodgins et al. 1995] where motion is generated following
physical laws, and data-driven approaches where motion is synthe-
sized based on some existing datasets. Two types of data-driven
approaches are related to this work: motion control and motion
prediction.
Motion control is a conditional motion synthesis task based

on high-level control signals. Graph-based methods [Arikan and
Forsyth 2002; Beaudoin et al. 2008; Kovar et al. 2002; Lee et al. 2002;
Min and Chai 2012; Safonova and Hodgins 2007] are widely adopted
where motion graphs are built by inserting transitions at similar
frames in a large unstructured motion capture dataset. The algo-
rithms traverse the graph at runtime to produce motions satisfying
certain goals. [Lee et al. 2010] extend the graph structure into a
continuous vector field. Motion matching [Büttner and Clavet 2015]
is a brute-force technique that searches for the best matching seg-
ment in a large dataset to match the current character pose and
trajectory. As motion graph construction is often hard to control
and maintain, some statistical methods are proposed to make the
animation data easier to manage, such as linear methods leverag-
ing the Principal Component Analysis [Chai and Hodgins 2005;
Tautges et al. 2011], and kernel-based methods using Radial-basis
functions and Gaussian Process [Grochow et al. 2004; Kovar and
Gleicher 2004; Mukai and Kuriyama 2005; Park et al. 2002; Rose
et al. 1998; Wang et al. 2007]. However, all these methods suffer
from scalability issues when applied to a vast dataset. Recent neural-
network-based methods tackle this problem and provide a fixed
computational and memory cost at runtime. [Holden et al. 2016,
2015] presented a motion synthesis framework based on high-level
parameters using a Convolutional Neural Network. For synthesizing
motions with real-time control, phase-aware [Holden et al. 2017]
and mode-aware [Zhang et al. 2018] networks are proposed for
humanoid and quadruped characters. They use gating networks to
mix the weights of expert networks, producing smooth transitions
between different types of motion. [Starke et al. 2019, 2020] further
extend these methods to support non-periodic motions and motion
interactions. Reinforcement learning based methods such as [Ling
et al. 2020; Wang et al. 2020] are also being investigated. In addition,
some neural network-based methods are introduced to improve ex-
isting game animation workflows, such as learned motion matching
[Holden et al. 2020] and neural animation layering [Starke et al.
2021].

Motion prediction is another type of conditional motion synthesis
problem where new motions are produced based on some past seed
motions. Early exploration such as [Taylor et al. 2006] uses Con-
ditional Restricted Boltzmann Machines to predict the next frame
conditioned on the current hidden state and previous frames. Re-
cently, methods based on the Recurrent Neural Network (RNN) have
dominated this area. [Fragkiadaki et al. 2015] proposes the Encoder-
Recurrent-Decoder (ERD) network, which incorporates nonlinear
encoder and decoder networks before and after recurrent layers.
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[Jain et al. 2016] combines spatio-temporal graphs with RNN to
model humanmotion and conduct predictions. [Martinez et al. 2017]
uses a single-layer residual recurrent network predicting offset from
the current pose. Other RNN-based methods [Barsoum et al. 2018;
Chiu et al. 2019; Gopalakrishnan et al. 2019; Gui et al. 2018; Pavllo
et al. 2018] investigate different architecture, data representation
and loss functions. Besides RNN, other network architectures are
also being explored: Convolutional Neural Network (CNN) [Liu et al.
2020; Pavllo et al. 2020], where convolution filters are applied along
temporal dimension; Graph Convolution Network (GCN) [Dang
et al. 2021], which better model the movement relationship among
joints along skeleton hierarchy; Transformers [Aksan et al. 2021;
Cai et al. 2020], which can directly capture the long-range temporal
dependencies within a motion sequence.

2.2 Motion In-betweening
Motion in-betweening is derived from the motion prediction prob-
lem, where the resulting motion is constrained on both past and
future frames. The most trivial solution is to interpolate keyframes
based on splines such as Bezier curves, widely adopted by anima-
tion authoring software [Autodesk 2022; Blender Foundation 2022].
While it gives animators fine control over the transitions, tweaking
result is often very labor-intensive. [Ciccone et al. 2019] proposes
a method to optimize the tangents of interpolation curves based
on easily controlled trajectories. However, keyframe interpolation
can only create smooth transitions without much motion details.
[Ngo and Marks 1993; Rose et al. 1996; Witkin and Kass 1988] use a
physically-based approach to produce motion between keyframes
by solving an optimization problem with spacetime constraints.
Statistical models are later adopted in transition synthesis such as
Maximum A Posteriori (MAP) [Chai and Hodgins 2007; Min et al.
2009], Gaussian Process [Wang et al. 2007] and Markov models
[Lehrmann et al. 2014].
As neural network-based methods grow popular, [Zhang and

van de Panne 2018] use an RNN to produce 2D jump animation
conditioned on some keyframes. [Harvey and Pal 2018] present
Recurrent Transition Networks (RTN) to autoregressively generate
transitions through an augmented LSTM model based on previous
frames, target frame, and offset from the target. [Harvey et al. 2020]
improves upon RTN by introducing a time-to-arrival embedding
to produce a smooth transition to the target frame and a sched-
uled target noise vector to diversify the results. [Geleijn et al. 2021]
proposes a light-weighted network reducing arithmetic operations
while producing decent results. [Li et al. 2021] use a hierarchical
VAE for motion in-betweening and achieve results comparable to
Slerp baseline. [Tang et al. 2022] employ CVAE and RNN to produce
real-time motion transitions. CNN-based methods such as [Her-
nandez et al. 2019; Kaufmann et al. 2020; Zhou et al. 2020] use a
fully-convolutional autoencoder architecture to fill not only entire
missing frames but also partial poses. To address CNN’s limitation
on capturing long-range dependencies of distant features, [Cai et al.
2021] introduce a Conditional Variational Autoencoder (CVAE) with
a cross-attention mechanism as a uniformed framework to handle
different 3D motion synthesis tasks.

For Transformer-based methods, [Duan et al. 2021] use BERT
[Devlin et al. 2018] encoder and 1D convolution to generate in-
betweenings in a non-autoregressive manner. [Petrovich et al. 2021]
uses a hierarchical RNN module as the backbone in combination
with two Transformer controllers to synthesize dance motion based
on keyframes. [Kim et al. 2022] uses a single Transformer encoder
and supports pose constraints. Our method differs from [Duan et al.
2021] and [Kim et al. 2022] as we adopt a two-stage approach, and
can better generalize to longer in-betweenings by leveraging our
proposed Keyframe Positional Encoding and Learned Relative Posi-
tional Encoding.
A concurrent work [Oreshkin et al. 2022] uses a Transformer-

based Encoder-Decoder structure to synthesizemotion in-betweening.
Its output is based on the sum of spherical linear interpolation (Slerp)
between keyframes and the delta motion predicted by their model.
In contrast, our method directly predicts the output motion. We ar-
gue that our method performs better as Slerp can produce unnatural
transitions and cannot be corrected by the delta motion predicted
by their model. We show some examples of such artifacts in Section
4.3. Moreover, we demonstrate that our method is more robust in
generating long transitions in Section 4.2.

Context Transformer

Detail Transformer

Fig. 2. An overview of our system. Our system accepts context frames, a
target frame, and some optional pose constraints as the input. The motion
transition is first roughly produced by the Context Transformer and then
further refined by the Detail Transformer.

3 METHODOLOGY

3.1 Overview
The objective of our system is to generate plausible in-between
animation based on several context frames and a target frame. Al-
though generating arbitrary in-betweenings is possible, we focus
on generating animations for humanoid skeletons in this work. In
order to provide fine control over the synthesized result, animators
can specify full or partial pose constraints within the transition.
Especially, the partial pose constraints can be very beneficial when
the trajectory of an articulated character is predetermined (i.e., po-
sition and rotation of root joint are constrained), while the motions
of other joints are expected to be generated. Figure 2 shows the
overview of our system. From a high-level perspective, our pipeline

ACM Trans. Graph., Vol. 41, No. 6, Article 184. Publication date: December 2022.



