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2D Shape Deformation Using
Nonlinear Least Squares Optimization

Abstract This paper presents a novel 2D shape defor-
mation algorithm based on nonlinear least squares opti-
mization. The algorithm aims to preserve two local shape
properties: Laplacian coordinates of the boundary curve
and local area of the shape interior, which are together
represented in a non-quadratic energy function. An itera-
tive Gauss-Newton method is used to minimize this non-
linear energy function. The result is an interactive shape
deformation system that can achieve physically plausible
results that are hard to achieve with previous linear least
squares methods. Besides preserving local shape proper-
ties, we also introduce a scheme to preserve the global
area of the shape which is useful for deforming incom-
pressible objects.

Keywords Object Manipulation · Image Editing ·
Character Animation · Area Preservation

1 Introduction

2D shape deformation is a useful tool in various appli-
cations such as real-time live performance and enriching
graphical user interfaces. A good shape deformation sys-
tem aims to produce visually pleasing results with simple
operations and to provide interactive feedback to users.
Many techniques have been proposed to achieve a bal-
ance between these two objectives.

Free-form deformation (FFD) [16] and skeleton-based
techniques [9] are widely used methods in commercial
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Fig. 1 2D Deformation of a cartoon character. Left: the orig-
inal shape; Middle and right: the deformation results gener-
ated by our algorithm.

softwares nowadays. They run fast; however, setting FFD
domains and skeleton configurations is tedious. Further-
more, it is laborious to manipulate many control points
in FFD. Physically-based simulations [5] can achieve pleas-
ing results but with very low convergence.

Recently, Igarashi et al. [7] presented an interactive
system that allows the user to deform a 2D shape by ma-
nipulating a few points. The shape is represented by a
triangle mesh and the user moves several vertices of the
mesh as constrained handles. The system then computes
the positions of the remaining free vertices by minimiz-
ing the distortion of each triangle. To make the problem
linear, they present a two-step closed-form algorithm:
the first step to compute the rotation and the second
step to compute the scale. This divides the problem into
two least-squares minimization problems which can be
solved quickly and stably. As the authors admitted, the
two-step algorithm is merely a practical approximation
to achieve interactive performance and may cause im-
plausible results in some cases due to its linear nature.

In this paper we present a novel 2D shape defor-
mation algorithm based on nonlinear least squares op-
timization. The algorithm aims to preserve two geomet-
ric properties of 2D shapes: the Laplacian coordinates
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of the boundary curve of the shape and local areas in-
side the shape, which are together represented in a non-
quadratic energy function. Instead of linearizing these
nonlinear properties, we cast the problem as an nonlin-
ear least squares minimization and solve it using an it-
erative method. The resulting system is able to achieve
physically plausible deformation results and runs inter-
actively. Besides preserving local shape properties, we
also introduce a scheme to preserve the global area of
the shape which is useful for deforming incompressible
objects.

1.1 Related Work

There has been much previous work on shape deforma-
tion, and we discuss here only those works most related
to ours.

The best known method for shape deformation may
be free form deformation (FFD) [11,14,16]. In FFD, a
shape is embedded in a lattice, then is deformed by mov-
ing the control points of the lattice. While FFD is sim-
ple and easy to use, it does not take into account the
natural way in which shapes features are controlled. For
example, many animals have a skeleton. Skeleton-based
deformation [9] provides an intuitive approach to control
deformation of animal-like shapes. Skeleton-based algo-
rithms define the position of a point as a weighted linear
combination of the initial state of the point projected
into several moving coordinate frames, corresponding to
the bones, which is usually specified manually. Appro-
priate weight selection is a painful process.

To achieve physically plausible deformation, physically-
based simulations can be employed [3,5,8]. Among these
methods, the most popular is mass-spring models [5].
However, it is too slow to converge and needs careful
tuning of various parameters. Finite-element methods [3]
provide a more physically accurate simulation at the ex-
pense of lengthy computation. Therefore, they are inap-
propriate for interactive deformation applications. The
ArtDefo system [8] can run interactively, but is limited
to small deformations.

