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Abstract This paper presents a fast and stable technique
for simulating deformable objects. Unlike in previous
physically-based methods, our potential energy of deforma-
tion is purely geometrically-based. It is defined as the L2

norm of the change of the differential coordinates. A key
feature of this energy formulation is that the corresponding
stiffness matrix is approximately constant, which enables
fast and stable implicit integration and large deformations.
Our algorithm can simulate various effects including solid,
thin shell and plasticity. We also adopt two schemes to ac-
celerate the simulation process: dimensionality reduction in
frequency domain and adaptive rotation computation in spa-
tial domain.
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1 Introduction

Deformable objects simulation is a useful tool for many
computer graphics applications, e.g., video games and vir-
tual surgery. Most of previous simulation methods are based
on physical laws. Although the physically-based models can
faithfully capture all deformation effects, they are generally
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too complex to be used in interactive applications. There
have been many efforts to simplify the physical models to
get a tradeoff between the performance and accuracy. Ex-
amples include the mass-spring system, the linear elasticity
model, and some dimensionality reduction methods.

Inspired by the recent mesh deformation methods
that preserve differential surface properties [1,28,31], we
present a novel geometrically-based formulation for the po-
tential energy of deformation. The potential energy is de-
fined as the summed squares of the differences between the
current differential coordinates and the original ones under
the local frame. Our simulation results are comparable to
those from physically-based methods as shown in Fig. 1.

A key feature of our geometrically-based energy is that
the corresponding stiffness matrix is approximately con-
stant, which has many advantages. First of all, we can sta-
bly simulate large deformation efficiently by using implicit-
Euler integration. Previous linear elasticity model [18,14]
can also produce a constant stiffness matrix. Unfortunately,
it is limited to small deformations. When the object under-
goes a large deformation, some noticeable simulation error
will occur. Another advantage is that the geometrical energy
does not rely on a specific volumetric tessellation of the sim-
ulated object, and can be formulated on surface meshes as
shown in Section 3.2. This is very useful for many objects
with only surface representations.

To further improve the simulation performance, we
adopt two acceleration methods. The first is a subspace inte-
gration method using a set of time invariant deformation ba-
sis. The second is an spatially adaptive scheme for tracking
the local frames. By taking advantage of the spatial coher-
ence among neighbor nodes, the adaptive method dramati-
cally reduces the cost of tracking the local frames.

In the rest of the paper, we will first briefly review some
related works in Section 2, then present our geometrical en-
ergy for simulation in Section 3. Section 4 and Section 5 will
describe the two acceleration methods. Finally, we conclude
this paper in Section 6.



Fig. 1 Simulation comparison of a bending bar under gravity. The left end is fixed. The top row shows the results simulated by our method with
geometrically based energy, while the bottom row shows the results simulated by the physically based method in [23] (using the spring element
instead of the tetrahedron element).

2 Related Work

Many physically-based methods for simulating deformable
objects in computer graphics have been proposed. A com-
prehensive survey can be found in [12,25]. Probably, the
simplest deformable model is the mass-spring systems,
which have been successfully applied to simulate many
kinds of soft things, such as creatures and clothes [2,7].
Mass-spring system models an object as a set of mass points
connected by some massless springs.

Despite the success of mass-spring systems in cloth sim-
ulation, there is a trend toward more versatile and complex
deformable models based on continuum mechanics, in order
to achieve more realistic simulation results [20,4,18,9,26].

Stable simulation algorithm usually needs an implicit in-
tegration scheme, which requires solving a linear system at
each simulation time step. So it is computational expensive
in general. In order to improve the efficiency and stability,
some previous work used the linear elasticity model [6,5].
The linear elasticity model approximates the internal force
as a linear function of the displacement, so the correspond-
ing stiffness matrix is constant. Thus, the modal analysis
method can be further applied for further acceleration [27,
14]. The linear elasticity model is simple and fast, but it also
leads to distortions for large rotational deformation, which is
a significant limitation for computer graphics applications.
Embedding the object into a floating reference frame can
greatly suppress the error [29]. But, if the simulated object
has several parts undergoing very different rotational defor-
mation, then distortions are inevitable. Capell et al. [6,5]
address large deformations by subdividing the object into
several zones and then blending the shared nodes. Huang et
al [15] address large deformation via more advanced domain
decomposition method.

