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ABSTRACT
Relevance feedback is a powerful technique to enhance Content-
Based Image Retrieval (CBIR) performance. It solicits the
user’s relevance judgments on the retrieved images returned
by the CBIR systems. The user’s labeling is then used to
learn a classifier to distinguish between relevant and irrele-
vant images. However, the top returned images may not be
the most informative ones. The challenge is thus to deter-
mine which unlabeled images would be the most informative
(i.e., improve the classifier the most) if they were labeled
and used as training samples. In this paper, we propose
a novel active learning algorithm, called Laplacian Opti-
mal Design (LOD), for relevance feedback image retrieval.
Our algorithm is based on a regression model which mini-
mizes the least square error on the measured (or, labeled)
images and simultaneously preserves the local geometrical
structure of the image space. Specifically, we assume that
if two images are sufficiently close to each other, then their
measurements (or, labels) are close as well. By constructing
a nearest neighbor graph, the geometrical structure of the
image space can be described by the graph Laplacian. We
discuss how results from the field of optimal experimental
design may be used to guide our selection of a subset of im-
ages, which gives us the most amount of information. Exper-
imental results on Corel database suggest that the proposed
approach achieves higher precision in relevance feedback im-
age retrieval.

Categories and Subject Descriptors
H.3.3 [Information storage and retrieval]: Information
search and retrieval—Relevance feedback ; G.3 [Mathematics
of Computing]: Probability and Statistics—Experimental
design

General Terms
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1. INTRODUCTION
In many machine learning and information retrieval tasks,

there is no shortage of unlabeled data but labels are expen-
sive. The challenge is thus to determine which unlabeled
samples would be the most informative (i.e., improve the
classifier the most) if they were labeled and used as training
samples. This problem is typically called active learning [7].
Here the task is to minimize an overall cost, which depends
both on the classifier accuracy and the cost of data collec-
tion. Many real world applications can be casted into active
learning framework. Particularly, we consider the problem
of relevance feedback driven Content-Based Image Retrieval
(CBIR) [19].

Content-Based Image Retrieval (CBIR) has attracted sub-
stantial interests in the last decade [3], [4], [5], [8], [11], [14],
[17], [18], [19], [20]. It is motivated by the fast growth of dig-
ital image databases which, in turn, require efficient search
schemes. Rather than describe an image using text, in these
systems an image query is described using one or more ex-
ample images. The low level visual features (color, texture,
shape, etc.) are automatically extracted to represent the
images. However, the low level features may not accurately
characterize the high level semantic concepts. To narrow
down the semantic gap, relevance feedback is introduced
into CBIR [18].

In many of the current relevance feedback driven CBIR
systems, the user is required to provide his/her relevance
judgments on the top images returned by the system. The
labeled images are then used to train a classifier to separate
images that match the query concept from those that do
not. However, in general the top returned images may not
be the most informative ones. In the worst case, all the
top images labeled by the user may be positive and thus
the standard classification techniques can not be applied
due to the lack of negative examples. Unlike the standard
classification problems where the labeled samples are pre-
given, in relevance feedback image retrieval the system can
actively select the images to label. Thus active learning can
be naturally introduced into image retrieval.

Despite many existing active learning techniques, Support
Vector Machine (SVM) active learning [21] and regression
based active learning [1] have received the most interests.
Based on the observation that the closer to the SVM bound-



ary an image is, the less reliable its classification is, SVM
active learning selects those unlabeled images closest to the
boundary to solicit user feedback so as to achieve maximal
refinement on the hyperplane between the two classes. The
major disadvantage of SVM active learning is that the esti-
mated boundary may not be accurate enough. Moreover, it
may not be applied at the beginning of the retrieval when
there is no labeled images. Some other SVM based active
learning algorithms can be found in [11], [13].