184:4 • Qin et al.

L x 

pekf

xctx

encoder

masked multi-head self-attention

decoder

xgt

yctx

perel

position-wise feed-forward network

Lpos Lrot Lsmooth

context frames
target 
frame

constrained
pose

window length

min

Fig. 3. The Context Transformer network. Ground truth poses are in green.
Constrained poses are in light green. The input mask indicates which poses
should be kept fully or partially consistent between input and output. The
masked frames are in light yellow. Context Transformer’s output transition
is in purple.

consists of two parts: a Context Transformer network T𝑐𝑡𝑥 and a
Detail Transformer network T𝑑𝑒𝑡 . The Context Transformer net-
work focuses on generating rough transition animation based on
the "context" (context frames and target frame). In contrast, the
Detail Transformer network refines the output from the Context
Transformer. This two-stage approach is based on our empirical
observation that using a single network tends to smooth out the
generated transition. Adding a second step would enhance motion
details and fixes artifacts such as foot sliding.

3.2 Data Representation
In this paper, we use x = {𝑥0, . . . , 𝑥𝑡𝑐𝑡𝑥 , . . . , 𝑥𝑡𝑡𝑔𝑡 , . . . , 𝑥𝑇−1} to rep-
resent a motion clip with window length 𝑇 . 𝑡𝑐𝑡𝑥 is the length of
context frames and 𝑡𝑡𝑔𝑡 is the time index of target frame. Given
the context frames 𝑥0:𝑡𝑐𝑡𝑥 and target frame 𝑥𝑡𝑡𝑔𝑡 , our goal is to gen-
erate plausible transition 𝑥𝑡𝑐𝑡𝑥 :𝑡𝑡𝑔𝑡 . At each frame 𝑡 , the pose of a
humanoid skeleton with 𝐽 joints is represented by local rotations
of all joints 𝑟𝑡 ∈ R𝐽 ×6 and the world position of root joint 𝑝𝑡 ∈ R3.
The local position of each joint relative to its parent is constant,
ensuring consistent bone length across frames. We adopt the 6D
rotation representation introduced in [Zhou et al. 2019] for 𝑟𝑡 . This
6D representation can be viewed as simply taking the first two rows
or columns of a 3 × 3 rotation matrix and can be converted back to
a 3 × 3 rotation matrix through Gram–Schmidt orthogonalization.
Compared with many previous works [Harvey et al. 2020; Villegas
et al. 2018] that use quaternions as rotation representation, the 6D
rotation ensures the uniqueness and continuity of the representa-
tion, which is beneficial to the training of deep neural networks. We
flatten 𝑟𝑡 and 𝑝𝑡 into a 1D vector and concatenate them to form 𝑥𝑡 .
Then apply z-score normalization to get 𝑥𝑡 = (𝑥𝑡 − `𝑥 )/𝜎𝑥 . Finally
we get the motion clip x ∈ R𝑇×𝐷 , where 𝐷 = 𝐽 × 6 + 3.

3.3 Context Transformer
Figure 3 shows the overview of the Context Transformer network
T𝑐𝑡𝑥 . It is an encoder-decoder structure with several Transformer
layers in the middle. x𝑐𝑡𝑥 is the input motion clip. For missing values
in x𝑐𝑡𝑥 , we use linear interpolation to fill the root positions while
local joint rotations are set to zero. Between context frames and
target frame, there can be arbitrary numbers of constrained poses.
These poses can be either fully constrained or partially constrained.
For indicating which input values are valid, a binary mask vector
is concatenated with x𝑐𝑡𝑥 before inputting into the network. The
input mask can be either m𝑖𝑛 ∈ R𝑇×1 or m𝑖𝑛 ∈ R𝑇×𝐷 depending
on whether poses are fully or partially constrained.

We first project the input into a 𝑑-dimension latent space vector
h̃𝑐𝑡𝑥 ∈ R𝑇×𝑑 through an encoder. The encoder E is a fully-connected
feed-forword network with a hidden layer and output layer of 512
units (i.e. 𝑑 = 512):

h̃𝑐𝑡𝑥 = 𝜙 (𝜙 ( [x𝑐𝑡𝑥 ,m𝑖𝑛]W(1)
E + b(1)E )W(2)

E + b(2)E ) (1)

Here W(𝑙)
E and b(𝑙)E corresponds to weight matrices and bias vec-

tors at layer 𝑙 . 𝜙 is the Parametric Rectified Linear Unit (PReLU)
activation function [He et al. 2015].

Since the Transformer does not have recurrence or convolution,
we add a positional encoding to h̃𝑐𝑡𝑥 so that the model can make
use of the sequence order. Different from conventional sinusoidal or
learned positional encoding, we introduce the Keyframe Positional
Encoding pe𝑘 𝑓 ∈ R𝑇×𝑑 (see Section 3.3.1), representing the position
relative to the last context frame and the target frame:

h𝑐𝑡𝑥 = h̃𝑐𝑡𝑥 + pe𝑘 𝑓 (2)

For the Transformer layers, we follow the encoder layers in
[Vaswani et al. 2017] consisting of multi-head self-attention (MHSA)
and position-wise feed-forward network (PFFN). Layer normaliza-
tion [Ba et al. 2016] and residual connection [He et al. 2016] is
employed on each sub-layer:

h̃𝑙 = h𝑙−1 +𝑀𝐻𝑆𝐴(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(h𝑙−1)) (3)

h𝑙 = h̃𝑙 + 𝑃𝐹𝐹𝑁 (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(h̃𝑙 ) (4)

where h𝑙 is the output of 𝑙-th Transformer layer, 𝑙 = 1, 2, . . . , 𝐿 and
h0 = h𝑐𝑡𝑥 . Note that layer normalization is applied to the input
of each sub-layer (pre-norm) rather than after the residual addi-
tion (post-norm). This can improve stability and efficiency during
training [Chen et al. 2018; Wang et al. 2019].
Compared with vanilla Transformer, the layers we adopt here

have two main differences. First, we use masked multi-head self-
attention to mask out missing frames. Only context frames, con-
strained frames, and target frame can attend to each other. Figure 5a
shows the attention mask of Context Transformer. Second, we use
a learned relative positional encoding pe𝑟𝑒𝑙 different from a regu-
lar relative positional encoding (see Section 3.3.2) to represent the
relative order of the frames. [Shaw et al. 2018] have demonstrated
that relative positional encoding can improve performance on tasks
such as machine translation. In summary, the masked multi-headed
self-attention (MHSA) we adopt can be written as:

𝑀𝐻𝑆𝐴(x) = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑𝐻 )W𝑜 (5)
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ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Qi,Ki,Vi) (6)

Q𝑖 = xW𝑄

𝑖
, 𝐾𝑖 = xW𝐾

𝑖 , 𝑉𝑖 = xW𝑉
𝑖 (7)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (QK
𝑇 + S𝑟𝑒𝑙√
𝑑𝐾

+m𝑎𝑡𝑡𝑒𝑛)V (8)

𝑑𝐾 is the dimension of the keys. m𝑎𝑡𝑡𝑒𝑛 is the attention mask. S𝑟𝑒𝑙
is the matrix introduced in [Dai et al. 2019], which is an efficient
way to inject relative positional information into the attention.

Finally, the output of Transformer layers is passed to the 2-layer
decoder with hidden layer size of 512. W(𝑙)

D and b(𝑙)D are decoder’s
weight matrices and bias vectors at layer 𝑙 :

y𝑐𝑡𝑥 = 𝜙 (h𝐿W(1)
D + b(1)D )W(2)

D + b(2)D (9)

We can then extract the predicted joint rotation r̂𝑐𝑡𝑥 and root joint
position p̂𝑐𝑡𝑥 from y𝑐𝑡𝑥 :

r̂𝑐𝑡𝑥 = R(y𝑐𝑡𝑥 ), p̂𝑐𝑡𝑥 = P(y𝑐𝑡𝑥 ) (10)

where R and P are functions to extract joint rotation and root
position from y𝑐𝑡𝑥 respectively.