Recently, several algorithms are proposed to handle
large deformation in reduced dimension. The modal warp-
ing method [8] by Choi et al. combines the advantages of
stiffness warping [22] and modal analysis. There are some
ghosting forces with the node based warped stiffness, which
make the objects randomly drift without external constraints.
Although this problem can be correct by [23], modal warp-
ing cannot utilize this remediation. The method proposed in
[3] is closely related to modal analysis, which can simulate
StVK material efficiently in subspace only. Since the com-

putational complexity is O(r4) (r is the mode number), it’s
costly to augment the deformation space by adding more ba-
sis.

To efficiently solve the simulation at each time step,
some adaptive methods are proposed. Capell et al. proposed
a multiresolution framework for dynamic simulation using
volumetric subdivision [6]. By adaptively refining the basis
functions, Grinspun et al. proposed another simple frame-
work for adaptive simulation [13], called CHARMS. Wu et
al. [30] and Debunne et al. [10] developed other kinds of
adaptive methods using progressive meshes and LOD tetra-
hedral meshes. Debunne et al. also took adaptive time steps
during simulation [10].

Our work is also related to the recent gradient domain
mesh editing methods [31,19,32]. These mesh editing meth-
ods preserve surface details by minimizing via a quadratic
energy of the differential coordinates. In this paper, we
exploit and extend the differential coordinates to define a
novel potential energy of the deformation for simulating de-
formable objects. Recently, Muller et al. [24] proposed a
non-physical motivated method based on shape matching.
They need to decompose the object into several overlapped
clusters and then blend the clusters together for large defor-
mation, while our method does not need any decomposition.
Similar deformation energy is defined in [16]. But their it-
eration scheme cannot generate a rhythm realistic deforma-
tion sequence, because they only solve a energy optimization
problem instead of a physical meaning partial differential
equation - the motion equation. There is the same problem
in [17].

3 Simulation with Geometrical Energy

In the following, a deformable object is represented as a
triple (V,G,x), where V = {1, 2, . . . , n} is the set of nodes,
G = {(i, j)|i, j ∈ V, and i and j are connected } is a
graph representing the node connectivity, and x is a vector
of points in R3 representing the node positions. For each
node i, we denote its immediate neighborhood as Ni =
{ j | (i, j) ∈ G }. And we assume that all mass is concen-
trate on the nodes, and let mi be the mass of node i. For
convenience, let r be the position vector of the rest state,
and ri and xi be respectively the rest and deformed position
of node i.



3.1 Simulation Framework

We first briefly review the Euler-Lagrange motion equation
and implicit integration scheme. The elastic animation is
governed by the following Euler-Lagrange equations:

Mẍ + Dẋ +
∂V (x)

∂x
= fext, (1)

where M is the mass matrix, D is the damping matrix
(Rayleigh damping model in used in this paper), V is the
potential energy required to deform the object into the cur-
rent configuration, and fext denotes the external forces act-
ing on the object. And the differential of the potential energy
∂

∂xV (x) is actually the internal elastic force, and the Jaco-
bian K of the internal force is usually called the stiffness
matrix. Therefore, K = ∂2

∂x∂xV (x).
To ensure stability for reasonably large time steps, the

implicit Euler integration scheme is widely used to solve the
above motion equation in the context of computer graphics.
Let t be the current simulation time, and h be the time step.
Then, we have(
M + hD + h2K

)
∆ẋ =

h

(
fext −Dẋ− hKẋ− ∂

∂x
V (x)

)
. (2)

After solving the above linear system for ∆ẋ, the state at the
next time step t + h can be updated by:

ẋ(t + h)← ẋ(t) + ∆ẋ
x(t + h)← x(t) + hẋ(t + h).