In statistics, the problem of selecting samples to label is
typically referred to as experimental design. The sample
x is referred to as experiment, and its label y is referred
to as measurement. The study of optimal experimental de-
sign (OED) [1] is concerned with the design of experiments
that are expected to minimize variances of a parameterized
model. The intent of optimal experimental design is usu-
ally to maximize confidence in a given model, minimize pa-
rameter variances for system identification, or minimize the
model’s output variance. Classical experimental design ap-
proaches include A-Optimal Design, D-Optimal Design, and
E-Optimal Design. All of these approaches are based on a
least squares regression model. Comparing to SVM based
active learning algorithms, experimental design approaches
are much more efficient in computation. However, this kind
of approaches takes only measured (or, labeled) data into
account in their objective function, while the unmeasured
(or, unlabeled) data is ignored.

Benefit from recent progresses on optimal experimental
design and semi-supervised learning, in this paper we pro-
pose a novel active learning algorithm for image retrieval,
called Laplacian Optimal Design (LOD). Unlike tradi-
tional experimental design methods whose loss functions are
only defined on the measured points, the loss function of
our proposed LOD algorithm is defined on both measured
and unmeasured points. Specifically, we introduce a locality
preserving regularizer into the standard least-square-error
based loss function. The new loss function aims to find a
classifier which is locally as smooth as possible. In other
words, if two points are sufficiently close to each other in
the input space, then they are expected to share the same
label. Once the loss function is defined, we can select the
most informative data points which are presented to the user
for labeling. It would be important to note that the most
informative images may not be the top returned images.

The rest of the paper is organized as follows. In Section
2, we provide a brief description of the related work. Our
proposed Laplacian Optimal Design algorithm is introduced
in Section 3. In Section 4, we compare our algorithm with
the state-or-the-art algorithms and present the experimental
results on image retrieval. Finally, we provide some conclud-
ing remarks and suggestions for future work in Section 5.

2. RELATED WORK
Since our proposed algorithm is based on regression frame-

work. The most related work is optimal experimental design
[1], including A-Optimal Design, D-Optimal Design, and E-
Optimal Design. In this Section, we give a brief description
of these approaches.

2.1 The Active Learning Problem
The generic problem of active learning is the following.

Given a set of points A = {x1,x2, · · · ,xm} in R
d, find a

subset B = {z1, z2, · · · , zk} ⊂ A which contains the most in-

formative points. In other words, the points zi(i = 1, · · · , k)
can improve the classifier the most if they are labeled and
used as training points.

2.2 Optimal Experimental Design
We consider a linear regression model

y = wT x + ǫ (1)

where y is the observation, x is the independent variable,
w is the weight vector and ǫ is an unknown error with zero
mean. Different observations have errors that are indepen-
dent, but with equal variances σ2. We define f(x) = wT x to
be the learner’s output given input x and the weight vector
w. Thus, the maximum likelihood estimate for the weight
vector, ŵ, is that which minimizes the sum squared error

Jsse(w) =
kX

i=1

�
wT zi − yi

�2
(2)

The estimate ŵ gives us an estimate of the output at a novel
input: ŷ = ŵT x.

By Gauss-Markov theorem, we know that ŵ − w has a
zero mean and a covariance matrix given by σ2H−1

sse, where
Hsse is the Hessian of Jsse(w)

Hsse =

�
∂2Jsse

∂w2

�
=

 
kX

i=1

ziz
T
i

!
= ZZ

T

where Z = (z1, z2, · · · , zk).
The three most common scalar measures of the size of the

parameter covariance matrix in optimal experimental design
are:

• D-optimal design: determinant of Hsse.

• A-optimal design: trace of Hsse.

• E-optimal design: maximum eigenvalue of Hsse.

Clearly, out of these three approaches, A-optimal design is
the most efficient one. Some recent work on experimental
design can be found in [10], [23].

3. LAPLACIAN OPTIMAL DESIGN
Since the covariance matrix Hsse used in traditional ap-

proaches is only dependent on the measured samples, i.e.
zi’s, these approaches fail to evaluate the expected errors
on the unmeasured samples. In this Section, we introduce
a novel active learning algorithm called Laplacian Optimal
Design (LOD) which makes efficient use of both measured
(labeled) and unmeasured (unlabeled) samples.