Gradient domain techniques [1,19,18,7,10,20] cast
deformation as an energy minimization problem. The en-
ergy function contains both a term for a detail-preserving
constraint and a term for a position constraint. The
detail-preserving constraint is nonlinear because it in-
volves both the differentials for local details and the lo-
cal transformations which are position dependent. For
computational efficiency, existing techniques convert this
nonlinear constraint into a linear one by using various
approximations including local linearization of transfor-
mation [18], transformation interpolation from handles
[10,19,20] and the decomposition of rotation and scal-
ing computation [7]. The price for employing these least
squares minimization schemes is suboptimal deformation
results.

Our algorithm can be viewed as a variant of recent
nonlinear mesh deformation methods [2,6,17]. All these
methods try to minimize a nonlinear energy function rep-
resenting local properties of the surface. Instead of a 3D
mesh, our algorithm deals only with 2D shapes. There-
fore, the local properties we are trying to preserve are
quite different from those of a 3D surface.

2 Overview

The input of our algorithm is a 2D shape (see Figure 2(a)),
with the boundary represented as a simple closed poly-
gon. The shape can be represented either by vector graph-
ics or a bitmap image. For bitmap images, we manu-
ally remove backgrounds and apply automatic silhou-
ette tracing using the marching squares algorithm to
get the boundary polygons. Our algorithm automati-
cally inserts a set of points into the interior region of the
shape and generates a graph by connecting the vertices
of the boundary polygon and the inside points (see Fig-
ure 2(b)). Then the user can drag the points to deform
the shape.

(a) (b)

Fig. 2 2D shape and its interior graph.

The algorithm aims to preserve two local properties:
Laplacian coordinates of the boundary curve and the
local area inside the shape. The Laplacian coordinates
represent the local details of the shape boundary and are
widely used in 3D mesh deformation methods [10,18,20].
While preserving Laplacian coordinates often produces
good deformation results for 3D meshes, it is not enough
to produce visually pleasing deformation results for 2D
shapes (see Figure 3). Therefore, we also try to preserve
the local areas inside the shape. To achieve this goal, we
build a graph and introduce two new local properties for
the graph: the relative position (mean value coordinates)
of each interior point with respect to its neighbors and
the length of each edge. To control a deformation, the
user inputs the deformed positions for a subset of the
graph points. The deformed positions of all graph points
are then obtained by minimizing an energy function that
consists of four parts: Laplacian coordinate preserving,
mean value coordinates preserving, edge length preserv-
ing and position constraints (see details in Section 3).
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To build the interior graph, one can generate a tri-
angulated mesh inside the boundary polygon as in [7].
We instead adopt an easier approach similar to the volu-
metric graph construction in [20]. It consists of four steps
(see Figure 6 in [20]). Firstly, we construct an inner poly-
gon for the boundary polygon by offsetting each vertex
a distance in the direction opposite its normal. Secondly,
we embed the two polygons in a lattice, removing lattice
nodes outside the inner polygon. Thirdly, we build edge
connections among the two polygons and lattice nodes.
Finally, we simplify the graph using edge collapse and
smooth the graph.

Now we have a 2D graph (V,E), where V is the set
of n vertices in the graph, and E is the set of edges. V
includes two subsets: Vp, which contains m vertices of a
polygon, and Vg, which contains (n−m) interior points.
Similarly, the edge set E can be divided into two sets: Ep,
which contains polygon edges, and Eg which represents
the remaining edges in the graph.

The remainder of this paper is organized as follows.
The following section explains the three local properties
in detail. In Section 4, we combine all the local properties
together and present an iterative solver to compute the
deformation results efficiently. Section 5 describes how to
preserve the global area in our algorithm, which is use-
ful for deforming incompressible objects. Experimental
results are shown in Section 6, and the paper concludes
with some discussion of future work in Section 7.

3 Preservation of Local Properties

This section describes the three local properties: Lapla-
cian coordinates, mean-valued coordinates and edge length.
Laplacian coordinates represents the local details of the
boundary polygon. Mean-valued coordinates and edge
length are used to achieve local area preservation.