3.3.1 Keyframe Positional Encoding. In vanilla Transformer [Vaswani
et al. 2017], a positional encoding based on different frequencies of
sine and cosine functions is added to the input, representing the
absolute position of each item within the sequence. For transition
generation tasks, an interesting observation is that a missing frame
is more likely to resemble the known frames when they are close on
the temporal dimension and less correlated when they are far apart.
Therefore, the position of any missing frame relative to the known
frames is crucial for generating plausible in-betweenings. Unfortu-
nately, it cannot be directly inferred from the absolute positional
encoding used in vanilla Transformer. One possible solution is to
use the concatenation of two absolute positional encoding starting
from both ends of the transition. However, in our early experiments,
the quality of generated transition quickly deteriorates when the
transition length exceeding the maximum training length by a few
frames. Moreover, the ideal positional encoding should only relates
to the relative distance to the known frames. We would like to ob-
tain it through learning. We do not adopt the conventional learning
approach [Gehring et al. 2017] through learning a fixed-size lookup
table of positional encodings. The size of lookup table would limit
the length of generated transition during inference. Instead, our pro-
posed Keyframe Positional Encoding uses a multi-layer perceptron
(MLP) with a single hidden layer of 512 units to learn a mapping be-
tween relative position p𝑘𝑓 and the Keyframe Positional Encoding
pe𝑘 𝑓 :

pe𝑘 𝑓 = 𝜙 (p𝑘𝑓W
(1)
𝑘𝑓

+ b(1)
𝑘𝑓

)W(2)
𝑘 𝑓

+ b(2)
𝑘 𝑓
, (11)

where p𝑘 𝑓 ∈ R𝑇×2 is an integer-valued tensor describing the po-
sition of every frame relative to both the last context frame and
the target frame. In Section 4.4 we will empirically show that the
Keyframe Positional Encoding can enhance our model’s generaliza-
tion.
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Fig. 4. The Detail Transformer network. The output transition from Context
Transformer (in purple) becomes the input of Detail Transformer.

3.3.2 Learned Relative Positional Encoding. Relative positional en-
coding captures the pairwise distance between any two items within
a sequence. It can improve Transformer’s performance on sequence-
to-sequence tasks such as machine translation [Shaw et al. 2018]
and music generation [Huang et al. 2018]. Similarly, we adopt it in
our Context and Detail Transformers to improve models’ general-
ization to longer transitions. When generating longer transitions
with absolute positional encoding, the position encoding of some
frames might be unknown to the model, generating bad results at
those frames. When using relative positional encoding, the relative
position between any two frames is likely to have appeared during
training, causing less artifacts empirically. We do not adopt the
conventional approach of learning a fixed-size lookup table with
relative positional encodings [Huang et al. 2018; Shaw et al. 2018]
for the same reason as the pe𝑘𝑓 . Similarly, our Learned Relative
Positional Encoding pe𝑟𝑒𝑙 uses a two-layer MLP to learn a mapping
between relative distances between two frames p𝑟𝑒𝑙 ∈ R(2𝑇−1)×1
and a variable-size lookup table E𝑟𝑒𝑙 ∈ R(2𝑇−1)×𝑑𝐾 including all
possible relative position encoding for a clip with window length
𝑇 . Empirical results in Section 4.4 shows the pe𝑟𝑒𝑙 can enhance the
model’s generalization to longer transitions. In summary, the matrix
𝑆𝑟𝑒𝑙 in equation (8) can be formulated as:

S𝑟𝑒𝑙 = 𝑠𝑘𝑒𝑤 (QE𝑇
𝑟𝑒𝑙

) (12)

where 𝑠𝑘𝑒𝑤 (·) is the skewing mechanism introduced in [Huang
et al. 2018] aiming to reduce memory footprint. E𝑟𝑒𝑙 is the output
of an MLP with 512 hidden units:

E𝑟𝑒𝑙 = 𝜙 (p𝑟𝑒𝑙W
(1)
𝑟𝑒𝑙

+ b(1)
𝑟𝑒𝑙

)W(2)
𝑟𝑒𝑙

+ b(2)
𝑟𝑒𝑙

(13)

3.4 Detail Transformer
Detail Transformer T𝑑𝑒𝑡 refines the output of Context Transformer.
Figure 4 is the overview of Detail Transformer. The Detail Trans-
former has a similar network structure to the Context Transformer.
As the purpose of Detail Transformer is to refine motion rather
than generate brand new transition motion, the position relative to
context and target frames is no longer that relevant. Thus, there is
no Keyframe Position Encoding in the Detail Transformer. Similar
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Fig. 5. The attention mask m𝑎𝑡𝑡𝑒𝑛 of Context Transformer (a) and Detail
Transformer (b). The purple region is where frames can attend to each other.
Purple represents zero and white represents minus infinity.

to the Context Transformer, the input of Detail Transformer con-
sists of motion clip x𝑑𝑒𝑡 and mask m𝑖𝑛 . The input mask m𝑖𝑛 is the
same as in Context Transformer. For the input motion clip x𝑑𝑒𝑡 , the
main difference is that its values within the transition frames are
copied from y𝑐𝑡𝑥 . Note that if any constrained pose exists within the
transition, we only copy values of the unconstrained joints while
leaving the constrained values to ground truth. Figure 5b shows the
attention mask of Detail Transformer. Since there are no placeholder
values in the input motion, context frames, transition frames, and
the target frame can attend to each other freely. The output of Detail
Transformer y𝑑𝑒𝑡 includes joint rotation r̂𝑑𝑒𝑡 and root joint position
p̂𝑑𝑒𝑡 . We can use the same R and P function in equation (10) to
extract them:

r̂𝑑𝑒𝑡 = R(y𝑑𝑒𝑡 ), p̂𝑑𝑒𝑡 = P(y𝑑𝑒𝑡 ) (14)

Moreover, the Detail Transformer outputs contact information of
both feet and toes, denoted by ĉ ∈ R𝑇×4, where ground contact
is represented by one otherwise zero. A humanoid rig can utilize
this contact information to eliminate foot-sliding artifacts through
inverse kinematics. We use C to represent the function which ex-
tracts foot contact dimensions from Detail Transformer’s output. A
sigmoid nonlinearity is applied to get the final foot contact ĉ:

ĉ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (C(y𝑑𝑒𝑡 )) (15)

3.5 Loss Functions
Our Context Transformer and Detail Transformer are trained with
multiple loss terms.

3.5.1 Local Rotation Loss. We calculate L1 loss between all joint’s
predicted local rotations r̂ and ground truth local rotations r. It’s
evaluated over transition frames only. The length of transition is
𝑇 = 𝑡𝑡𝑔𝑡 − 𝑡𝑐𝑡𝑥 . The local rotation loss can be formulated as:

𝐿𝑟𝑜𝑡 =
1
𝑇

𝑡𝑡𝑔𝑡−1∑
𝑡=𝑡𝑐𝑡𝑥

∥r𝑡 − r̂𝑡 ∥1 (16)

3.5.2 Global Position Loss. As joints in humanoid skeleton form
a hierarchical structure, the errors on joints along the hierarchy
should be weighted differently. For instance, the root joint’s error

would cause the predicted pose to deviate more from ground truth
compared to errors on leaf joints. Therefore, we evaluate L1 loss
on joints’ global positions, which helps to implicitly weight joint’s
orientation [Pavllo et al. 2020]:

𝐿𝑝𝑜𝑠 =
1
𝑇

𝑡𝑡𝑔𝑡−1∑
𝑡=𝑡𝑐𝑡𝑥

∥g𝑡 − ĝ𝑡 ∥1 , g𝑡 = 𝐹𝐾 (p𝑡 , r𝑡 ) (17)

where g𝑡 ∈ R𝐽 ×3 is the global position of all joints at time 𝑡 . 𝐹𝐾 (·)
represents forward kinematics for calculating global joint positions
based on root position and local joint rotations.

