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Abstract

We present a real-time algorithm called compensated ray marching
for rendering of smoke under dynamic low-frequency environment
lighting. Our approach is based on a decomposition of the input
smoke animation, represented as a sequence of volumetric density
fields, into a set of radial basis functions (RBFs) and a sequence
of residual fields. From this low-frequency RBF approximation
of density fields, an efficient technique is proposed for computing
source radiance distributions throughout the volume. Source ra-
diances from single and multiple scattering are directly computed
at only the RBF centers and then approximated at other points in
the volume using an RBF-based interpolation. With the computed
source radiances, a slice-based integration of radiance along each
viewing ray is performed to render the final image. During this ray
marching process, the residual fields are compensated back into the
radiance integral to generate images of high detail.

The runtime algorithm, which includes both light transfer simula-
tion and ray marching, can be easily implemented on the GPU, and
thus allows for real-time manipulation of viewpoint and lighting,
as well as interactive editing of smoke attributes such as extinc-
tion cross section, scattering albedo, and phase function. With only
moderate preprocessing time and storage, this technique generates
rendering results that are comparable to those from off-line render-
ing algorithms like ray tracing.

Keywords: participating media, environment lighting, single scat-
tering, multiple scattering, perfect hashing

1 Introduction

Rendering of smoke presents a challenging problem in computer
graphics because of its complicated effects on light propagation.
Within a smoke volume, light undergoes absorption and scattering
interactions that vary from point to point because of the spatial non-
uniformity of smoke. In static participating media, the number and
complexity of scattering interactions lead to a substantial expense
in computation. For a dynamic medium like smoke, whose intricate
volumetric structure changes with time, the computational costs can
be prohibitive.

Despite the practical difficulties of smoke rendering, it nevertheless
remains a popular element in many applications such as films and
games. To achieve the desired visual effects of smoke, a designer
should be afforded real-time control over the lighting environment
and vantage point, as well as the volumetric distribution and optical
properties of the smoke.

In this work, we present a real-time algorithm called compensated
ray marching for rendering smoke animations with dynamic low-
frequency environment lighting and controllable smoke attributes.
As in most multiple scattering techniques (e.g., [Kajiya and Herzen
1984]), our runtime algorithm first simulates light transfers to com-
pute the source radiances inside the volume, then integrates the ra-
diance contributions in a ray march along each viewing ray. To
expedite this process, we propose a technique based on a decom-
position of the smoke volume into a low-frequency approximation
and a residual field. In the low-frequency approximation, the smoke
volume is modeled by a set of radial basis functions (RBFs). Source

Figure 1: Real-time rendering of smoke under dynamic environment light-

ing. The appearance of a smoke volume can change significantly with re-

spect to illumination.

radiances in this RBF model can be rapidly evaluated by directly
computing the radiances at only the RBF centers, and then approx-
imating the radiances at other points inside the volume using an
RBF-based interpolation. For fast computation of radiances at RBF
centers, we employ an adaptation of the spherical harmonic expo-
nentiation (SHEXP) technique [Ren et al. 2006] to evaluate single
scattering and initialize an iterative multiple scattering procedure.
Since evaluation of source radiances comprises the bulk of compu-
tation in a participating media simulation, this low-frequency ap-
proximation of the smoke density field and source radiances leads
to a considerable speedup in rendering, which then enables interac-
tive manipulation.

The appearance of fine-scale smoke details such as vortices depends
on the high-frequency density components contained in the resid-
uals. To incorporate these smoke details in an efficient manner,
we compensate for the residuals in the ray march by accounting
for their extinction effects in the radiance integration along viewing
rays. Since residual fields have significant values only at sparse lo-
cations, we take advantage of the perfect spatial hashing [Lefebvre
and Hoppe 2006] technique to substantially compress and rapidly
reconstruct this data.