3.1 Curve Laplacian Coordinates

A curve Laplacian is defined for each point in Vp and
it is analogous to the Laplacian on 3D meshes. Specif-
ically, the curve Laplacian coordinate δi of point vi is
computed as the difference between vi and the average
of its neighbors on the curve:

δi = Lp(vi) = vi − (vi−1 + vi+1)/2,

where vi−1 and vi+1 are the points adjacent to vi on the
curve; Lp is called the Laplace operator of the curve.

To preserve the Laplacian coordinates during defor-
mation, we try to minimize the following energy function:
∑

vi∈Vp

‖Lp(vi) − δi‖
2,

which is equivalent to the matrix form:

‖LpVp − δ(Vp)‖
2, (1)

where Vp is the point positions of the boundary polygon
and Lp is a m×m matrix, called the Laplace matrix; δ is
the vector of Laplacian coordinates. Note that we view
δ as a general function of the point positions Vp instead
of a linear function of Vp as in [18].

To make the description clear in the following, we
expand Lp to a m×n matrix L by adding zero elements.
Then Equation (1) can be rewritten as:

‖LV − δ(V)‖2. (2)

3.2 Mean Value Coordinates

For each point vi in Vg, we want to maintain its relative
position with respect to its neighboring points during
deformation. To do this, we first compute its mean value
coordinates [4] in the polygon formed by its neighboring
points:

wi,j =
tan(αj/2) + tan(αj+1/2)

|vi − vj |
,

where αj is the angle formed by the vector vj − vi and
vj+1 − vi. Normalizing each weight function wi,j by the
sum of all weight functions yields the mean value coor-
dinates of vi with respect to its neighboring points.

According to the property of mean value coordinates,
we have:

vi −
∑

(i,j)∈E

wi,j ∗ vj = 0, for vi ∈ Vg,

which can also be represented in matrix form:

MgVg = 0,

where Mg is a (n−m)× (n−m) matrix. Similar to Lp,
Mg can be expanded to a (n − m) × n matrix M by
adding zero elements.

To preserve the mean value coordinates during defor-
mation, we minimize the following energy function:

‖MV‖2. (3)

3.3 Edge Lengths

Note that mean value coordinates are invariant to scal-
ing. Preserving mean value coordinates is not enough to
preserve the local areas inside the shape. Therefore, we
further try to preserve edge length during deformation.

We penalize the edge length changes for all edges in
Eg using the following energy:

∑

(i,j)∈Eg

‖(vi − vj) − e(vi, vj)‖
2, (4)

where e(vi, vj) =
l̃i,j

li,j
(vi − vj); li,j is the current length

of edge (i, j) and l̃i,j is the original length before defor-
mation.
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Fig. 3 Deformation results with and without local area
preservation. Left: original shape; Middle: deformation result
which preserves both Laplacian coordinates and local area;
Right: deformation result which preserves Laplacian coordi-
nates only.

Note that the energy associated with each edge is
computed in vector form such that the whole energy in
Equation (4) can be represented in a matrix form:

‖HV − e(V)‖2, (5)

where H is a |Eg| × n matrix.

4 Shape Deformation Using Nonlinear Least

Squares Optimization

4.1 Deformation Energy

To control a deformation, the user inputs the deformed
positions for a subset S of the graph points. This in-
formation is used to compute the deformed positions of
all graph points by minimizing the following sum of all
energy terms:

‖LV−δ(V)‖2+‖MV‖2+‖HV−e(V)‖2+‖CV−U‖2,(6)

where ‖CV − U‖2 represents the position constraints
specified by the user; C is a |S| × n matrix and U is a
vector of dimension |S| representing the target positions
specified by the user. To balance these objectives, we also
allow the user to specify a weighting parameter for each
energy term.

The above energy minimization problem can be re-
formulated as the following:

min
V

‖AV − b(V)‖2 (7)

where:

A =




L

M

H

C


 ,b(V) =




δ(V)
0

e(V)
U


 .

Note that the matrix A is dependent only on the
graph before deformation while b is dependent on the
current point positions V. This is a nonlinear least squares
problem. Previous methods try to make this a linear least
squares problem solvable either by removing the depen-
dency of b on V or by using a linear approximation for b.
In the following, we introduce an iterative Gauss-Newton
method [12] to solve this nonlinear problem directly.

