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via Discrete Optimization

Abstract We synthesize and animate general texture pat-
terns over arbitrary 3D mesh surfaces. The animation is con-
trolled by flow fields over the target mesh, and the texture
can be arbitrary user input as long it satisfies the Markov-
Random-Field assumptions. We achieve this by extending
the texture optimization framework over 3D mesh surfaces.
We propose an efficient discrete solver inspired by k-coherence
search, allowing interactive flow texture animation while avoid-
ing the blurry blending problem for the least square solver
in previous work. Our technique has potential applications
ranging from simulation, visualization, and special effects.
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ization, texture animation, energy minimization

1 Introduction

We present a technique that allows us to animate a given tex-
ture pattern over arbitrary 3D mesh surfaces. The animation
is controlled by a (possibly dynamic) flow field over the tar-
get mesh, and the texture can be arbitrary user input; the only
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requirement is that it must satisfy the Markov-Random-Field
(MRF) assumptions so that we can perform texture synthe-
sis. In addition, our computation is fast and the rendered an-
imation is frame-coherent.

We achieve this by extending the texture optimization
framework [4] over 3D mesh surfaces [14,17]. We propose
an efficient numerical solver inspired by k-coherence search
[11,5], allowing fast flow texture animation via a GPU im-
plementation (via an approach similar to [5]). We dub our
techniquediscrete optimization due to the discrete natural of
our k-coherence solver (versus the continuous natural of a
least square solver).

Our technique is simple to implement, and has a variety
of potential applications such as visualization and special
effects rendering.

1.1 Background

Textures have long been used for visualizing flow fields over
either regular 2D/3D grids or curved 3D surfaces [3,12]. The
majority of these methods are based on line integral convo-
lution (LIC) [1], utilizing random noises as textures for con-
veying flow fields. Most of these visualization methods use
static images. [18] extended LIC-based visualization as ani-
mation via coherent warping between adjacent frames. Most
of these methods, however, utilize random noises as the vi-
sualization texture. Even though noise is effective in convey-
ing detailed flow fields, it is not suitable for simulating more
general flow fields such as water, smoke, or fire.

The major challenge for animating general texture flows
is to ensure frame-to-frame coherence; this is particularly
tricky around flow singularities such as sources or sinks where
texture pattern appears or disappears. For random noises,
frame coherence can be enforced via proper warping [18]
and singularities can be trivially handled since noise is in-
herently chaotic. However, for more general textures, care
has to be taken to ensure that the texture patterns evolve
smoothly and naturally when animating with the flow fields.
[10] proposed procedural methods for synthesizing certain
classes of flows over arbitrary mesh surfaces, but since it



is procedural, it cannot be utilized for animating arbitrary
user given textures. [4] animates flow fields for any user in-
put patterns; the technique produces stunning visualization
effects, but has so far been limited to 2D image grids. In ad-
dition, the presented technique is computationally expensive
which greatly restricts its applicability.

Our goal is to extend [4] over 3D mesh surfaces to al-
low animation of user-input textures over arbitrary 3D sur-
face flow fields. Due to the use of pixel-wise optimization
in [4], we adopt the mesh neighborhood sampling methods
in [17,14] as opposed to some patch-based algorithms [8,9].
In particular, we synthesize textures over mesh vertices as
in [17,14], and we adopt their methodology for re-meshing,
assigning orientation fields, synthesis ordering, and multi-
resolution synthesis.

Another related issue is computational speed. Even though
most texture synthesis algorithms have been utilized as an
offline process (with a notable exception in [5,6]), computa-
tion speed is important for our application since we need to
synthesize multiple frames of textures over dense polygonal
meshes. Unfortunately, despite its high quality, texture opti-
mization in [4] can be slow due to its particular search and
minimization algorithms. Fortunately, extensive research has
been performed for synthesis acceleration; as reported in
[15,5], k-coherence search [11] provides the best tradeoff
in terms of quality and speed for an efficient parallel im-
plementation. We adopt k-coherence into our optimization
framework, and propose a discrete solver which addresses
both the speed and quality issue in the original solver pro-
posed by [4]. As a recent work, [6] extends the GPU synthe-
sis in [5] to arbitrary surfaces, but the underlying algorithm
is k-coherence synthesis, different from our optimizational-
gorithm.

The fields of flow visualization and texture synthesis are
both vast, and it is beyond our paper to provide a complete
coverage; for more detailed surveys, we refer the readers to
[18,12] for flow field visualization and [19,4,5,6] for texture
synthesis.