3.5.3 Smoothness Loss. To maintain the smoothness of the gener-
ated motion, especially at both ends of the transition, we introduce
the smoothness term to capture the differences of global joint posi-
tions between adjacent frames.

𝐿𝑠𝑚𝑜𝑜𝑡ℎ =
1

𝑇 + 1

𝑡𝑡𝑔𝑡∑
𝑡=𝑡𝑐𝑡𝑥

∥ĝ𝑡 − ĝ𝑡−1∥1 (18)

3.5.4 Contact Loss. The contact loss is a reconstruction loss for
predicting contact between foot and ground. By using the predicted
contact information ĉ and inverse kinematics, we can apply op-
tional post-processing to fix foot sliding inside animation authoring
software.

𝐿𝑐 =
1
𝑇

𝑡𝑡𝑔𝑡−1∑
𝑡=𝑡𝑐𝑡𝑥

∥c𝑡 − ĉ𝑡 ∥1 (19)

3.5.5 Foot Sliding Loss. This term helps to alleviate foot sliding
artifact in the output motion. When a ground contact occurs, the
joint velocity of toes and feet should be very close to zero. We
multiply the predicted contact information with the global velocity
of toes and feet and apply the L1 norm to their product:

𝐿𝑓 𝑜𝑜𝑡 =
1
𝑇

𝑡𝑡𝑔𝑡−1∑
𝑡=𝑡𝑐𝑡𝑥

∥ĉ𝑡 v̂𝑡 ∥1 (20)

where ĉ𝑡 , v̂𝑡 ∈ R4 are the contact vector and global foot velocity
vector at time 𝑡 . Note that when calculating foot sliding loss, wemust
sever the gradient back-propagation on ĉ. Otherwise, optimizing
the foot sliding loss will make the predicted contact information ĉ
always be zero.
In summary, since the Context Transformer focus on predict-

ing transition motion on a high-level scale, the final loss 𝐿𝑐𝑡𝑥 for
Context Transform consists of 𝐿𝑟𝑜𝑡 and 𝐿𝑝𝑜𝑠 to guarantee motion
realism and 𝐿𝑠𝑚𝑜𝑜𝑡ℎ to ensure transition smoothness. For the Detail
Transformer, besides 𝐿𝑟𝑜𝑡 , 𝐿𝑝𝑜𝑠 , the final loss 𝐿𝑑𝑒𝑡 also includes 𝐿𝑐
and 𝐿𝑓 𝑜𝑜𝑡 . All these terms serves Detail Transformer’s purpose of
motion refinement. 𝛼 and 𝛽 are the coefficients:

𝐿𝑐𝑡𝑥 = 𝛼𝑝𝑜𝑠𝐿𝑝𝑜𝑠 + 𝛼𝑟𝑜𝑡𝐿𝑟𝑜𝑡 + 𝛼𝑠𝑚𝑜𝑜𝑡ℎ𝐿𝑠𝑚𝑜𝑜𝑡ℎ (21)

𝐿𝑑𝑒𝑡 = 𝛽𝑝𝑜𝑠𝐿𝑝𝑜𝑠 + 𝛽𝑟𝑜𝑡𝐿𝑟𝑜𝑡 + 𝛽𝑐𝐿𝑐 + 𝛽𝑓 𝑜𝑜𝑡𝐿𝑓 𝑜𝑜𝑡 (22)

3.6 Implementation Details
In our implementation of Context Transformer and Detail Trans-
former, the hidden layer size of both encoder and decoder is 512.
The number of Transformer layers 𝐿 is set to 6. For each layer, the
input size is 512, and the number of attention heads 𝐻 is 8. We tried
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various combinations of these hyperparameters. The values above
give the best result while keeping the trainable parameters low. A
comparison of performance between different hyperparameters can
be found in Appendix D.

3.6.1 Training. We train both Context Transformer and Detail
Transformer with a mini-batch of 32 motion clips. Each clip is re-
trieved by sliding a window on longer clips from a motion dataset.
The window offset is one frame and window length is 𝑇 = 𝑡𝑐𝑡𝑥 +
𝑡𝑚𝑎𝑥_𝑡𝑟𝑎𝑛𝑠 + 2, where 𝑡𝑚𝑎𝑥_𝑡𝑟𝑎𝑛𝑠 is the maximum transition length
during training. For the extra two frames, one is reserved for the
target frame when transition reaches its maximum length, and the
other is for calculating discrete curvature at the target frame, further
explained in the following Section 3.6.2.
To reduce the learning complexity, we preprocess each clip so

that the root joint faces the 𝑋+ axis and its XZ coordinates are
zeroed out at the last context frame. This will make every transi-
tion starts with the same root XZ-position and orientation. Z-score
normalization is applied to the network’s input to handle values in
dramatically different ranges (joint rotation r vs. root joint position
p). The normalization statistics `𝑥 and 𝜎𝑥 are calculated based on a
sliding window of 50 frames with an offset of 20 frames.

We first train the Context Transformer and freeze its parameters
after training is done. Then we train the Detail Transformer by
inputting the prediction of the Context Transformer. For both trans-
formers, we randomly sample transition length and constrained
frames at each training iteration. Two hyperparameters determine
the constrained frames: constraint frame ratio 𝑞 and probability 𝑝 .
We first sample 𝑞× (𝑡𝑡𝑔𝑡 −𝑡𝑐𝑡𝑥 ) candidates and roll the dice for them
each to decide the final constrained frames based on the probability
𝑝 . 𝑝 and 𝑞 are set to 0.5 and 0.1 throughout our experiments. We use
Adam [Kingma and Ba 2014] optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999 and
𝜖 = 10−8. Following [Vaswani et al. 2017], we use Noam learning
rate scheduler with warm-up step set to 8000 iterations. Normally,
dropout is applied in the training of Transformer as the regular-
ization scheme. However, from our experiments, applying dropout
during the training of our Context Transformer and Detail Trans-
former does not improve the performance. We will discuss this later
in Section 5. Throughout our experiments, the loss weights for Con-
text Transformer are 𝛼𝑝𝑜𝑠 = 0.01, 𝛼𝑟𝑜𝑡 = 1.0 and 𝛼𝑠𝑚𝑜𝑜𝑡ℎ = 0.005.
For Detail Transformer, the loss weights are 𝛽𝑝𝑜𝑠 = 0.02, 𝛽𝑟𝑜𝑡 = 1.0,
𝛽𝑐 = 0.05 and 𝛽𝑓 𝑜𝑜𝑡 = 0.05. We train the models for maximum 200
epochs with early stopping to prevent overfitting.

3.6.2 Post-processing. For the output of the Context Transformer,
all but transition frames are set back to the ground truth before
being further processed by the Detail Transformer. Despite having
the 𝐿𝑠𝑚𝑜𝑜𝑡ℎ term in training loss to reduce motion discontinuity,
the reset to ground truth may still introduce small gaps at both
transition ends. Therefore, we introduce a post-processing𝜓 (y, 𝜹∗)
to alleviate this artifact:

𝜓 (y, 𝜹) =
{
y + 𝜹, 𝑡 ∈ [𝑡𝑐𝑡𝑥 , 𝑡𝑡𝑔𝑡 )
x, otherwise

𝜹∗ = argmin
𝜹 ∈R𝐷

^ (𝜓 (y, 𝜹), 𝑡𝑐𝑡𝑥 − 1) + ^ (𝜓 (y, 𝜹), 𝑡𝑡𝑔𝑡 )

2

(23)

where 𝜹∗ ∈ R𝐷 is a per-channel offset added to the entire transition,
so that the curvature of motion curves are minimized at the last
context frame and the target frame. x is the ground truth corre-
sponding to the predicted transition. ^ (x, 𝑡) is the curvature of x
at frame 𝑡 and is approximated by the angle between adjacent line
segments formed by the neighboring keyframes in our implementa-
tion. Note that this post-processing is only applied during inference
of the Context Transformer. Besides, the extra frame for calculating
^ (x, 𝑡) at the target frame is not manually input by the user. It can
be obtained by interpolating or extrapolating existing keyframes.