3.1 The Objective Function
In many machine learning problems, it is natural to as-

sume that if two points xi, xj are sufficiently close to each
other, then their measurements (f(xi), f(xj)) are close as
well. Let S be a similarity matrix. Thus, a new loss function
which respects the geometrical structure of the data space
can be defined as follows:

J0(w) =

kX
i=1

�
f(zi)−yi

�2
+

λ

2

mX
i,j=1

�
f(xi)−f(xj)

�2
Sij (3)

where yi is the measurement (or, label) of zi. Note that,
the loss function (3) is essentially the same as the one used



in Laplacian Regularized Regression (LRR, [2]). However,
LRR is a passive learning algorithm where the training data
is given. In this paper, we are focused on how to select the
most informative data for training. The loss function with
our choice of symmetric weights Sij (Sij = Sji) incurs a
heavy penalty if neighboring pints xi and xj are mapped far
apart. Therefore, minimizing J0(w) is an attempt to ensure
that if xi and xj are close then f(xi) and f(xj) are close as
well. There are many choices of the similarity matrix S. A
simple definition is as follows:

Sij =

8<: 1, if xi is among the p nearest neighbors of xj ,
or xj is among the p nearest neighbors of xi;

0, otherwise.

(4)
Let D be a diagonal matrix, Dii =

P
j
Sij , and L = D−S.

The matrix L is called graph Laplacian in spectral graph
theory [6]. Let y = (y1, · · · , yk)T and X = (x1, · · · ,xm).
Following some simple algebraic steps, we see that:

J0(w)

=
kX

i=1

�
wT zi − yi

�2
+

λ

2

mX
i,j=1

�
wT xi −wT xj

�2
Sij

=
�
y − Z

T w
�T �

y − Z
T w
�

+ λwT
� mX

i=1

Diixix
T
i

−

mX
i,j=1

Sijxix
T
j

�
w

= yT y − 2wT
Zy + wT

ZZ
T w

+λwT
�
XDX

T −XSX
T
�
w

= yT y − 2wT
Zy + wT

�
ZZ

T + λXLX
T
�
w

The Hessian of J0(w) can be computed as follows:

H0 =

�
∂2J0

∂w2

�
= ZZ

T + λXLX
T

In some cases, the matrix ZZT +λXLXT is singular (e.g. if
m < d). Thus, there is no stable solution to the optimization
problem Eqn. (3). A common way to deal with this ill-posed
problem is to introduce a Tikhonov regularizer into our loss
function:

J(w)

=
kX

i=1

�
wT zi − yi

�2
+

λ1

2

mX
i,j=1

�
wT xi −wT xj

�2
Sij

+λ2‖w‖
2 (5)

The Hessian of the new loss function is given by:

H =

�
∂2J

∂w2

�
= ZZ

T + λ1XLX
T + λ2I

:= ZZ
T + Λ

where I is an identity matrix and Λ = λ1XLXT + λ2I.
Clearly, H is of full rank. Requiring that the gradient of
J(w) with respect to w vanish gives the optimal estimate
ŵ:

ŵ = H
−1

Zy

The following proposition states the bias and variance prop-
erties of the estimator for the coefficient vector w.

Proposition 3.1. E(ŵ − w) = −H−1Λw, Cov(ŵ) =
σ2(H−1 −H−1ΛH−1)

Proof. Since y = ZT w + ǫ and E(ǫ) = 0, it follows that

E(ŵ −w) (6)

= H
−1

ZZ
T w −w

= H
−1(ZZ

T + Λ− Λ)w −w

= (I −H
−1Λ)w −w

= −H
−1Λw (7)

Notice Cov(y) = σ2I, the covariance matrix of ŵ has the
expression:

Cov(ŵ) = H
−1

ZCov(y)ZT
H

−1

= σ
2
H

−1
ZZ

T
H

−1

= σ
2
H

−1(H − Λ)H−1

= σ
2(H−1 −H

−1ΛH
−1) (8)