1.2 Our Contribution

Our major contributions are as follows.
We combine texture optimization [4] and synthesis by

neighborhood sampling [14,17] to achieve controllable, frame-
coherent texture animation over general input textures and
output meshes. To our knowledge, this combination has not
been attempted before, and it requires non-trivial extensions
of previous algorithms. In particular, we have to re-cast the
energy function in [4] so that the optimization variables lie
on irregular mesh vertices instead of regular-grid image pix-
els.

In addition, the original EM-solver [4] is too computa-
tionally expensive for real-time or interactive applications.
We propose a novel discrete solver based on k-coherence
search [11], allowing a fast, quality neighborhood search in
the M-step, while avoiding the blurry blending problem in

the E-step. As an added advantage, our k-coherence solver
allows a GPU-friendly implementation, resulting in further
acceleration of our algorithm.

2 Algorithm

Our algorithm extends [4] over 3D mesh surfaces for synthe-
sizing static textures and dynamic flow visualizations. For
clarity of exposition, we begin with a brief review of [4]. We
then present our modifications over [4] for surface synthesis.

For easy reference, we summarize [4] and our algorithm
as pseudo-code in Table 1. We also highlight the differences
of these two algorithms in the table caption.

2D Image Synthesis
z0
p← random neighborhood inZ ∀ p∈X

†

for iteration n = 0:Ndo
xn+1← argminx [Et(x; {zn

p}) + λEc(x; u)] // E-step
zn+1
p ← argminz [|xp − z|2 + λEc(y; u)] // M-step

// z is a neighborhood in Z and y is the same as x
// except for neighborhood xp which is replaced with z
if zn+1

p == zn
p ∀ p∈X

†

x = xn+1

break
end if

end for

3D Mesh Synthesis
z0
p← random neighborhood inZ ∀ p∈X

†

for iteration n = 0:Ndo
xn+1← argminx,x(p)∈k(p)∀p

[Et(x; {zn
p}) + λEc(x; u)] // E-step

zn+1
p ← argminz [|Wpx− z|2 + λEc(y; u)] // M-step

// Wp is the interpolation matrix so that xp = Wp x
if zn+1

p == zn
p ∀ p∈X

†

x = xn+1

break
end if

end for

Table 1 Pseudocode. The top portion is for [4], while the bottom por-
tion our algorithm. The major differences include (1) The output vari-
ablesx indicates image pixel colors in [4] but mesh vertex colors inour
case, (2) the output neighborhoodxp is from regular image grid in [4]
but interpolated from mesh vertex colors in our case, (3) therestriction
of each output vertex colorx(p) to its k-coherence candidate setk(p)
in the E-step, and (4) we utilize k-coherence as the search algorithm in
the M-step.

2.1 Brief Review of [4]

Unlike most previous work based on greedy heuristics, [4]
synthesizes textures by optimization. Specifically, the set of
output pixel colorsx is treated as a high-dimensional vari-
able, and its value is determined by energy minimization.
The energy functionE(x) measures the perceptual differ-
ence between the input and output based on a simple local



neighborhood metric [2,16]. For constrained synthesis such
as frame-coherent animation, the energy function also in-
corporates output color constraintsu. This energy function
E(x) can be summarized as follows:

E(x) = Et(x; {zp}) + λEc(x; u)

Et(x; {zp}) =
∑

p∈X†

|xp − zp|
2 (1)

, whereEt measures local neighborhood similarity across
the current active subsetX† of the output (zp indicates the
most similar input neighborhood to each output neighbor-
hood xp), Ec imposes color constraints as detailed in [4]
(Section 4), andλ weighs these two energy terms differently
according to user preference.

[4] solves the energy function via an EM-like algorithm;
in the E (expectation) step, the set of matching input neigh-
borhoods{zp} remains fixed and the set of output pixelsx is
solved via least-square method; in the M (maxization) step,
the set of output pixelsx remains fixed and the set of match-
ing input neighborhoods{zp} is found by searching. These
two steps are iterated multiple times until convergence, or
a maximum number of iterations is reached. Please refer to
Table 1 for math details of these two steps.

This energy minimization framework blends the flavor of
both pixel and patch based algorithms; while the neighbor-
hood metric is pixel-centric, the global optimization consid-
ers multiple pixels together, bearing resemblence to patch-
based algorithms.

2.2 Our Approach

In our approach, we synthesize textures as vertex colors di-
rectly over the target mesh surface (similar to [14,17]); asa
result, our output variablex is defined over mesh vertices
rather than image pixels. We adopt the surface neighbor-
hood sampling idea from [14,17] so that we could utilize
the pixel-grid optimization in [4] to mesh surfaces. Below,
we detail the necessary extensions and modifications.