4 EXPERIMENTS

4.1 Dataset and Metrics
We conduct our experiments on the LAFAN1 dataset [Harvey et al.
2020] from Ubisoft. LAFAN1 contains 496,672 motion frames sam-
pled at 30Hz captured in a production-grade motion capture system.
It contains actions performed by five subjects covering various mo-
tion types such as walking, running, climbing, dancing, etc. The
dataset deliberately excluded random short motions, which are ex-
tremely hard for predicting the missing in-betweening based on
ambiguous contexts. This makes LAFAN1 a dataset well-suited for
transition generation tasks.

In order to precisely evaluate the performance of different meth-
ods, we adopt the transition benchmark introduced in [Harvey et al.
2020]. The training set is extracted on Subject 1-4, with window
length and offset set to 42 frames and 1 frame, resulting in 404195
clips. The test set contains 2232 clips sampled with a window of 65,
offset by 40 frames on Subject 5. All models are trained with con-
text length 𝑡𝑐𝑡𝑥 = 10 frames, maximum transition 𝑡𝑚𝑎𝑥_𝑡𝑟𝑎𝑛𝑠 = 30
frames (one second) and evaluated on 5, 15, 30 and 45 frames. Three
metrics are evaluated: L2P, L2Q, and NPSS. The L2P and L2Q mea-
sure the average L2 distance of the global joint position and rotation
(in quaternion) per joint per frame. The Normalized Power Spec-
trum Similarity (NPSS), proposed by [Gopalakrishnan et al. 2019],
evaluates angular differences between predicted motion and ground
truth on the frequency domain. The mean and standard deviation
of rotation and position representations are extracted to make these
metrics comparable between datasets with different angle and dis-
tance units. The motion data is normalized before calculating the
benchmark metrics.

4.2 Quantitative Comparison With Previous Work
We compare our work with [Harvey et al. 2020] (ERD-QV), [Duan
et al. 2021] (MC-Trans) and [Oreshkin et al. 2022] (Δ-Interp) which
report the transition benchmark results on the LAFAN1 dataset and
share the same experiment settings. The ERD-QV is an Encoder-
Recurrent-Decoder network with quaternion and root joint velocity
as input. The MC-Trans is a recently proposed motion completion
method that leverages 1D convolution and Transformer network
architecture to generate transition. The Δ-Interp is a concurrent
work that adopts Transformer Encoder-Decoder architecture to
predict the delta motion on top of the linear interpolated motion
between keyframes. Besides RNN and Transformer based meth-
ods, we also compare our work with two baselines. One is a naive
implementation using keyframe linear interpolation, where root
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Table 1. Transition benchmark results on LAFAN1 dataset. All models are trained with maximum transition length of 30 frames. The ▲ denotes result
deterioration compared with our method presented in the last row.

L2P L2Q NPSS

Lengths (frames) 5 15 30 45 5 15 30 45 5 15 30 45

Interp. 0.37 ▲270% 1.25 ▲221% 2.32 ▲161% 3.45 ▲105% 0.22 ▲120% 0.62 ▲121% 0.98 ▲81% 1.25 ▲44% 0.0023 ▲109% 0.0391 ▲108% 0.2013 ▲79% 0.4493 ▲40%
FCN 0.25 ▲150% 0.69 ▲77% 1.63 ▲83% 4.69 ▲179% 0.20 ▲100% 0.44 ▲57% 0.77 ▲43% 1.39 ▲60% 0.0030 ▲173% 0.0280 ▲49% 0.1524 ▲36% 0.8571 ▲166%
MC-Trans a 0.23 ▲130% 0.74 ▲90% 1.37 ▲54% — 0.17 ▲70% 0.44 ▲57% 0.71 ▲31% — 0.0019 ▲73% 0.0291 ▲55% 0.1430 ▲27% —
ERD-QV 0.23 ▲130% 0.65 ▲67% 1.28 ▲44% 2.24 ▲33% 0.17 ▲70% 0.42 ▲50% 0.69 ▲28% 0.94 ▲8% 0.0020 ▲82% 0.0258 ▲37% 0.1328 ▲18% 0.3311 ▲3%
Δ-Interp 0.13 ▲30% 0.47 ▲21% 1.00 ▲12% 3.23 ▲92% 0.11 ▲10% 0.32 ▲14% 0.57 ▲6% 1.15 ▲32% 0.0014 ▲27% 0.0217 ▲15% 0.1217 ▲8% 0.4539 ▲41%
Ours (T𝑐𝑡𝑥 only) 0.17 ▲70% 0.49 ▲26% 1.07 ▲20% 2.00 ▲19% 0.13 ▲30% 0.33 ▲18% 0.60 ▲11% 0.92 ▲6% 0.0015 ▲36% 0.0212 ▲13% 0.1238 ▲10% 0.3369 ▲5%
Ours (T𝑐𝑡𝑥 only) b 0.13 ▲30% 0.46 ▲18% 1.04 ▲17% 1.94 ▲15% 0.11 ▲10% 0.32 ▲14% 0.59 ▲9% 0.91 ▲5% 0.0015 ▲36% 0.0211 ▲12% 0.1210 ▲8% 0.3349 ▲4%
Ours (T𝑐𝑡𝑥 only) c 0.13 ▲30% 0.45 ▲15% 1.01 ▲13% 1.88 ▲12% 0.12 ▲20% 0.32 ▲14% 0.59 ▲9% 0.90 ▲3% 0.0015 ▲36% 0.0209 ▲11% 0.1209 ▲8% 0.3365 ▲5%
Ours 0.10 0.39 0.89 1.68 0.10 0.28 0.54 0.87 0.0011 0.0188 0.1124 0.3217

a We use MC-Trans’s local mode for comparison, as it shares the same input and output data format (represented in joint’s local space) as our method.
b These are results after applying the post-processing mentioned in Section 3.6.2.

c The T𝑐𝑡𝑥 here is trained with all loss terms in Section 3.5 except for the 𝐿𝑠𝑚𝑜𝑜𝑡ℎ . The results are evaluated after applying the post-processing.

joint’s position is linearly interpolated, and all joints’ quaternion
rotations are spherically interpolated (Slerp). The second baseline is
implemented through Fully-Convolutional Network (FCN). As FCN
is widely used in image inpainting tasks, we would like to explore
its ability of motion infilling and compare it with our Transformer-
based method. The implementation details of the FCN baseline can
be found in Appendix A. These methods are then compared with
the simplified (T𝑐𝑡𝑥 only) and full versions of our method. The ex-
periment results can be found in Table 1. The Context Transformer
and Detail Transformer that produces these statistics were trained
for 181000 and 1430000 iterations, respectively.
Compared with the baselines and previous methods (MC-Trans

and ERD-QV), our method demonstrate improved performance by
a large margin on all benchmark indicators. To demonstrate the
effectiveness of our two-stage design, we also provide the result of a
Context Transformer (the second last row in Table 1) trained with all
loss terms shown in Section 3.5 except for the 𝐿𝑠𝑚𝑜𝑜𝑡ℎ . The results
show that a single stage with all necessary loss terms cannot achieve
results comparable to a two-stage design. Compared with the con-
current work Δ-Interp, our method also shows better results on all
metrics. Especially, it performs significantly better on longer tran-
sitions with 45 frames (exceeding the maximum transition length
during training). Our method is more robust in generating longer
transitions than Δ-Interp (see the bottom-right graph in Figure 10).
Note that our method uses much fewer training parameters than
Δ-Interp. The Δ-Interp shown in Table 1 has 40.4 million trainable
parameters, while our Context Transformer and Detail Transformer
have 10.4 million and 10.1 million trainable parameters, respectively.
A per-clip comparison between ERD-QV, Δ-Interp and our method
on LAFAN1’s transition benchmark can be found in Appendix B.