Therefore mean squared error matrix for the coefficients w
is

E(w − ŵ)(w − ŵ)T (9)

= H
−1ΛwwT ΛH

−1 + σ
2(H−1 −H

−1ΛH
−1) (10)

For any x, let ŷ = ŵT x be its predicted observation. The
expected squared prediction error is

E(y − ŷ)2

= E(ǫ + wT x− ŵT x)2

= σ
2 + xT [E(w − ŵ)(w − ŵ)T ]x

= σ
2 + xT [H−1ΛwwT ΛH

−1 + σ
2
H

−1 − σ
2
H

−1ΛH
−1]x

Clearly the expected square prediction error depends on the
explanatory variable x, therefore average expected square
predictive error over the complete data set A is

1

m

mX
i=1

E(yi − ŵT xi)
2

=
1

m

mX
i=1

xT
i [H−1ΛwwT ΛH

−1 + σ
2
H

−1 − σ
2
H

−1ΛH
−1]xi

+σ
2

=
1

m
Tr(XT [σ2

H
−1 + H

−1ΛwwT ΛH
−1 − σ

2
H

−1ΛH
−1]X)

+σ
2

Since

Tr(XT [H−1ΛwwT ΛH
−1 − σ

2
H

−1ΛH
−1]X)

≪ Tr(σ2
X

T
H

−1
X),

Our Laplacian optimality criterion is thus formulated by
minimizing the trace of XT H−1X.

Definition 1. Laplacian Optimal Design

max
Z=(z1,··· ,zk)

Tr
�
X

T
�
ZZ

T + λ1XLX
T + λ2I

�−1
X
�

(11)

where z1, · · · , zk are selected from {x1, · · · ,xm}.



4. KERNEL LAPLACIAN OPTIMAL DESIGN
Canonical experimental design approaches (e.g. A-Optimal

Design, D-Optimal Design, and E-Optimal) only consider
linear functions. They fail to discover the intrinsic geometry
in the data when the data space is highly nonlinear. In this
section, we describe how to perform Laplacian Experimen-
tal Design in Reproducing Kernel Hilbert Space (RKHS)
which gives rise to Kernel Laplacian Experimental Design
(KLOD).

For given data points x1, · · · ,xm ∈ X with a positive
definite mercer kernel K : X ×X → R, there exists a unique
RKHS HK of real valued functions on X . Let Kt(s) be the
function of s obtained by fixing t and letting Kt(s)

.
= K(s, t).

HK consists of all finite linear combinations of the formPl

i=1 αiKti
with ti ∈ X and limits of such functions as the

ti become dense in X . We have 〈Ks, Kt〉HK
= K(s, t).

4.1 Derivation of LOD in Reproducing Ker-
nel Hilbert Space

Consider the optimization problem (5) in RKHS. Thus,
we seek a function f ∈ HK such that the following objective
function is minimized:

min
f∈HK

kX
i=1

�
f(zi)−yi

�2
+

λ1

2

mX
i,j=1

�
f(xi)−f(xj)

�2
Sij+λ2‖f‖

2

(12)
We have the following proposition.

Proposition 4.1. Let H = {
Pm

i=1 αiK(·,xi)|αi ∈ R} be
a subspace of HK , the solution to the problem (12) is in H.

Proof. Let H⊥ be the orthogonal complement of H, i.e.
HK = H ⊕ H⊥. Thus, for any function f ∈ HK , it has
orthogonal decomposition as follows:

f = fH + fH⊥

Now, let’s evaluate f at xi:

f(xi) = 〈f, Kxi
〉HK

= 〈fH + fH⊥
, Kxi

〉HK

= 〈fH, Kxi
〉HK

+ 〈fH⊥ , Kxi
〉HK

Notice that Kxi
∈ H while fH⊥ ∈ H⊥. This implies that

〈fH⊥ , Kxi
〉HK

= 0. Therefore,

f(xi) = 〈fH, Kxi
〉HK

= fH(xi)

This completes the proof.