2.2.1 Resampling xp from x

Fig. 1 Resampling mesh neighborhoods. The green circle indicatesthe
current vertex p to be synthesized, and the blue mesh indicates the local
region on the target surface around p. The red grid indicatesresampled
neighborhood. In our implementation, we utilize [14] for resampling.

Since output colorsx are defined over irregularly sam-
pled mesh vertices, we have to resample each output neigh-
borhood into a regular gridxp in order to perform pixel-wise
comparison as shown in theEt term in Equation 1. This can
be done by the neighborhood flattening and resampling idea
from [14,17]. Specifically, each resampled output neighbor-
hood can be expressed as a linear combination of nearby
vertex colors:

xp = Wpx (2)

, whereWp is a per-vertex sparse interpolation matrix relat-
ingxp to x. For static meshes, the set of interpolation weights
Wp can be pre-computed and stored with each output vertex,
to reduce run-time computation cost.

Based on this representation of re-sampledxp, we can
re-writeEt as follows:

Et(x; {zp}) =
∑

p∈X†

|Wpx − zp|
2 (3)

Note that this equation is still a quadratic energy func-
tion, allowing fast least-square solvers as in the originalal-
gorithm [4].

In our mesh synthesis algorithm shown in Table 1, we
have replaced all occurances ofxp with Wpx.

2.2.2 Discrete solver based on k-coherence

The solver in [4] utilized hierarchical tree search for the M-
step and least squares for the E-step; however, tree search
has an average time complexity ofO(log(N)) whereN is
the total number of input neighborhoods, and this step can
easily becomes the bottleneck of the solver as reported in
[4].

In our solver, we adopt an alternative search method for
the M-step. Specifically, we have chosen k-coherence search
[11] due to its constant time complexity per search; in ad-
dition, its quality is satisfactory as reported in [5]. The k-
coherence algorithm is divided into two phases: analysis and
synthesis. During analysis, the algorithm builds a similarity-
set for each input pixel, where the similarity-set containsa
list of other pixels with similar neighborhoods to the spe-
cific input pixels. During synthesis, the algorithm builds a
candidate-set by taking the union of all similarity-sets ofthe
neighborhood pixel/vertex for each output pixel/vertex, and
then searches through this candidate-set to find out the best
match. The size of the similarity-set,K, is a user-controllable
parameter that determines the overall speed/quality.

Unfortunately, a direct adoption of k-coherence into the
solver in [4] is impossible due to the inherent incompatibil-
ity between k-coherence (in M-step) and least square (in E-
step). In particular, k-coherence requires the bookkeeping of
the source pixel locations (x, y) for each output pixel/vertex,
and this location information is lost during least square solver
(and in general, any method beyond direct pixel copying).

We overcome this problem by adopting a different ap-
proach for the E-step other than least squares. The algorithm
can be considered as a discrete optimization, as follows. To
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Fig. 2 Texture energy plotted as a function of number of iterations.
The energy is normalized with respect to output resolutionsas in [4].
Also shown is the synthesized texture after each resolutionand scale
(neighborhood size) level.

computexn+1 in the E-step, each one of its valuesx(p) at
vertex p is determined independently from each other. In
particular,x(p) for the next iteration is chosen from its k-
coherence candidate setk(p), as the one that most reduces
the energy function. Since now eachx(p) is copied direct
from some input pixel, we can retain the input location in-
formation to conduct k-coherence search in the M-step.

As an added benefit, since our solver does not blend pix-
els, we do not suffer from the blurry blending problem as
reported in [4].

Figure 2 illustrates the evolution of a synthesis result
throughout multiple iterations of our algorithm.

2.3 Further Details

Here, we describe further implementation details beyond our
basic algorithm.

Multi-resolution synthesis As demonstrated in [16], a multi-
resolution framework allows us to capture large scale texture
structures without the need for large neighborhoods, which
can cause efficiency and stability issues.

In our approach, we build multi-resolution pyramids for
both the input image and output mesh, and we synthesize
the output from lower to higher resolutions. At the lowest
resolution, we simply randomly copy sample colors from
input to output since at this low resolution the texture is es-
sentially random. (For texture images satisfying the MRF
assumptions, this is always achievable with a deep enough
pyramid.) When synthesizing a higher resolution, we first
initialize it by up-sampling from the already synthesized im-
mediate lower resolution. We then perform synthesis on this
level via our algorithm as described in above.

case input size output size [4] CPU GPU

a 642 48K 7.87 2.74 0.61
b 1282 48K 53.66 2.97 0.66
c 642 48K 12.39 2.14 0.59
d 127× 94 48K 30.84 1.91 0.62
e 642 48K 8.02 2.46 0.61
f 642 48K 10.72 2.82 0.61
g 1282 48K 55.36 2.45 0.70
h 1282 48K 79.79 1.83 0.68