3.2 Geometrical Energy

In traditional physically-based simulation methods, the po-
tential energy V (x) is integrated over the whole continuum
materials based on the strain and stress tensors [5]. However,
such physically-based potential energy gives a time variant
stiffness matrix K when the object is deformed, which re-
quires expensive computation for updating K and solving
the linear equations in Eq. (2). In the following, we will de-
fine a novel potential energy of deformation that produces a
constant stiffness matrix.

Recall that Laplacian differential coordinates have been
successfully exploited in many mesh editing systems for pre-
serving surface details [31,32]. Inspired by these works, we
propose to define the following potential energy:

V (x) =
λ

2

∑
i∈V

∥∥∥Lix−Ri(x)di

∥∥∥2

, (3)

where Li is the differential operator at node i, di is the dif-
ferential coordinate of node i computed at the rest state, and
Ri(x) is a 3× 3 matrix representing the rotation of the local
frame of node i from the rest state to the current configura-
tion. The scalar λ serves as the Young’s modulus.

Differential Operators Many differential operators can be
applied in our geometrical energy. For general solid objects,

(a) (b) (c)

Fig. 2 Simulation results on a surface mesh. (a) the rest shape; (b)
deformation effects achieved with cotangent form Laplacian based ge-
ometrical energy; (c) a thin shell deformation effect achieved with edge
based geometrical energy.

we construct a volumetric graph and adopt the volumetric
graph Laplacian operators [32]. For thin shell objects rep-
resented in triangular meshes, we adopt the cotangent form
surface Laplacian operators [11]. Like most of these differ-
ential coordinates based mesh deformation algorithms, we
use the initial weights calculated on the undeformed mesh
throughout the whole simulation. This choice doesn’t pro-
hibit achieving large deformation as demonstrated in [32].

We found in experiments that the potential energy based
on the surface Laplacian tends to preserve the curvature of
thin shells. This can be explained by the property that the
Laplacian approximates the mean curvature normal, and the
potential energy has a goal of maintaining the length of the
Laplacian. Therefore, we can simulate solid shape behav-
ior with the surface model only. An example is shown in
Fig. 2(b). This is very useful, since the geometry is usually
represented by a surface mesh and a specific internal volu-
metric model is usually not available.

In order to simulate thin shell properties on surface tri-
angle mesh, we propose the edge based potential energy as
follows:

V (x) =
λ

2

∑
i∈V

∑
j∈N (i)

∥∥∥Lijx−Ri(x)dij

∥∥∥2

, (4)

where Lij denotes the differential operator at edge (i, j), and
dij is the corresponding differential coordinate of edge (i, j)
computed at the rest state. In our current implementation,
Lij is simply defined as:

Lijx = ωij(xj − xx),

where ωij is the edge weight. ωij can be set as 1 for objects
with evenly sampled nodes, or can take the same values as
in the cotangent form Laplacian for general cases. Although
carefully choosing the weight for more accuracy is possible,
we found that such a simple uniform weighting can generate
good results even for an irregular sampled object.

An example of thin shell deformation effect is shown in
Fig. 2(c). We can also integrate the edge based potential en-
ergy into the Laplacian based potential energy by a linear
combination, to control the deformation effects.



Rotation Estimation To evaluate the potential energy, we
need to estimate the rotation for each node i ∈ V . We take
a mass weighted polar decomposition method similar to that
in [24]. Let ri be the rest position for each node i ∈ V , and
denote

rij = mj(rj − ri),
xij = mj(xj − xi).

Then the best linear transformation Ai at node i that mini-
mizes

∑
j∈N (i) ‖xij −Airij|‖2 is Ai = Axr

i Arr
i , where

Axr
i =

( ∑
j∈N (i)

xijrt
ij

)
, and Arr

i =
( ∑

j∈N (i)

rijrt
ij

)−1

.

Since Arr
i is symmetric, it doesn’t contain any rotation in-

formation. Therefore, the rotation Ri(x) can be found by
applying a polar decomposition on Axr

i . Because we use the
implicit Euler method to solve the motion equation, the ro-
tation is estimated on predicted next state x + hẋ instead of
x in our implementation.