Iteration
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Fig. 4 Convergence of our iterative solver. The red curve
indicates energy.

4.2 Nonlinear Least Squares Optimization

The iterative Gauss-Newton method solves the problem
in the following way:

min
Vk+1

‖AVk+1 − b(Vk)‖2, (8)

where Vk is the point positions solved from the k-th
iteration and Vk+1 is the point positions we want to
solve at iteration k + 1. Since b(Vk) is known at the
current iteration, Equation (8) can be solved through a
linear least squares system:

Vk+1 = (AT A)−1AT b(Vk) = Gb(Vk). (9)

Let G = (AT A)−1AT . Since A is dependent only on
the graph before deformation, G can be precomputed be-
fore deformation and is fixed during deformation. There-
fore, only a back substitution is executed for each iter-
ation. In this way, the deformation algorithm is able to
run interactively.

During each iteration, b is computed according to
the point positions Vk from the last iteration. In other
words, we need to compute δ(Vk) and e(Vk).

e(Vk) is computed as follows:

e(vk
i , vk

j ) =
l̃i,j

|vk
i − vk

j |
(vk

i − vk
j ), for (i, j) ∈ Eg.

Computing the new Laplacian coordinates δ(Vk) is
somewhat complicated. Specifically, we compute a trans-
form matrix T k

i for each point vi ∈ Vp:

δ(vk
i ) = T k

i δ(v0
i ),

where δ(v0
i ) is the curve Laplacian coordinate before de-

formation.
By taking v0

i and vk
i as the rotation centers, the trans-

form matrix T k
i can be computed by minimizing the fol-

lowing energy [15]:
∑

(i,j)∈Ep

‖T k
i (v0

j − v0
i ) − (vk

j − vk
i )‖2
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Taking the derivatives to all coefficients of T k
i to be

zero, we can get:

T k
i =

∑

(i,j)∈Ep

(vk
j − vk

i )(v0
j − v0

i )T Di

where Di = (
∑

(i,j)∈Ep
(v0

j − v0
i )(v0

j − v0
i )T )

−1
, which de-

pends on the original shape only and can also be precom-
puted to accelerate the algorithm.

5 Preservation of Global Area

In this section, we introduce how to preserve the global
area of the shape to simulate an incompressible 2D ob-
ject. As seen in the following, global area preservation
is handled as a hard constraint in the nonlinear least
squares problem (Equation (7)), and the iterative solver
described above can be adapted to solve this constrained
problem efficiently.

The area of a polygon is computed using the coordi-
nates of the polygon points: g(Vp) = 1

2

∑m

i=0(xiyi+1 −
xi+1yi), where (xi, yi) is the coordinate of point vi. Then
the global area constraint can be formulated as follows:

g(V) − g̃ = 0

where g̃ is the area of the original shape before deforma-
tion.

Since the global area constraint is a nonlinear func-
tion of the coordinates of the polygon points, it can not
be written into a matrix form. Thus we treat this con-
straint as a hard constraint and extend Equation (7) to:

min
V

‖AV − b(V)‖2, subject to g(V) − g̃ = 0 (10)

This constrained non-linear least squares problem can
also be solved by extending the iterative solver (Equation
(8)) to the following formula:

min
Vk+1

‖AVk+1−b(Vk)‖2, subject to g(Vk+1)−g̃ = 0(11)

Letting h = Vk+1 − Vk, AVk+1 − b(Vk) can be refor-
mulated as a new function l(h) which only depends on
h:

l(h) = AVk+1 − b(Vk)

= A(Vk + h) − b(Vk)

= Ah + AVk − b(Vk). (12)

The problem (11) is converted to:

min
h

1

2
‖l(h)‖2, subject to g(Vk + h) − g̃ = 0 (13)

By locally linearizing

g(Vk + h) ≈ g(Vk) + Jg(V
k)h,

and applying Lagrange multipliers [13] with Newton’s
method, the solution to (13) is:

h= −(AT A)−1(AT S + JT
g λ)

λ= −(Jg(A
T A)−1JT

g )−1(t − Jg(A
T A)−1AT S)

where Jg is the Jacobian of g, S = b(Vk) − AVk, and
t = g̃ − g(Vk).

 area = 1.0 area = 1.0 area = 0.8629

area = 1.0 area = 0.6996area = 1.0

Fig. 5 Deformation with (middle) and without (right) global
area preservation. The original 2D shapes are shown on the
left. Note that we can exactly preserve the global area by
taking it as a hard constraint.