The runtime algorithm, which includes both light transfer simula-
tion and ray marching, can be easily implemented on the GPU, and
thus offers users real-time feedback for changes in viewpoint, light-
ing, and smoke attributes such as extinction cross section, scatter-
ing albedo, and phase function. With practical amounts of prepro-
cessing time and storage, we demonstrate the rendering results of
compensated ray marching to be comparable to those from offline
rendering algorithms like ray tracing, as shown in Fig. 6 and the
supplemental video. With this technique, interactive modifications
of scattering properties becomes feasible not only for animated se-
quences of smoke, but also of other non-emissive media such as
mist, steam, and dust.

2 Related Work

Extensive research has been done on realistic simulation of par-
ticipating media [Cerezo et al. 2005]. While impressive renderings
have been generated for static scenes with previous techniques, they
do not offer a way to render animated sequences in real time. Here,
we limit our discussion to a small number of representative methods
for efficient simulation.



Analytic methods Blinn [1982] introduced an analytic technique
for rendering single scattering in homogeneous media with low
scattering albedo and an infinitely distant light source. For lighting
that resides within a homogeneous medium, Narasimhan and Na-
yar [2003] proposed a multiple scattering model for optically thick
media, and [Biri et al. 2004; Sun et al. 2005] presented single scat-
tering formulas that can be evaluated in real time on programmable
graphics hardware. The method in [Sun et al. 2005] can be general-
ized to handle environment illumination and the effects of media on
surface reflectance. This approach has been generalized in [Anony-
mous 2007] to render single scattering in smooth, optically thin,
inhomogeneous media in which there exists little multiple scatter-
ing. The medium is modelled using radial basis functions, with-
out accounting for the high-frequency residuals needed to represent
fine details in media such as smoke. Due to its inhomogeneity and
significant multiple scattering of light, smoke is not well-suited for
analytic formulation.

Stochastic methods Another approach is to approximate the over-
all scattering behavior using only a small number of random sam-
ples, rather than evaluate the numerous samples of a full participat-
ing media simulation. High quality global illumination effects have
been produced with Monte Carlo path tracing methods [Lafortune
and Willems 1996]. Stam [1994] introduced randomness by in-
corporating stochastic intensity perturbations according to statistics
computed from the density field and an illumination model. Meth-
ods based on volume photon maps [Jensen and Christensen 1998;
Fedkiw et al. 2001] trace a relatively small number of rays, and de-
termine source radiance at a point based on light interactions within
its neighborhood. While these strategies for sampling reduction can
significantly decrease computation, considerable simulation time is
still needed to render a single image, making this approach inap-
propriate for interactive applications on animated sequences.

Numerical simulations In contrast to stochastic methods, many
techniques compute the radiance transport integral in a determin-
istic manner. Kajiya and Herzen [1984] computed the source
radiance of voxels in a spherical harmonics basis whose coeffi-
cients are computed from a system of partial differential equa-
tions (PDEs), and then integrated radiances along viewing rays.
Rushmeier [1987; 1988] presented zonal finite element methods
for isotropic scattering in participating media. Stam [1995] used
blobs to model a density volume, and computed energy transport
among blobs based on diffusion theory. Geist et al. [2004] also
computed multiple scattering as a diffusion process, using a lattice-
Boltzmann method as a PDE system solver. These approaches to
radiance transport simulation, while faster than conventional path
tracing, nevertheless require offline computation.

Simplified volume representations have also been used towards ob-
taining high performance. Dobashi et al. [2000] represented clouds
as a set of metaballs, for which isotropic single scattering is com-
puted at their centers, and then their radiance contributions are com-
posited by a billboard-based blending. For smoke, we utilize an
RBF representation of the volume density to facilitate computation
of source radiances, including both single and multiple scattering.
Moreover, the RBF model is used in conjunction with model residu-
als in the ray march to obtain real-time rendering results with high-
frequency smoke details. While the method in [Dobashi et al. 2000]
handles only directional lighting, ours addresses complex environ-
ment illumination.