Table 2 Statistics of synthesis results in Figure 3. The input size is
measured in pixels whereas the output size in vertices. The right-most
three columns demonstrate total synthesis time per M+E steps in sec-
onds via [4], our technique on CPU, and our technique on GPU. For
each case, we use a 3-level pyramid and within each level we perform
1∼3 iterations of our algorithm with neighborhood size172 followed
by 1∼3 iterations with neighborhood size92. All performance timings
are measured on the following platform: CPU (Pentium 4 3.2 GHz)
and GPU (NVIDIA Geforce 7800 GT). We utilize kd-tree in ANN [7]
for implementing the search algorithm in [4].

Output mesh retiling As a pre-process, we retile the output
mesh using [13]. This allows us to control the texture den-
sity with a more uniform vertex distribution. As observed in
[14,16], the retiling is indispensable for such vertex-coloring
synthesis techniques. (This retiling process can be skipped if
the texture is synthesized into an atlas [20] rather than indi-
vidual vertices.)

For multi-resolution synthesis, we build a mesh hierar-
chy via simplification (via [13]) and retile each resolution
independently. The retiling density is controlled so that it is
roughly 4:1 between adjacent pyramid levels. In addition,
we pre-compute and store correspondences between each
vertex and its parent triangles at the lower resolution, in or-
der to accelerate the run-time up-sampling process as de-
scribed above.

GPU acceleration Since both our E-step and M-step utilizes
k-coherence search as the core algorithm, our entire synthe-
sis process can be implemented on GPU in a method similar
to [5]. Specifically, we store the inputz, the outputx, and the
matchzp as textures, and implement each E and M step as
a separate fragment program. The entire synthesis process is
iterated via multi-pass rendering, where the new values are
written into proper render targets forx andzp.

During thenth E-step, our E fragment program reads
from z andxn textures, performs the discrete optimization,
and writes the new resultxn+1 into the proper render target,
which serves as the input for thenth M-step.

During thenth M-step, our M fragment program reads
from z andxn+1, performs the necessary k-coherence search,
and writes the new resultzn+1

p into the proper render target.

3 Results

We have applied our algorithm over a variety of input tex-
tures and output mesh models, as shown in Figure 3. (Please



Fig. 4 Comparison of our solver with the least square one in [4]. For
each group of images, the input is on the left, our result is inthe middle,
and the result via least square solver [4] is on the right.

note that all of these images are screen shots of texture an-
imations; please refer to our accompany video for full dy-
namic animation effects.)

For quality comparison, in Figure 4 we have attached
two results generated by our k-coherence solver and the least
square solver [4]. Notice that our k-coherence solver pro-
duces crispier image quality due to its use of copying rather
than blending. A further advantage of our technique is that it
is much faster than [4] when both running on CPU with fur-
ther speed improvement via out GPU implementation; see
our timing measurements in Table 2,

Despite our speed and quality improvement over texture
optimization [4], one inherent limitation of optimizationis
that it will always be slower than [5], which utilizes a local
greedy search. However, the advantage of our approach is
that we produce superior synthesis quality than [5] due to
our use of optimization, as demonstrated in Figure 5.

4 Conclusions and Future Work

We have presented a surface texture synthesis and animation
algorithm based on optimization. Our basic idea is to com-
bine neighborhood-based surface synthesis [17,14] with op-
timization [4] to achieve high quality, frame coherent texture
animation over arbitrary 3D object surfaces. On top of this
basic idea, we have proposed a variety innovations for qual-
ity and speed improvements, among which a discrete solver
based on k-coherence that allows both faster computation
speed and crispier image quality than the original solver in

Fig. 5 2D synthesis quality comparison. For each group of images, the
input is on the left, our result is in the middle, and the result via [5] is
on the right.

[4]. Our discrete solver further enables a GPU friendly im-
plementation, with even more speed improvement over our
CPU-only implementation.

Our initial goal of this project was to simply combine
surface synthesis [17,14] and optimization [4] to allow high
quality, offline surface texture animation. Our discovery of
the discrete solver as both a quality and speed improvement
came only as a second thought near the end game of our
project. For future work, we plan to investigate other possi-
bilities for optimization solvers in order to achieve greater
quality and speed. In particular, both our current CPU and
GPU implementations are not yet real-time, and we envision
a future technique that combines the quality of our work with
the speed in [5,6] will be invaluable for a variety of appli-
cations, ranging from offline movie production to real-time
gaming.
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Fig. 3 Surface synthesis results. For each group of images, the input is on the left and our result is on the right. Please refer toour accompany
video for animation effects.