Proposition 4.1 tells us the minimizer of problem (12) admits
a representation f∗ =

Pm

i=1 αiK(·,xi).

Let φ : R
d → H be a feature map from the input space

R
d to H, and K(xi,xj) =< φ(xi), φ(xj) >. Let X denote

the data matrix in RKHS, X = (φ(x1), φ(x2), · · · , φ(xm)).
Similarly, we define Z = (φ(z1), φ(z2), · · · , φ(zk)). Thus,
the optimization problem in RKHS can be written as follows:

min
Z

tr
�
XT
�
ZZT + λ1XLXT + λ2I

�−1
X
�

(13)

Since the mapping function φ is generally unknown, there
is no direct way to solve problem (13). In the following, we
apply kernel tricks to solve this optimization problem. Let
X−1 be the Moore-Penrose inverse (also known as pseudo

inverse) of X. Thus, we have:

XT
�
ZZT + λ1XLXT + λ2I

�−1
X

= XT XX−1�ZZT + λ1XLXT + λ2I
�−1

(XT )−1XT X

= XT X
�
ZZT X + λ1XLXT X + λ2X

�−1
(XT )−1XT X

= XT X
�
XT ZZT X + λ1X

T XLXT X + λ2X
T X
�−1

XT X

= KXX

�
KXZKZX + λ1KXXLKXX + λ2KXX

�−1
KXX

where KXX is a m×m matrix (KXX,ij = K(xi,xj)), KXZ

is a m×k matrix (KXZ,ij = K(xi, zj)), and KZX is a k×m

matrix (KZX,ij = K(zi,xj)). Thus, the Kernel Laplacian
Optimal Design can be defined as follows:

Definition 2. Kernel Laplacian Optimal Design

minZ=(z1,··· ,zk) Tr
�
KXX

�
KXZKZX + λ1KXXLKXX

λ2KXX

�−1
KXX

�
(14)

4.2 Optimization Scheme
In this subsection, we discuss how to solve the optimiza-

tion problems (11) and (14). Particularly, if we select a
linear kernel for KLOD, then it reduces to LOD. Therefore,
we will focus on problem (14) in the following.

It can be shown that the optimization problem (14) is
NP-hard. In this subsection, we develop a simple sequential
greedy approach to solve (14). Suppose n points have been
selected, denoted by a matrix Zn = (z1, · · · , zn). The (n +
1)-th point zn+1 can be selected by solving the following
optimization problem:

max
Zn+1=(Zn,zn+1)

Tr
�
KXX

�
KXZn+1KZn+1X +

λ1KXXLKXX + λ2KXX

�−1
KXX

�
(15)

The kernel matrices KXZn+1 and KZn+1X can be rewritten
as follows:

KXZn+1 =
�
KXZn ,KXzn+1

�
,KZn+1X =

�
KZnX

Kzn+1X

�
Thus, we have:

KXZn+1KZn+1X = KXZnKZnX + KXzn+1
Kzn+1X

We define:

A = KXZnKZnX + λ1KXXLKXX + λ2KXX

A is only dependent on X and Zn. Thus, the (n + 1)-th
point zn+1 is given by:

zn+1 = arg min
zn+1

Tr
�
KXX

�
A + KXzn+1

Kzn+1X

�−1
KXX

�
(16)

Each time we select a new point zn+1, the matrix A is up-
dated by:

A← A + KXzn+1
Kzn+1X

If the kernel function is chosen as inner product K(x,y) =
〈x,y〉, then HK is a linear functional space and the algo-
rithm reduces to LOD.



5. CONTENT-BASED IMAGE RETRIEVAL
USING LAPLACIAN OPTIMAL DESIGN

In this section, we describe how to apply Laplacian Op-
timal Design to CBIR. We begin with a brief description of
image representation using low level visual features.