Precomputation techniques Efficient rendering of participating
media can also be achieved through precomputation of various
scene-dependent quantities. In [Harris and Lastra 2001], static
clouds illuminated by multiple directional light sources are ren-

x A 3D point
s,ω Direction
xω A point where light enters the medium

along direction ω
ωi,ωo Incident, outgoing radiance direction
S Sphere of directions
D(x) Smoke density
σt Extinction cross section
σs Scattering cross section
Ω Single-scattering albedo, computed as σs/σt

κt(x) Extinction coefficient, computed as σtD(x)
τ(u,x) Transmittance from u to x,

computed as exp(−∫ x
u κt(v)dv)

τ∞(x,ω) Transmittance from infinity to x from
direction ω , computed as exp(−∫ ∞ω

x κt(v)dv)
Lin(ω) Environment map
Lout(x,ω) Outgoing radiance
J(x,ω) Source radiance
p(ωo,ωi) Phase function
yyy(s) Set of spherical harmonic basis functions
yi(s), ym

l (s) Spherical harmonic basis function
fff i, fff m

l Spherical harmonic coefficient vector

Table 1: Notation

dered using precomputed shading information. Precomputed radi-
ance transfer (PRT) [Sloan et al. 2002] can be applied to volumetric
models in addition to surfaces. In PRT, a light transfer vector is pre-
computed at each voxel, and is used in iteratively forward scattering
the radiance until it exits the volume. For a medium represented by
a particle system, Szirmay-Kalos et al. [2005] precomputed a vis-
ibility network and opacity values between visible particles. With
this information, multiple scattering among the particles is itera-
tively evaluated at run time in a manner that reuses radiance trans-
port that has been computed along the network paths. From the
observation that multiple scattering causes blurring and attenuation
of light, Premoze et al. [2004] presented an analytic formulation
of multiple scattering based on point spread functions precomputed
from the optical properties within the medium. This technique was
later modified by Hegeman et al. [2005] to perform path integra-
tion on programmable graphics hardware. In all of these methods,
the precomputed quantities are valid only for the given static par-
ticipating medium. For dynamic smoke sequences with adjustable
smoke parameters, the preprocessing time and storage costs would
be prohibitive.

3 Notation and Background

Let the lighting be represented as a low-frequency environment map
Lin, described by a vector of spherical harmonic coefficients LLLin. A
sequence of volumetric density fields is used to model the input
smoke animation. At each frame, the smoke density is denoted as
D(x). In the following, we briefly describe light transport in scat-
tering media and review operations on spherical harmonics. Table 1
lists the notation used in this paper.

Light Transport in Scattering Media To describe light transport
in scattering media, we utilize several radiance quantities, which we
define as in [Cerezo et al. 2005]. As shown in Fig. 2, the radiance
at a point x is composed of the reduced incident radiance Ld and the
media radiance Lm:

Lout(x,ωo) = Ld(x,ωo)+Lm(x,ωo).

The reduced incident radiance represents incident radiance Lin

along direction ωo that has been attenuated by the medium before
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Figure 2: Light transport in smoke.

arriving at x:

Ld(x,ωo) = τ∞(x,ωo)Lin(ωo). (1)

The media radiance Lm is the integration of the source radiance J
that arrives at x along direction ωo from points within the medium:

Lm(x,ωo) =
∫ x

xωo

τ(u,x)σtD(u)J(u,ωo)du.

In non-emissive media such as smoke, this source radiance J is
composed of a single scattering Jss and multiple scattering Jms com-
ponent:

J(u,ωo) = Jss(u,ωo)+ Jms(u,ωo).

The single scattering term, Jss, represents the first scattering inter-
action of the reduced incident radiance:

Jss(u,ωo) =
Ω

4π

∫

S
Ld(u,ωi)p(ωo,ωi)dωi. (2)

The multiple scattering term, Jms, accounts for scattering of the me-
dia radiance:

Jms(u,ωo) =
Ω

4π

∫

S
Lm(u,ωi)p(ωo,ωi)dωi. (3)

Spherical Harmonics Low-frequency spherical functions can be
efficiently represented in terms of spherical harmonics (SHs). A
spherical function f (s) can be projected onto a basis set yyy(s) to
obtain a vector fff that represents its low-frequency components:

fff =
∫

S
f (s)yyy(s)ds. (4)

An order-n SH projection has n2 vector coefficients. With these
coefficients, we can reconstruct a spherical function f̃ (s) that ap-
proximates f (s):

f̃ (s) =
n2−1

∑
i=0

fff iyi(s) = fff · yyy(s). (5)

The SH triple product, denoted by fff ∗ggg, represents the order-n pro-
jected result of multiplying the reconstructions of two order-n vec-
tors:

fff ∗ggg =
∫

S
f (s)g(s)yyy(s)ds ⇒ ( fff ∗ggg)i = ∑

j,k

Γi jk fff j gggk,

where the SH triple product tensor Γi jk is defined as

Γi jk =
∫

S
yi(s)y j(s)yk(s)ds.