We can easily show that V (x) defined in Eq. (3) is in-
variant under rigid transformation, so it satisfies the basic re-
quirements for a valid potential energy function. First, since
the differential operator is translation invariant, V (x) is also
translation invariant. Second, when the object undergoes an
additional global rotation, say T, and therefore Ri(Tx) =
TRi(x) and LiTx − Ri(Tx)di = T(Lix − Ridi), then
V (Tx) = V (x). So, V (x) is rotation invariant.

Stiffness Matrix Now we develop the stiffness matrix for
the potential energy using Laplacian operators (The stiff-
ness matrix of using the edge based differential operator can
be similarly deduced). Let L be the matrix of the Lapla-
cian operator, R(x) be a diagonal matrix consisting of all
Ri(x), and d be a vector consisting of all di. Then we have
V (x) = 1

2λ‖Lx−R(x)d‖2, and

∂

∂x
V (x) = λ

(
L− ∂R(x)

∂x
d
)t(

Lx−R(x)d
)

≈ λLt
(
Lx−R(x)d

)
,

∂2

∂x2
V (x) ≈ λLt

(
L− ∂R(x)

∂x
d
)
≈ λLtL. (5)

Therefore, we have K ≈ λLtL. In the above, the deriva-
tives ∂

∂xR(x) are dropped two times. Though this introduces
some errors, our experiments show that such an approxi-
mation does not cause great problems in many cases, and
it greatly simplifies the stiffness matrix down to a constant
matrix. As shown in the following sections, the simulation
stability and efficiency are greatly improved with such an
approximation.

Such a energy seems like node based stiffness warping
in [22]. Considering that the each row of the Laplacian op-
erator L sums to zero, the internal elastic force sums to zero
too for any deformed state, and the momentum is preserved.
So, it’s an advantage of our algorithm that we will not en-
counter the ghost force problem. And such a linearized stiff-
ness matrix is constant during the simulation, which is more

Fig. 3 Plasticity effect: the left image shows the undeformed Santa
model. We deform the Santa by the colored nodes (the center image),
then free the nodes. Because of the plasticity, the model cannot restore
to original shape (the right most image).

profitable for preprocessing to speedup the simulation than
the stiffness warping technique.

Note that the stiffness matrix K = λLtL is n×n, instead
of 3n× 3n. And the x/y/z coordinate components in Eq. (2)
are solved independently.

3.3 Simulating Plasticity

Now we show how to simulate plasticity behaviors using the
edge based potential energy. One of the characteristics of a
plastic material is that when the deformation is too large, it
can not restore to its rest shape when all external forces are
released.

At each simulation step, the difference between the dif-
ferentials Lijx−Ridij indicates the degree of deformation.
Therefore, we can define the deformation ratio as

ρij =
‖Lijx−Ridij‖

‖dij‖
.

When ρij exceeds a given yield threshold cyield, we basi-
cally need to change its rest state according to the defor-
mation of the current configuration. But we don’t need to
directly do this in practice. Instead, we can achieve the same
goal by updating the pre-computed differential coordinates
dij as follows:

dij ← dij + ccreep(ρij − cyield) (Lijx− dij) , (6)

where ccreep is the plasticity coefficient. In order to correctly
estimate the rotation matrices, rij needs to be updated ac-
cordingly to keep the relationship: rij = mj

ωij
dij .

The plasticity effect can be controlled by the two param-
eters cyield and ccreep [26]. Fig. 3 demonstrates an example
of plasticity simulation.

4 Dimensionality Reduction

It is nevertheless slow to directly solve the simulation by
Eq. (2) for a large number of nodes. At the same time, we
may run into stability problems when the shape is extremely
deformed. To address these critical issues, we can adopt
some dimensionality reduction methods.

Let Φ be a matrix whose column vectors are the deforma-
tion bases. We first represent the deformation by x = r+Φz,
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Fig. 4 Simulation results for the bar model (top row) and the Gargoyle
model (bottom row) with sample based dimensionality reduction. Four
user-provided samples are used, as shown in the left column. The mid-
dle and right columns show two deformation results.

where z is a vector of unknown coefficients. Then, we have
the following simulation system at each step:

Φt
(
M + hD + h2K

)
Φ∆ż =

hΦt

(
fext −Dẋ− hKẋ− ∂

∂x
V (x)

)
. (7)

This is a much smaller linear system and can be solved more
efficiently and robustly.