4.3 Qualitative Results
Figure 6 shows the qualitative results of FCN baseline, ERD-QV, our
method, and their corresponding ground truth. To be consistent
with our method, our implementation of ERD-QV uses 6D rotation
representation instead of quaternions as the input.

FCN baseline can produce moderate results on shorter transitions.
However, FCN’s result is sensitive to the length of transition. When
exceeding the maximum transition length seen in the training, the
generated motion starts to lose details (see the first row of the last
two columns in Figure 6). Compared with ERD-QV, the transitions
generated by our method have a better distribution of joint velocity
along the time dimension. We observe some sudden changes in
joint position and rotation (especially the root joint) in the transi-
tion generated by ERD-QV. Empirically, when an output frame is
far from the target frame, the ERD-QV generates motion based on
past context, similar to motion prediction (motion prediction stage).
Its output is less related to the target frame. When approaching
the target frame, ERD-QV starts to transition to the target frame
(motion transition stage). Since ERD-QV generates motion in an
autoregressive manner, it outputs one frame at each time step, gen-
erating motion at a local level. Lack of global planning of motion
can result in abrupt changes between the two stages, thus causing
the artifacts we mentioned. In contrast, our method has the follow-
ing characteristics: 1) We adopt a two-stage approach to generate
motion transition by our Context and Detail Transformer. 2) Our
method outputs the whole transition at once instead of one frame
at a time. 3) The self-attention mechanism can gather information
about all frames regardless of their distance. These three features
enhance our method’s ability to plan the transition motion at a
global level. They can prevent the character’s pose from changing
abruptly or reaching the target pose too early during the transition.
We also qualitatively compare our method with the Δ-Interp

[Oreshkin et al. 2022] in Figure 7. Δ-Interp predicts a delta motion
on top of the Slerp between keyframes and sums them up as the final
output. The authors of Δ-Interp claim that predicting a delta motion
simplifies the motion in-betweening task as Slerp can produce a
good initial prediction. However, we argue that using Slerp can lead
to artifacts that cannot be fixed by the delta motion predicted by Δ-
Interp, while our method’s direct output of transitions can achieve
better results. The issuewith Slerp is that it only takes two keyframes
into account. The interpolated motion can be inconsistent with the
rest of the context frames. Take the root rotation of a character as an
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Fig. 6. Motion in-betweenings generated by FCN baseline, ERD-QV, our method and the corresponding ground truth. The character is visualized from left to
right for every 5 frames. All generated transitions are based on 10 context frames and 1 target frame (visualized by semi-transparent poses). The transition
length is 30 frames for first two columns and 45 frames for the last two columns. We highlight the part of transition (enclosed by orange dashed lines) where
our method perform better than other methods. For more results, please refer to the supplementary video.

Fig. 7. A qualitative comparison between our method and Δ-Interp. The transition length is 30 frames for first two columns and 45 frames for the last two
columns. Similar poses are enclosed by green dashed lines. When the results of Slerp is significantly different from the ground truth, we can observe a sudden
change of character pose in the result of Δ-Interp.

example. The context frames may suggest that the character rotates
to the left, while the Slerp of keyframes may lead to a rotation to the
right. This inconsistency can result in a sudden change of character
pose in the generated transition when the delta motion predicted
by Δ-Interp is applied. In Figure 7, we highlight the similar poses
generated by different methods by green dashed lines. We can see
that the initial parts of the motions generated by Δ-Interp are similar
to the ground truth. However, as the result of Slerp deviates from the
ground truth, the Δ-Interp finally reaches a point where it can no
longer produce delta motion that "fixes" the result of Slerp, leaving
the last part of the transition similar to the Slerp’s result. On the
contrary, since our method directly predicts the output motion, it
is unlikely to run into such issues. Besides the problem introduced
by Slerp, the performance of Δ-Interp quickly deteriorates as the
transition length exceeds the maximum length in the training stage.
We can see from the last columns of Figure 7 that the transitions
produced by Δ-Interp have far fewer details compared with the
ground truth and our results. Δ-Interp adopts a learned positional
encoding by feeding a one-hot encoding into fully-connected layers.
In contrast, our Keyframe Positional Encoding and Learned Relative
Positional Encoding demonstrate better robustness in generating

longer transitions. For more qualitative results, please refer to the
accompanying video.

4.4 Effectiveness of Proposed Positional Encodings
To prove the effectiveness of our proposed Keyframe Positional
Encoding and Learned Relative Positional Encoding, we conduct
an ablation study by removing or replacing the positional encod-
ings of the Context Transformer network. Table 2 quantitatively
compares different variants of the Context Transformer. pe𝑠𝑖𝑛_𝑎𝑏𝑠
represents the Context Transformer implemented using the vanilla
Transformer Encoder [Vaswani et al. 2017] with absolute sinusoidal
positional encoding. While the model can produce a moderate result
within 30 frames (the maximum transition length during training),
it fails to generalize to transitions longer than 30 frames (see its
results on 45 frames). To alleviate this issue, we use the relative sinu-
soidal positional encoding pe𝑠𝑖𝑛_𝑟𝑒𝑙 instead, following the efficient
implementation introduced in [Huang et al. 2018]. It demonstrated
a boosted performance on transition with 45 frames. However, re-
sults reported by pe𝑠𝑖𝑛_𝑎𝑏𝑠 and pe𝑠𝑖𝑛_𝑟𝑒𝑙 are inferior to RNN-based
ERD-QV (see the second last row in Table 2). We further add our
Keyframe Positional Encoding (pe𝑠𝑖𝑛_𝑟𝑒𝑙 + pe𝑘 𝑓 ) and replace relative
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Table 2. The performance of Context Transformer T𝑐𝑡𝑥 on LAFAN1 with
different choices of positional encoding.

L2P L2Q NPSS

Lengths (frames) 30 45 30 45 30 45

pe𝑠𝑖𝑛_𝑎𝑏𝑠 1.08 3.39 0.62 1.41 0.1283 0.7045
pe𝑠𝑖𝑛_𝑟𝑒𝑙 1.07 2.66 0.61 1.09 0.1248 0.3947
pe𝑠𝑖𝑛_𝑟𝑒𝑙 + pe𝑘𝑓 1.05 2.08 0.60 0.96 0.1256 0.3527
pe𝑟𝑒𝑙 1.07 2.00 0.60 0.93 0.1235 0.3674
pe𝑟𝑒𝑙 + pe𝑘𝑓 (full T𝑐𝑡𝑥 ) 1.04 1.94 0.59 0.91 0.1210 0.3349

ERD-QV 1.28 2.24 0.69 0.94 0.1328 0.3311
ERD-QV w/ pe𝑘𝑓 1.23 2.15 0.66 0.97 0.1333 0.3755

sinusoidal positional encoding with our Learned Relative Positional
Encoding (pe𝑟𝑒𝑙 ). They both exhibit improved performance on 45
frames. Finally, we show the results with both proposed positional
encoding (pe𝑟𝑒𝑙 + pe𝑘𝑓 ). In summary, our proposed positional en-
codings can enhance the model’s generalization to long transitions
lengths. They are essential for our Transformer-based architecture
outperform RNN-based methods. Moreover, we replace the time-to-
arrival embedding (𝑧𝑡𝑡𝑎) of ERD-QV with our Keyframe Positional
Encoding to see how pe𝑘𝑓 performs with RNN. It reports similar
results as ERD-QV (see the last row of Table 2). We think the reason
is mainly due to the autoregressive nature of RNN-based method.
As Transformer generates a whole transition at once, the relative
distance to the context frames is important. But for RNN, its hidden
state carries sufficient past context for it to generate the next frame,
making the distance to context frames less vital. While distance to
the target frame is crucial for both Transformer and RNN method,
𝑧𝑡𝑡𝑎 already carries this information, making pe𝑘 𝑓 non-essential
for the RNN-based method.