= +

(a) original data (b) RBF approx. (c) residual (×16)

Figure 3: Density field approximation. (a) Original volume density D(x);
(b) RBF approximation D̃(x); (c) residual field R(x), scaled by 16 for better

viewing. Red indicates positive residuals, and blue is negative.

Γi jk is symmetric, sparse, and of order 3.

SH convolution, denoted by fff ⋆ ggg, represents the order-n projected
result of convolving the reconstructions of two order-n vectors:

fff ⋆ggg =
∫

S

∫

S
f (t)g(Rs(t))yyy(s)dt ds ⇒ ( fff ∗ggg)m

l =

√

4π

2l +1
fff m

l ggg0
l ,

where g(s) is a circularly symmetric function, and Rs is a rotation
along the elevation angle towards direction s (i.e., the angle between
the positive z-axis and direction s).

SH exponentiation, denoted by exp∗( fff ), represents the order-n pro-
jected result of the exponential of a reconstructed order-n vector:

exp∗( fff ) =
∫

S
exp( f (s))yyy(s)ds.

This can be efficiently calculated on the GPU using the optimal
linear approximation described in [Ren et al. 2006]:

exp∗( fff ) ≈ exp

(

fff 0√
4π

)

(

a(‖ f̂ff‖)111+b(‖ f̂ff‖) f̂ff
)

,

where f̂ff = (0, fff 1, fff 2, ..., fff n2−1), 111 = (
√

4π,0,0, ...,0), and a, b are

tabulated functions of the magnitude of input vector f̂ff .

4 Algorithm Overview

Our approach consists of a preprocessing step and a runtime ren-
dering algorithm.

Preprocessing As shown in Fig. 3, the density field D(x) is first de-
composed into a weighted sum of RBFs Bℓ(x) and a residual R(x):

D(x) = D̃(x)+R(x) = ∑
ℓ

wℓBℓ(x)+R(x).

Each RBF Bℓ(x) is defined by its center cℓ and radius rℓ:

Bℓ(x) = G(‖x− cℓ‖,rℓ),

where G(t,λ ) is a radial basis function of the following form
[Wyvill and Trotman 1990]:

G(t,λ ) =

{

1− 22t2

9λ 2 + 17t4

9λ 4 − 4t6

9λ 6 , if t ≤ λ ;

0, otherwise.

These RBFs are approximately Gaussian in shape, have local sup-
port, and are C1 continuous.

The RBF model D̃(x) represents a low-frequency approximation of
the smoke density field. In general, the residual field R(x) contains
a relatively small number of significant values. To promote com-
pression, we zero the values below a given threshold, such that the
residual becomes sparse.



(a) single scattering (b) multiple scattering (c) compensated ray marching

Figure 4: Source radiance components and compensated ray marching result. The smoke is illuminated with the KITCHEN environment map, shown as insets

at the upper-right.

Runtime In a participating media simulation, the computational
expense mainly lies in the evaluation of source radiances J from
the density field D. To expedite this process, we compute an ap-
proximation J̃ of the source radiances from the RBF model D̃ of
the density field. Specifically, we compute J̃ due to single and mul-
tiple scattering at only the RBF centers:

J̃(cℓ) = J̃ss(cℓ)+ J̃ms(cℓ).

The source radiance at any point x in the medium is then approx-
imated as a weighted combination of the source radiances at these
centers:

J(x,ωo) ≈ J̃(x,ωo) =
1

D̃(x)
∑
ℓ

wℓBℓ(x)J̃(cℓ,ωo).