5.1 Low-Level Image Representation
Low-level image representation is a crucial problem in

CBIR. General visual features includes color, texture, shape,
etc. Color and texture features are the most extensively used
visual features in CBIR. Compared with color and texture
features, shape features are usually described after images
have been segmented into regions or objects. Since robust
and accurate image segmentation is difficult to achieve, the
use of shape features for image retrieval has been limited
to special applications where objects or regions are readily
available.

In this work, We combine 64-dimensional color histogram
and 64-dimensional Color Texture Moment (CTM, [22]) to
represent the images. The color histogram is calculated us-
ing 4 × 4 × 4 bins in HSV space. The Color Texture Mo-
ment is proposed by Yu et al. [22], which integrates the
color and texture characteristics of the image in a compact
form. CTM adopts local Fourier transform as a texture rep-
resentation scheme and derives eight characteristic maps to
describe different aspects of co-occurrence relations of im-
age pixels in each channel of the (SVcosH, SVsinH, V) color
space. Then CTM calculates the first and second moment
of these maps as a representation of the natural color image
pixel distribution. Please see [22] for details.

5.2 Relevance Feedback Image Retrieval
Relevance feedback is one of the most important tech-

niques to narrow down the gap between low level visual
features and high level semantic concepts [18]. Tradition-
ally, the user’s relevance feedbacks are used to update the
query vector or adjust the weighting of different dimensions.
This process can be viewed as an on-line learning process in
which the image retrieval system acts as a learner and the
user acts as a teacher. They typical retrieval process is out-
lined as follows:

1. The user submits a query image example to the sys-
tem. The system ranks the images in database accord-
ing to some pre-defined distance metric and presents
to the user the top ranked images.

2. The system selects some images from the database and
request the user to label them as “relevant” or “irrel-
evant”.

3. The system uses the user’s provided information to re-
rank the images in database and returns to the user
the top images. Go to step 2 until the user is satisfied.

Our Laplacian Optimal Design algorithm is applied in the
second step for selecting the most informative images. Once
we get the labels for the images selected by LOD, we apply
Laplacian Regularized Regression (LRR, [2]) to solve the
optimization problem (3) and build the classifier. The clas-
sifier is then used to re-rank the images in database. Note
that, in order to reduce the computational complexity, we
do not use all the unlabeled images in the database but only
those within top 500 returns of previous iteration.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our pro-

posed algorithm on a large image database. To demonstrate
the effectiveness of our proposed LOD algorithm, we com-
pare it with Laplacian Regularized Regression (LRR, [2]),
Support Vector Machine (SVM), Support Vector Machine
Active Learning (SVMactive) [21], and A-Optimal Design
(AOD). Both SVMactive, AOD, and LOD are active learn-
ing algorithms, while LRR and SVM are standard classi-
fication algorithms. SVM only makes use of the labeled
images, while LRR is a semi-supervised learning algorithm
which makes use of both labeled and unlabeled images. For
SVMactive, AOD, and LOD, 10 training images are selected
by the algorithms themselves at each iteration. While for
LRR and SVM, we use the top 10 images as training data.
It would be important to note that SVMactive is based on
the ordinary SVM, LOD is based on LRR, and AOD is based
on the ordinary regression. The parameters λ1 and λ2 in our
LOD algorithm are empirically set to be 0.001 and 0.00001.
For both LRR and LOD algorithms, we use the same graph
structure (see Eqn. 4) and set the value of p (number of
nearest neighbors) to be 5. We begin with a simple synthetic
example to give some intuition about how LOD works.

6.1 Simple Synthetic Example
A simple synthetic example is given in Figure 1. The data

set contains two circles. Eight points are selected by AOD
and LOD. As can be seen, all the points selected by AOD
are from the big circle, while LOD selects four points from
the big circle and four from the small circle. The numbers
beside the selected points denote their orders to be selected.
Clearly, the points selected by our LOD algorithm can better
represent the original data set. We didn’t compare our algo-
rithm with SVMactive because SVMactive can not be applied
in this case due to the lack of the labeled points.