4.5 Ablation Study
4.5.1 Loss Terms. We perform an ablation study on loss terms used
in the training of Context Transformer and Detail Transformer. Ta-
ble 3 shows the quantitative results trained with different sets of loss
terms. 𝐿𝑟𝑜𝑡 and 𝐿𝑝𝑜𝑠 are trivial reconstruction loss terms improving
L2Q and L2P metrics respectively. Our early experiments discovered
that the transitions generated by the Context Transformer are likely
to be discontinuous at both ends. Adding 𝐿𝑠𝑚𝑜𝑜𝑡ℎ can penalize for
such discontinuities. It is reflected by the improvement of NPSS
metrics after adding 𝐿𝑠𝑚𝑜𝑜𝑡ℎ , since eliminating discontinuities can
make the generated transition more similar to the ground truth on
the frequency domain. The 𝐿𝑐 is another reconstruction loss term for
the Detail Transformer to predict foot contact information, which
does not noticeably affect the benchmark metrics when applied
alone. However, when both 𝐿𝑓 𝑜𝑜𝑡 and 𝐿𝑐 are applied, foot-sliding
artifacts are alleviated and reflected by metric improvements shown
in the last row of Table 3.

4.5.2 Masks. We investigate the effectiveness of the masks used in
our framework by removing the input maskm𝑖𝑛 and attention mask
m𝑎𝑡𝑡𝑒𝑛 from the Context Transformer. Results in Table 4 (1𝑠𝑡 vs. 2𝑛𝑑

Table 3. An ablation study on the loss terms used in the training of Context
Transformer T𝑐𝑡𝑥 and Detail Transformer T𝑑𝑒𝑡 . Metrics are evaluated on
LAFAN1.

L2P L2Q NPSS

Lengths (frames) 30 45 30 45 30 45

T𝑐𝑡𝑥 + 𝐿𝑟𝑜𝑡 3.86 5.92 0.63 0.97 0.1284 0.3553
+𝐿𝑝𝑜𝑠 1.05 1.95 0.60 0.92 0.1267 0.3505
+𝐿𝑠𝑚𝑜𝑜𝑡ℎ (full T𝑐𝑡𝑥 ) 1.04 1.94 0.59 0.91 0.1210 0.3349

T𝑑𝑒𝑡 + 𝐿𝑟𝑜𝑡 7.32 9.60 0.59 0.91 0.1215 0.3371
+𝐿𝑝𝑜𝑠 0.93 1.76 0.55 0.88 0.1153 0.3236
+𝐿𝑐 0.94 1.77 0.55 0.88 0.1153 0.3257
+𝐿𝑓 𝑜𝑜𝑡 (full T𝑑𝑒𝑡 ) 0.89 1.68 0.54 0.87 0.1124 0.3217

row, 3𝑟𝑑 vs. 4𝑡ℎ row) show that removing m𝑖𝑛 would slightly dete-
riorate the model’s performance, mainly caused by the inability to
distinguish meaningful values from placeholder values after the re-
moval. Similarly, after removingm𝑎𝑡𝑡𝑒𝑛 , multi-headed self-attention
would be corrupted by placeholder values on every Transformer
layer, leading to a significant decrease in model performance in
Table 4 (1𝑠𝑡 vs. 3𝑟𝑑 row, 2𝑛𝑑 vs. 4𝑡ℎ row).

Table 4. An ablation study on masks used in the Context Transformer T𝑐𝑡𝑥 .
m𝑖𝑛 and m𝑎𝑡𝑡𝑒𝑛 represents the input mask and attention mask of T𝑐𝑡𝑥 .
Metrics are evaluated on LAFAN1.

L2P L2Q NPSS

Lengths (frames) 30 45 30 45 30 45

T𝑐𝑡𝑥 1.04 1.94 0.59 0.91 0.1210 0.3349
(w/o) m𝑖𝑛 1.04 1.95 0.60 0.93 0.1221 0.3566
(w/o) m𝑎𝑡𝑡𝑒𝑛 1.41 2.91 0.64 1.01 0.1396 0.3846
(w/o) m𝑖𝑛 & m𝑎𝑡𝑡𝑒𝑛 1.48 2.92 0.66 1.03 0.1423 0.3928

4.6 Generating longer In-betweening on Quadrupeds
We further evaluate our method on the quadruped motion dataset
introduced in [Zhang et al. 2018]. The dataset has 147541 frames
in total and we take roughly a third of it (33376 frames) as test set.
We train both the Context and Detail Transformer with 60 frames
(2 seconds) of maximum transition length to see their performance
on predicting longer transitions. We slide a window of 72 frames
and offset it by 1 frame to obtain 111680 clips as the training set.
For the test set, the window length and offset are set to 135 and 20
frames respectively, resulting in 1569 clips. Similar to Section 4.2,
we use the L2P, L2Q, and NPSS metrics and compare our method
with the interpolation baseline. The results are presented in Table 5.
For qualitative results, please refer to the accompanying video.

4.7 Motion In-betweening Tool in Autodesk Maya
We implemented a tool leveraging our system inside AutodeskMaya,
a widely used digital content creation software for animation au-
thoring. Different from the tool in [Harvey et al. 2020] where users
inject noises to generate in-betweening variations, our tool is more
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Table 5. Qualitative results on quadruped dataset [Zhang et al. 2018]. The
models are trained with maximum transition length of 60 frames.

L2P L2Q NPSS

Lengths 30 60 90 30 60 90 30 60 90

Interp. 0.70 1.26 1.96 0.56 0.72 0.84 0.0921 0.3139 0.5852
T𝑐𝑡𝑥 0.45 0.74 1.50 0.41 0.55 0.74 0.0518 0.1784 0.4145
T𝑑𝑒𝑡 0.35 0.63 1.27 0.31 0.46 0.66 0.0450 0.1680 0.3889

artist-friendly by giving animators fine control over generated re-
sults through full or partial pose constraints between keyframes.
Figure 8 demonstrates our tool with transitions generated under
different constrained modes. The tool provides three buttons: gener-
ating transition for user-selected time range (green button), adding
constraints to the selected joints at the current frame (cyan but-
ton), and removing constraints from the selected joints (red button).
When in fully constrained mode (Figure 8b), arbitrary poses can
be specified between context and target poses. The generated tran-
sition will satisfy the given spatial-temporal constraint. Although
we can achieve the same goal by predicting each sub-sequence be-
tween constraints separately, feeding constraints into the model are
better since it outputs the whole transition through a single model
inference and generates more coherent transitions near constrained
poses. When in partially constrained mode (Figure 8c), only some
joints are constrained. Animators can focus on parts of the charac-
ter’s body where a particular pose or contact is required and let the
tool figure out the natural transition for the rest of the body.
We conducted a small-scale user study to evaluate the effective-

ness of our tool. Three professional animators were invited to com-
plete three animation transitions (details shown in Appendix E) with
and without our tool (six tasks in total). The tasks were presented
in a random order and the time spent on each task was recorded.
The results in Table 6 indicate that our tool can provide about 100%
speed up. We also collected positive feedback on the pose constraint
functionality. Besides providing fine control over the generated
result, it can act as a way to manage key poses (an analogy to tra-
ditional keyframes) so that animators can safely regenerate any
transition without worrying about their handcraft key poses being
overwritten.
We further evaluate the speed of our system comparing with

[Harvey et al. 2020] and [Oreshkin et al. 2022] in Table 7. Our
method provides a significant speedup. Moreover, the time taken
by our method is less sensitive to the transition length as frames
are processed in parallel, while [Harvey et al. 2020] [Oreshkin et al.
2022] are autoregressive during inference.

5 DISCUSSIONS AND LIMITATIONS
Typically, during the training of the Transformer, dropout is ap-
plied to the multi-headed self-attention of each sub-layer. However,
we find through experiments that adding dropout does not lead
to better model performance. All models in our experiments are
trained without dropout. We examined the generated animation
when dropout is applied. It has many discontinuities as if some
high-frequency noise is added to the result. Adding dropout might

Fig. 8. Transition generation tool inside Autodesk Maya. (a) A screenshot
taken before running the tool. From left to right: target frame pose (semi-
transparent), constrained pose, and context frame poses (semi-transparent).
On the timeline, key frames and pose constraints are visualized by red and
cyan bars. (b) Transition generated in fully constrained mode. (c) Transition
result in partially constrained mode. In this case, only root joint’s position
and rotation are constrained.