An example of single scattering and multiple scattering source ra-
diances in a smoke volume is illustrated in Fig. 4 (a) and (b).

After computation of source radiances, we perform a ray march to
compute the media radiance Lm(x,ωo) by gathering radiance contri-
butions towards the viewpoint. These radiance contributions con-
sist of a component L̃m computed from the approximated source
radiances J̃ and the RBF density model, and a component C̃m that
compensates for the density field residual:

Lm(x,ωo) ≈ L̃m(x,ωo)+C̃m(x,ωo)
= ∑N

j=1 τ̃(x j,x)σtD̃(x j)J̃(x j,ωo) +

∑N
j=1 τ̃(x j,x)σtR(x j)J̃(x j,ωo),

(6)

where τ̃ denotes transmittance values computed from D̃, and x j in-
dexes a set of N uniformly distributed points between xωo

and x.

The compensation term C̃m brings into the ray march the extinction
effects of the density residuals, as shown in Fig. 4 (c).

Due to its size, a density field D cannot in general be effectively
processed on the GPU. However, the decomposition of a density
field into an RBF approximation and a residual field leads to a con-
siderable reduction in data size. Because of its sparsity, we observe
that the residual can be highly compressed using the perfect spatial
hashing technique [Lefebvre and Hoppe 2006]. In addition to pro-
viding manageable storage costs, perfect spatial hashing also offers
fast reconstruction of the residual in the ray march. By incorpo-
rating high-frequency smoke details in this manner, high-quality
smoke renderings can be generated as exemplified in Fig. 6 and
Fig. 9.

In this formulation, we obtain real-time performance with high vi-
sual fidelity by accounting for the cumbersome residual field only
where it has a direct impact on Eq. (6), namely, in the smoke density
values. For these smoke densities, the residual can be efficiently re-
trieved from the hash table using perfect spatial hashing. In the

other factors of Eq. (6), the residual has only an indirect effect
and also cannot be rapidly accounted for. We therefore exclude
the residuals from computations of source radiances and transmit-
tances to significantly speed up processing without causing signif-
icant degradation of smoke appearance, as will be shown in Sec-
tion 5.

5 Algorithm Details

5.1 Density Field Approximation

Given the number n of RBFs, we compute an optimal approxima-
tion of the smoke density field by solving the following minimiza-
tion problem:

min
cℓ,rℓ,wℓ



∑
j,k,l

[

D(x jkl)−
n

∑
ℓ=1

wℓBℓ(x jkl)

]2


 , (7)

where ( j,k, l) indexes a volumetric grid point at position x jkl . For
optimization, we employ the L-BFGS-B minimizer [Zhu et al.
1997], which was used in [Tsai and Shih 2006] to fit spherical RBFs
to a lighting environment, and in [Sloan et al. 2005] to fit zonal har-
monics to a radiance transfer function.

Since L-BFGS-B is a derivative-based method, at each iteration we
need to provide the minimizer with the objective function and the
partial derivatives for each variable, which are listed in the Ap-
pendix. Evaluation of these quantities requires iterating over all
voxels in the volume, 1003 ∼ 1283 for the examples in this paper.
To reduce computation, we take advantage of the sparsity of the
smoke data by processing only voxels within the support range of
an RBF. To avoid entrapment in local minima at early stages of the
algorithm, we also employ a teleportation scheme similar to that
in [Cohen-Steiner et al. 2004], where we record the location of the
maximum error during the approximation procedure and then move
the most insignificant basis function there. We utilize teleportations
at every 20 iterations of the minimizer, and when the minimizer
converges we teleport the most insignificant RBF alternatingly to
the location of maximum error or to a random location with non-
zero data. The inclusion of teleportation into the minimization pro-
cess often leads to a further reduction of the objective function by
20% ∼ 30%.

Depending on the smoke density distribution in each frame, a dif-
ferent number n of RBFs should be utilized to provide a balance
between accuracy and efficiency. We start with a large number
(1000) of RBFs in each frame, then after optimization by Eq. (7) we
merge RBFs that are in close proximity. Specifically, Bℓ and Bh are
merged together if their centers satisfy the condition ‖cℓ−ch‖ < ε .
The center of the new RBF is then taken as the midpoint between cℓ



and ch. After this merging process, we fix the RBF centers and opti-
mize again with respect to only rℓ and wℓ. In our current implemen-
tation, ε is set to 2∆, where ∆ is the distance between neighboring
grid points in the volume.