6.2 Image Retrieval Experimental Design
The image database we used consists of 7,900 images of

79 semantic categories, from COREL data set. It is a large
and heterogeneous image set. Each image is represented as
a 128-dimensional vector as described in Section 5.1. Figure
2 shows some sample images.

To exhibit the advantages of using our algorithm, we need
a reliable way of evaluating the retrieval performance and
the comparisons with other algorithms. We list different
aspects of the experimental design below.

6.2.1 Evaluation Metrics
We use precision-scope curve and precision rate [15] to

evaluate the effectiveness of the image retrieval algorithms.
The scope is specified by the number (N) of top-ranked im-
ages presented to the user. The precision is the ratio of
the number of relevant images presented to the user to the
scope N . The precision-scope curve describes the precision
with various scopes and thus gives an overall performance
evaluation of the algorithms. On the other hand, the pre-
cision rate emphasizes the precision at a particular value of
scope. In general, it is appropriate to present 20 images on
a screen. Putting more images on a screen may affect the
quality of the presented images. Therefore, the precision at
top 20 (N = 20) is especially important.

In real world image retrieval systems, the query image is
usually not in the image database. To simulate such environ-
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Figure 1: Data selection by active learning algorithms. The numbers beside the selected points denote their
orders to be selected. Clearly, the points selected by our LOD algorithm can better represent the original
data set. Note that, the SVMactive algorithm can not be applied in this case due to the lack of labeled points.

(a) (b) (c)

Figure 2: Sample images from category stone, elephant, and ship.

ment, we use five-fold cross validation to evaluate the algo-
rithms. More precisely, we divide the whole image database
into five subsets with equal size. Thus, there are 20 images
per category in each subset. At each run of cross validation,
one subset is selected as the query set, and the other four
subsets are used as the database for retrieval. The precision-
scope curve and precision rate are computed by averaging
the results from the five-fold cross validation.

6.2.2 Automatic Relevance Feedback Scheme
We designed an automatic feedback scheme to model the

retrieval process. For each submitted query, our system re-
trieves and ranks the images in the database. 10 images
were selected from the database for user labeling and the
label information is used by the system for re-ranking. Note
that, the images which have been selected at previous iter-
ations are excluded from later selections. For each query,
the automatic relevance feedback mechanism is performed
for four iterations.

It is important to note that the automatic relevance feed-
back scheme used here is different from the ones described
in [12], [16]. In [12], [16], the top four relevant and irrelevant
images were selected as the feedback images. However, this
may not be practical. In real world image retrieval systems,
it is possible that most of the top-ranked images are relevant
(or, irrelevant). Thus, it is difficult for the user to find both
four relevant and irrelevant images. It is more reasonable
for the users to provide feedback information only on the 10
images selected by the system.

6.3 Image Retrieval Performance
In real world, it is not practical to require the user to

provide many rounds of feedbacks. The retrieval perfor-
mance after the first two rounds of feedbacks (especially the
first round) is more important. Figure 3 shows the average
precision-scope curves of the different algorithms for the first
two feedback iterations. At the beginning of retrieval, the
Euclidean distances in the original 128-dimensional space
are used to rank the images in database. After the user
provides relevance feedbacks, the LRR, SVM, SVMactive,
AOD, and LOD algorithms are then applied to re-rank the
images. In order to reduce the time complexity of active
learning algorithms, we didn’t select the most informative
images from the whole database but from the top 500 im-
ages. For LRR and SVM, the user is required to label the
top 10 images. For SVMactive, AOD, and LOD, the user
is required to label 10 most informative images selected by
these algorithms. Note that, SVMactive can only be ap-
plied when the classifier is already built. Therefore, it can
not be applied at the first round and we use the standard
SVM to build the initial classifier. As can be seen, our LOD
algorithm outperforms the other four algorithms on the en-
tire scope. Also, the LRR algorithm performs better than
SVM. This is because that the LRR algorithm makes effi-
cient use of the unlabeled images by incorporating a locality
preserving regularizer into the ordinary regression objective
function. The AOD algorithm performs the worst. As the
scope gets larger, the performance difference between these
algorithms gets smaller.