6 Experimental Results

We have implemented the described deformation algo-
rithm on a 3.2GHz Pentium 4 workstation with 1GB
memory. Table 1 shows the data statistics and timings
for several models presented in this paper. The solution
time refers to the per-iteration cost. The number of iter-
ations needed for convergence of the solver varies signifi-
cantly depending on many factors such as the shape itself
and the magnitude of the deformation. For models used
in this paper, the average number is 10. Therefore, the
performance of our deformation system is comparable to
previous linear methods [7]. As shown in the accompa-
nying video, our system is very easy to use and runs in
real-time. The user only needs to drag a few points on
the shape to the desired locations, and the whole shape
will be deformed in a visually pleasing manner.

In Figure 4, we show an example to demonstrate the
convergence of our iterative solver. The curve is gener-
ated by setting the constraint points to the target posi-
tions and letting the solver iterate until convergence. In
this example, the solver converges after about 10 itera-
tions. Consider the solution time of our solver (see Table
1), it is very fast.

Figure 3 compares the deformation results with and
without local area preservation. If we only preserve Lapla-
cian coordinates, the deformation result looks unnatural
with obvious self-intersection. By adding graph mean-
value coordinates and edge length constraints to control
the local area inside the 2D shape, the result looks much
more pleasing.

Figure 5 demonstrates the effect of the global area
constraint. With global area preservation, an object is
squashed horizontally when it is stretched vertically. There-
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Table 1 Statistics and timings.

2D Shape flower horse character
# Boundary Vertices 114 247 143
# Interior Vertices 256 189 163
Precomputing time 22ms 22.7ms 18.3ms
Solution time 0.589ms 0.593ms 0.470ms

fore, the deformation results with global area preserva-
tion look fatter than the result without global area con-
straint, as would be expected for incompressible objects.

For most examples presented in this paper, our re-
sults are as good as those results generated by the linear
method [7]. In some cases, our nonlinear least squares
optimization leads to more physically plausible results
than in [7]. Figure 6 shows the deformation results for
the shape that appears in Figure 19 of [7] (see the ac-
companying video for the deformation process).

We have tested our deformation algorithm on various
kinds of 2D shapes. Figure 7 shows the deformation of a
flower. The stem of the flower is deformed naturally, and
the shape of the flower is preserved well. Our system can
also be used to deform cartoon characters (Figure 1 and
8). Figure 8 shows a large scale deformation of the legs
of the cartoon man. Figure 9 illustrates the deformation
result of a horse. The details at the tail and back of the
horse are well preserved even with large deformations.

7 Conclusion

We have described a real-time 2D shape deformation al-
gorithm based on nonlinear least squares optimization.
Our algorithm is able to preserve both local and global
properties of the input shape. The nonlinear nature of
our algorithm allows it to outperform previous linear
methods.

In future work, it might be interesting to experiment
with some methods that dynamically adjust depth when
different parts of the shape overlap. Currently, we use a
statically predefined depth order, which does not work
well in some cases. Our algorithm can also be applied
to 2D cartoon animation retargeting by defining a set of
corresponding points between 2D shapes.
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(a) rest shape (b) our algorithm (c) [Igarashi et al. 2005]

Fig. 6 Comparison between our algorithm and [Igarashi et al. 2005].

Fig. 7 Deformation of a flower. From left to right are the original shape and the deformation results respectively.

Fig. 8 Deformation of a cartoon character. From left to right are the original shape and the deformation results respectively.

Fig. 9 Deformation of a horse. Left: the original shape; Right: the deformation result.
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