To accelerate this process, we take advantage of the temporal co-
herence in smoke animations by initializing the RBFs of a frame
with the optimization result of the preceding frame before merging.
For the first frame, the initialization is generated randomly. Perfor-
mance results for this RBF fitting scheme are listed in Table 2.

5.2 Residual Field Compression

After computing the RBF approximation of the density field, the
residual density field R(x) = D(x)− D̃(x) is then compressed for
GPU processing. While the residual field is of the same resolution
as the density field, it normally consists of small values. We zero
entries in R(x) below a given threshold (0.005 ∼ 0.01 for the exam-
ples in this paper), and then compress the resulting sparse residual
field by perfect spatial hashing [Lefebvre and Hoppe 2006], which
is lossless and ideally suited for parallel evaluation on graphics
hardware.

In our implementation of perfect spatial hashing, we utilize a few
modifications tailored to our application. Unlike in [Lefebvre and
Hoppe 2006] where nonzero values in the data lie mostly along the
surface of a volume, the nonzero values in our residual fields are
distributed throughout the volume. Larger offset tables are there-

fore needed, so we set the initial table size to 3
√

K/3 + 9 (K is the

number of nonzero items in the volume), instead of 3
√

K/6 used in
[Lefebvre and Hoppe 2006].

In processing a sequence of residual fields, we tile several consec-
utive frames into a larger volume on which hashing is conducted.
Since computation is nonlinear to the number of domain slots, we
construct a set of smaller hash volumes instead of tiling all the
frames into a single volume. With smaller hash volumes, we also
avoid the precision problems that arise in decoding the domain co-
ordinates of large packed volumes. In our implementation, we tile
33 = 27 frames per volume.

5.3 Single Scattering

To promote runtime performance, source radiance values in the
smoke volume are calculated using the low-frequency RBF approx-
imation of the density field, D̃. We compute single scattering at the
RBF centers according to Eq. (2):

J̃ss(cℓ,ωo) = Ω
4π

∫

S L̃d(cℓ,ωi)p(ωo,ωi)dωi

= Ω
4π

∫

S Lin(ωi)τ̃∞(cℓ,ωi)p(ωo,ωi)dωi,
(8)

where τ̃∞(cℓ,ωi) = exp(−∫ ∞ωi
cℓ σtD̃(u)du) is the approximated

transmittance along direction ωi from infinity to cℓ.

In scattering media, phase functions are often well-parameterized
by the angle θ between the incoming and outgoing directions. For
computational convenience, we therefore rewrite p(ωo,ωi) as a cir-
cularly symmetric function p(z), where z = cosθ . With this repa-
rameterization of the phase function, Eq. (8) can be efficiently com-
puted using the SH triple product and convolution:

J̃JJss(cℓ) =
Ω

4π
[(LLLin ∗ τ̃ττ(cℓ))⋆ ppp] . (9)

LLLin and ppp are precomputed according to Eq. (4). In the follow-
ing, we describe how to efficiently compute the transmittance vec-
tor τ̃ττ(cℓ) on the fly.

Figure 5: The accumulative optical depth of an RBF B is determined by

the angle β subtended by half the RBF and its absolute radius r. For fast

evaluation, the precomputed value for a unit-radius RBF Bu with angle β is

retrieved, rotated, and then multiplied by r.

Computing the transmittance vector τ̃ττ(cℓ) Expressing transmit-
tance directly in terms of the RBFs, we have

τ̃(cℓ,ωi) = exp
(

−σt ∑h wh

∫ ∞ωi
cℓ Bh(u)du

)

= exp(−σt ∑h whTh(cℓ,ωi)) ,

where Th(cℓ,ωi) is the accumulative optical depth through RBF Bh.
τ̃ττ(cℓ) can then be computed as

τ̃ττ(cℓ) = exp∗

(

−σt ∑
h

whTTT h(cℓ)

)

,

where TTT h(cℓ) is the SH projection of Th(cℓ,ωi).