(a) Feedback Iteration 1 (b) Feedback Iteration 2

Figure 3: The average precision-scope curves of different algorithms for the first two feedback iterations. The
LOD algorithm performs the best on the entire scope. Note that, at the first round of feedback, the SVMactive

algorithm can not be applied. It applies the ordinary SVM to build the initial classifier.

(a) Precision at Top 10 (b) Precision at Top 20 (c) Precision at Top 30

Figure 4: Performance evaluation of the five learning algorithms for relevance feedback image retrieval. (a)
Precision at top 10, (b) Precision at top 20, and (c) Precision at top 30. As can be seen, our LOD algorithm
consistently outperforms the other four algorithms.

By iteratively adding the user’s feedbacks, the correspond-
ing precision results (at top 10, top 20, and top 30) of the
five algorithms are respectively shown in Figure 4. As can be
seen, our LOD algorithm performs the best in all the cases
and the LRR algorithm performs the second best. Both of
these two algorithms make use of the unlabeled images. This
shows that the unlabeled images are helpful for discovering
the intrinsic geometrical structure of the image space and
therefore enhance the retrieval performance. In real world,
the user may not be willing to provide too many relevance
feedbacks. Therefore, the retrieval performance at the first
two rounds are especially important. As can be seen, our
LOD algorithm achieves 6.8% performance improvement for
top 10 results, 5.2% for top 20 results, and 4.1% for top 30
results, comparing to the second best algorithm (LRR) after
the first two rounds of relevance feedbacks.

6.4 Discussion
Several experiments on Corel database have been system-

atically performed. We would like to highlight several inter-
esting points:

1. It is clear that the use of active learning is beneficial
in the image retrieval domain. There is a significant

increase in performance from using the active learning
methods. Especially, out of the three active learning
methods (SVMactive, AOD, LOD), our proposed LOD
algorithm performs the best.

2. In many real world applications like relevance feed-
back image retrieval, there are generally two ways of
reducing labor-intensive manual labeling task. One is
active learning which selects the most informative sam-
ples to label, and the other is semi-supervised learning
which makes use of the unlabeled samples to enhance
the learning performance. Both of these two strate-
gies have been studied extensively in the past [21],
[11], [9], [12]. The work presented in this paper is fo-
cused on active learning, but it also takes advantage of
the recent progresses on semi-supervised learning [2].
Specifically, we incorporate a locality preserving reg-
ularizer into the standard regression framework and
find the most informative samples with respect to the
new objective function. In this way, the active learning
and semi-supervised learning techniques are seamlessly
unified for learning an optimal classifier.

3. The relevance feedback technique is crucial to image



retrieval. For all the five algorithms, the retrieval per-
formance improves with more feedbacks provided by
the user.

7. CONCLUSIONS AND FUTURE WORK
This paper describes a novel active learning algorithm,

called Laplacian Optimal Design, to enable more effective
relevance feedback image retrieval. Our algorithm is based
on an objective function which simultaneously minimizes the
empirical error and preserves the local geometrical structure
of the data space. Using techniques from experimental de-
sign, our algorithm finds the most informative images to
label. These labeled images and the unlabeled images in
the database are used to learn a classifier. The experimen-
tal results on Corel database show that both active learning
and semi-supervised learning can significantly improve the
retrieval performance.

In this paper, we consider the image retrieval problem on
a small, static, and closed-domain image data. A much more
challenging domain is the World Wide Web (WWW). For
Web image search, it is possible to collect a large amount
of user click information. This information can be naturally
used to construct the affinity graph in our algorithm. Also,
although our primary interest in this paper is focused on
relevance feedback image retrieval, our results may also be
of interest to researchers in patten recognition and machine
learning, especially when a large amount of data is available
but only a limited samples can be labeled.
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