We have employed two methods to obtain the deforma-
tion bases. One is based on some input deformation sam-
ples [3,21]. Given m samples {sj}mj=1, we first apply mass-
PCA [3] on the deformation vectors {sj−r}mj=1, then choose
the most significant principal components as the deforma-
tion bases. Fig. 4 shows two deformation results with the
sample based dimensionality reduction method.

The other is based on modal analysis [27,14], which is
useful when no example is available. Similar to the standard
modal analysis method, we first solve the generalized eigen
problem MΨŁλ = KΨ , where the columns of Ψ are the
generalized eigen vectors, and Łλ is a diagonal matrix con-
sisting of the eigen values. Then we analyze the eigen val-
ues, and select some significant eigen vectors (correspond-
ing to small eigen values) as the deformation bases.

For the traditional modal analysis method of physically-
based simulation, there are 6 eigen values that are zeros, and
the corresponding eigen vectors represent the six rigid trans-
formation modes. But in our method, the x/y/z components
are processed separately, so there are only one zero eigen
value for each component, which corresponds to the transla-
tion bases.

To add the rotational bases into the deformation space,
we can combine it into the example based method as fol-
lows: first we generate rotation examples by rotating the ob-
ject around the x/y/z axes, then regenerate the deformation
bases by the above sample based method with the rotation
samples and the bases generated in modal analysis. Fig. 5
shows deformation results with our modal analysis based di-
mensionality reduction method.

Fig. 5 Simulation result with modal analysis based dimensionality re-
duction. Eight non-trivial deformation bases are shown in the left two
columns, and two deformation results are shown in the right column.

5 Spatially Adaptive Method

When the dimensionality reduction method is applied, the
most expensive computations lie in the phase of estimating
the local rotation for each node, which involves computing
matrix Axr

i and performing polar decomposition on it.
Based on the observation that nearby nodes usually share

very similar local rotations, we propose an adaptive scheme
to reduce the computation cost in the rotation estimation
phase. Our scheme is very different from the adaptive meth-
ods in previous work [6,10,13,30], which all need a subdi-
vision structure or multi-resolution mesh representation. We
propose an efficient greedy activation method without the
requirement of the hierarchical structure. The basic idea be-
hind it is to select some active nodes and estimate their local
rotation, then propagate their rotation to elsewhere during
the breadth-first graph travel. A few seed nodes can be ran-
domly selected before simulation. In all of our results, the
seed node is just the index zero node. For the sake of sym-
metry or more accuracy, seeds can be chosen symmetrically
or at tips of the object.

Propagation Procedure We first estimate the rotation
for the seed nodes and put them in a active node queue.
Then we start with an active node, and traverse the graph
G in a breadth-first manner. Let Rc be the rotation of the
current active node. When visiting a node whose rotation is
not determined, we first judge if Rc is applicable to it. If yes,
then set Rc to it. Otherwise, apply the polar decomposition
method to estimate its rotation. Then we put it into the ac-
tive node queue. This process is repeated until all nodes have
rotation information.

Adaptive Criteria There are several possible ways to
judge if the rotation of node i is applicable to node j before
doing polar decomposition for node j. The naive approach
is to directly compare Axr

i and Axr
j or compare Ai and Aj .

But both Axr
i/j and Ai/j contains scaling information, the

naive criterion produce unsatisfactory results, as shown in
Fig. 6(a) and (b), which cannot accurately adapt nodes to
the deformation.

Recall that polar decomposition will factorize Axr
j into a

rotation Rj and a symmetric transformation Sj , i.e. Axr
j =

RjSj . Denote Sij = Rt
iA

xr
j . If the rotation Ri is applicable
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Fig. 6 Comparison of active nodes (shown as small dots in cyan) with
three adaptive criterion: (a) naive criterion I:Axr

i − Axr
j , (b) naive

criterion II: Ai −Aj , (c) rotation sensitive criterion. The bottom row
shows the corresponding deformed shapes.