Table 6. The average time taken by three professional animators to complete
three animation transitions in our user study.

Clip Frames Time Spent Time Spent Speed Improve-
(fps=30) w/o Tool w/ Tool ment in %

A 30 3.25h 1.75h 86%
B 60 4.92h 2.42h 103%
C 60 4.58h 2.17h 112%

be helpful if Transformer is applied to motion denoising tasks, as
input motions are expected to have glitches. However, for motion
in-betweening tasks, it is not beneficial as context frames are not
noisy during inference. We also tried other strategies for tweaking
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Table 7. A speed performance comparison between our method and ERD-
QV and Δ-Interp. Batch size indicates the number of input/output clips in a
single model inference. All values are in milliseconds. Data are collected on
Intel i7-7700K @ 4.20 GHZ CPU and Nvidia GTX 1080Ti GPU.

Batch Size 1 100

Transition Length 30 60 90 30 60 90

ERD-QV 33.1 57.2 85.2 36.7 64.0 91.6
Δ-Interp 32.5 33.9 36.0 352.5 428.5 478.7
ours (T𝑐𝑡𝑥 only) 6.3 6.2 7.0 12.9 19.5 26.1
ours 12.1 12.7 11.9 19.2 26.4 32.7

the dropout rate during training, such as gradually reducing dropout
to zero. But the resulting model does not significantly differ from
models trained with zero dropout. There might be concerns that
zero dropout might lead to overfitting. However, adopting random
transition length during training is enough to overcome the issue.
We also found sampling random constrained frames useful during
the training of Detail Transformer. It helps to fix overfitting and
improve benchmark metrics (see Figure 11 in Appendix C).

Similar to many data-driven methods, our system might generate
undesirable results when the input context is ambiguous or too
distinct from the motion covered in the training set. Figure 9 shows
an undesired transition generated from an ambiguous input and can
be further fixed by adding pose constraints. Moreover, even with
the help of Detail Transformer, foot-sliding artifacts might still exist.
Taking advantage of the foot contact information in the output and
applying inverse kinematics could alleviate the problem. Although
our method can generalize to longer transitions, when the transition
is too long (more than 1.5 times the maximum transition length dur-
ing training), the quality of generated transition rapidly decreases.
Another limitation of our method is that the pose constraints are
applied to the joints’ local position and rotations. However, in prac-
tical use scenarios, animators may prefer to constrain end effectors
of a joint chain (hands, feets, etc.). It would require the model to
handle inverse kinematics while generating in-betweening. We will
further investigate it in future work.

6 CONCLUSION
This paper presents a novel framework that generates motion in-
betweening through two stages by leveraging Transformer Encoder
network architecture. It reports state-of-the-art motion in-between
benchmark results on LAFAN1with less trainable parameters, signif-
icantly outperforming existing RNN, CNN and Transformer-based
methods. With the help of our proposed Keyframe Positional En-
coding and Learned Relative Positional Encoding, our method is
robust in generating plausible transitions with variable lengths. It
can generalize to longer transitions exceeding the maximum tran-
sition length seen during training with good quality. Our network
trains and evaluates at a faster speed by taking advantage of the
parallel processing power of GPU. We demonstrate how this system
can be applied in animation authoring software. The proposed tool
boost users’ productivity with real-time feedback and fine control
over generated results through full and partial pose constraints.

Fig. 9. An example of undesired transition generated based on ambiguous
input (visualized every two frames). We expect to create a transition of
the character spinning around herself (refer to the ground truth in the
third row). Although the context frames (semi-transparent poses on the left)
exhibit the tendency of character spinning, the gap between the last context
frame and the target frame (the last semi-transparent pose on the right)
is small. The character can either rotate 360◦ then transition to the target
pose (desired result) or follow its inertia for a few frames then rotate in the
opposite direction to the target pose (undesired result in the first row). The
ambiguity of input can be resolved by adding pose constraints (poses with
white outlines) to get the desired transition shown in the second row.
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A IMPLEMENTATION DETAILS OF THE FCN BASELINE
Table 8 shows the implementation details of the FCN baseline. Note
that we deliberately limit the number of downsamplings and upsam-
plings in the network to two. As the minimum transition length is
five frames in LAFAN1’s transition benchmark, the input size on the
time dimension is not long enough to afford more downsamplings
and upsamplings without adding extra padding to the input. The
input of FCN is exactly the same as the Context Transformer.

Table 8. The architecture of FCN baseline. For each convolutional layer,
except for the last layer, is followed by a 1D batch normalization layer and
a ReLU activation.

Type Kernel Stride Padding Dilation Output

Conv1d 3 × 3 1 1 1 256

Conv1d 3 × 3 2 1 1 512
Conv1d 3 × 3 1 1 1 512

Conv1d 3 × 3 2 1 1 1024
Conv1d 3 × 3 1 1 1 1024
Conv1d 3 × 3 1 2 2 1024
Conv1d 3 × 3 1 1 1 1024

TransConv1d 3 × 3 2 1 1 512
Conv1d 3 × 3 1 1 1 512

TransConv1d 3 × 3 2 1 1 256
Conv1d 3 × 3 1 1 1 256

Conv1d 3 × 3 1 1 1 135
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Fig. 10. Per-clip L2P metric comparisons with ERD-QV [Harvey et al. 2020]
and Δ-Interp [Oreshkin et al. 2022] on LAFAN1’s transition benchmark.
Transition lengths are 30 and 45 frames. All models are trained with maxi-
mum transition length equals to 30 frames. Our method report better L2P
metrics on majority of benchmark clips.
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C RANDOM POSE CONSTRAINT SAMPLING
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Fig. 11. The validation loss of two Detail Transformers, one of which adopts
random pose constraint sampling during training, while the other does not.
The result shows that random sampling of constrained frames can improve
performance and alleviate overfitting.

D PERFORMANCE OF THE CONTEXT TRANSFORMER
WITH DIFFERENT HYPERPARAMETERS

We compare multiple Context Transformers trained with different
layer dimension 𝑑 , layer count 𝐿 and head count 𝐻 . We report
their L2P metric on LAFAN1’s transition benchmark with transition
lengths equal to 5, 15, 30, and 45 frames.
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Fig. 12. We increase 𝑑 from 128 to 2048 while fixing 𝐿 = 6 and 𝐻 = 8.
Increasing 𝑑 improves performance initially and reduces performance after
reaching 512 or 1024. Since the performance of 𝑑 = 512 and 𝑑 = 1024 are
similar on transition lengths within 30 frames (maximum length during
training), but 𝑑 = 1024 considerably deteriorates performance on 45 frames,
we use 𝑑 = 512 in our final model.
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Fig. 13. Fixing 𝑑 = 512 and 𝐻 = 8, we evaluate Context Transformer’s
performance with different layer count 𝐿. Increasing 𝐿 improves perfor-
mance on transition lengths less than 30 frames but hurts performance on
45 frames when 𝐿 exceeds 6. We choose 𝐿 = 6 in our final model.
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Fig. 14. When keeping 𝑑 = 512 and 𝐿 = 6, we experiment with various
combinations of head count 𝐻 and head dimension 𝑑𝐾 , where 𝑑 = 𝐻 × 𝑑𝐾 .
The results show that their performance differences are negligible.
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E ANIMATION TASKS IN USER STUDY

Table 9. The animation tasks in our user study. Animators were given the initial poses and asked to create animations similar to the reference with and
without our motion in-betweening tool.

Clip Lengtha Description Initial Poses Reference Animation

A 30 A running cycle.

B 60 Walk forward and turn right.

C 60 Walk over a box.

aLength is in frames. Frame rate is 30fps.
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