(a) (b)

Fig. 7 Distribution of adaptively activated nodes. The corresponding
deformations are shown in the bottom row.

to node j, i.e., Ri ≈ Rj , then Sij = Rt
iRjSj ≈ Sj is

very close to a symmetric matrix. Therefore, we propose the
following criterion:∥∥∥Rt

iA
xr
j −

(
Rt

iA
xr
j

)t
∥∥∥2

. (8)

We call it a rotation sensitive criterion, since it basically
compares the rotation part. If the error is below the speci-
fied threshold (we choose the threshold from 1e−2‖Arr

i ‖2 to
1e−4‖Arr

i ‖2), then Ri is propagated from node i to node j.
Fig. 6(c) shows that more nodes in the large deformation

area are activated with the rotation sensitive criterion. Com-
pared with Fig. 6(a) and (b), the rotation sensitive criterion
performs much better. More examples are showed in Fig. 7
and Fig. 8.

The cost of the traveling the graph depends on the de-
formed shape and the threshold. We setup some typically
cases to measure the efficiency of our adaptive method. For
the gargoyle model with 14190 nodes, the polar decomposi-
tion for all the nodes consumes about 58ms. When the ap-
proximation is always acceptable (for very large threshold
or keeping the object undeformed), the traveling needs 7ms,
and on the contrary, needs 16ms when no approximation
is acceptable (set very small threshold for large deforma-
tion). There’s no gain when number of polar decomposition
cannot decrease below 75% or so. The spatial adaptive ro-
tation tracking works better when applying dimensionality
reduction, because the variation of local transformations is

Fig. 8 Distribution of adaptively activated nodes. The corresponding
deformations are shown in the bottom row.

dimensionality ratio of time per
active nodes step (ms)

Fig.1 full - 33ms
Fig.2(b) full - 90ms
Fig.2(c) full - 46ms
Fig.3 full - 60ms
Fig.4(a) 12 basis - 18ms
Fig.4(b) 12 basis - 95ms
Fig.5 8 basis - 20ms
Fig.6(c) full 4% 44ms
Fig.7(a) 10 basis 4% 9.2ms
Fig.7(b) 12 basis 10% 9.6ms
Fig.8 40 basis 10% 76ms
Fig.9(a) full - 19ms
Fig.9(b) 40 basis 10% 76ms

Table 1 Configuration and performence statistics for the results in this
paper. The performance is measured on a 3.06GHz Intel Xeon machine
with 2GB memory.

smoother than in full dimensionality simulation. But in full
dimensionality simulation, it still can cut down many nodes.
Less than 30% nodes are needed to be tracked for a moderate
deformation without noticeable artifacts.

6 Conclusion

We have presented a geometrically-based potential energy
function for simulating deformable objects. Our algorithm
can achieve visually pleasing effects and runs interactively
(see the accompanying video for animation demos). The
statistics of the performance data and some experimental
models are listed in Table 1 and Table 2. More simulating
results are shown in Fig. 9. For the bar model, dimension-
ality reduction and the adaptive method can accelerate the
simulation from 33ms per step to 9.6ms.

In our fomulation of the deformation energy, we do not
take into account the volume, which will be a problem for
volume preserving deformations. Our dimensionality reduc-
tion methods need to precompute some deformation exam-
ples or the sigular value decomposition of the stiffness ma-
trix, which are not suitable for processing extremely large
models.



(a)

(b)

Fig. 9 The top row is the plant model vibrating under gravity solved in full dimension. The bottom row is the animation results of gargoyle
model using 14 samples.

bar tweety gargoyle torus plant santa
node number 3321 5001 14190 3427 2606 4292
model type VG SM VG VG NSM VG

Table 2 The characteristics of the models used in our paper. VG: Volumetric Graph; SM: Surface Mesh; NSM: Non-manifold surface mesh.

We believe that this work will open an interesting new
direction in simulating deformable objects. There are many
avenues for future work. For example, we would like to pre-
serve angular momentum in our simulation framework. And,
it is worthwhile to investigate new geometrical energy func-
tions for simulating specific material effects, e.g., materials
with anisotropic structures, and to further investigate more
acceleration methods to handle large scale simulation tasks.
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