For efficient determination of TTT h(cℓ), we tabulate the accumulative
optical depth vector TTT (β ) with respect to angle β , equal to half the
subtended angle of a unit-radius RBF Bu as illustrated in Fig. 5.
Note that β ranges from 0 to π:

β =

{

arcsin(1/d), if d > 1
arccos(d)+π/2, otherwise

where d is the distance from cℓ to the center of Bu. Since the RBF
kernel function G is symmetric, this involves a 1D tabulation of
zonal harmonic (ZH) vectors.

At runtime, we retrieve ZH vectors TTT (βℓ,h) from the table, where
βℓ,h is half the angle subtended by RBF Bh as seen from cℓ. TTT h(cℓ)
is then computed by rotating TTT (βℓ,h) to the axis determined by cℓ
and ch, followed by a multiplication with the radius rh. We note that
this computation is analogous to that in [Ren et al. 2006], except
that here we are dealing with accumulative optical depth instead of
log space visibility.

Computation of the transmittance vector τ̃ττ(cℓ) is then straightfor-
ward. For each RBF center, we iterate through the RBFs. Their ac-
cumulative optical depth vectors are retrieved, rotated, scaled, and
summed up to yield the total optical depth vector. Finally, it is mul-
tiplied by the negative extinction cross section and exponentiated to
yield the transmittance vector τ̃ττ(cℓ). With this transmittance vec-
tor, the source radiance due to single scattering is computed from
Eq. (9).

Comparison This single scattering approximation yields results
similar to those obtained from ray tracing, as shown in the top row
of Fig. 6. For a clearer comparison, we perform ray tracing with
the approximated density field D̃(x), and compare it with our sin-
gle scattering result. In rendering the single scattering image, the
ray marching algorithm described in Section 5.5 is used without
accounting for the residual.



(a) our result (b) ray tracing

Figure 6: Comparison between our results and ray tracing. Top: single

scattering in an approximated density field. Middle: single and multiple

scattering in the approximated density field. Bottom: final results for the

original density field.

5.4 Multiple Scattering

Source radiance Jms due to multiple scattering is expressed in
Eq. (3). In evaluating Jms, we first group light paths by the number
of scattering events they include:

Jms(x,ωo) = J2
ms(x,ωo)+ J3

ms(x,ωo)+ ... .

Jk
ms represents source radiance after k scattering events, computed

from media radiance that has scattered k−1 times:

Jk
ms(x,ωo) =

Ω

4π

∫

S
Lk−1

m (x,ωi)p(ωo,ωi)dωi,

where

Lk−1
m (x,ωo) =

∫ x

xωo

τ(u,x)σtD(u)Jk−1
ms (u,ωo)du.

In this recursive computation, we use the single scattering source
radiance to initialize the procedure:

L1
m(x,ωo) =

∫ x

xωo

τ(u,x)σtD(u)Jss(u,ωo)du.

This method is similar to that in [Szirmay-Kalos et al. 2005], ex-
cept that we simulate scattering between RBFs instead of between
randomly sampled particles in the volume.

In the SH domain, this scheme proceeds as follows. We first com-
pute at each RBF center the initial radiance distributions from single
scattering:

III1(cℓ) = LLLin ∗ τ̃ττ(cℓ)

J̃JJ
1
ms(cℓ) = J̃JJss(cℓ) = Ω

4π (III1(cℓ)⋆ ppp)

EEE1(cℓ) = J̃JJ
1
ms(cℓ),

(a) radiance propagation (b) GPU pipeline

Figure 7: Multiple scattering simulation. (a) estimation of incident radiance

at RBF center c1. Note that θ1,3 is equal to π/2 because c1 is located within

RBF B3. (b) GPU pipeline for multiple scattering simulation.

where III and EEE represent incident and exitant radiance, respectively.
Then at each iteration k, we update the three SH vectors according
to

IIIk(cℓ) = H({EEEk−1(ch)})
J̃JJ

k
ms(cℓ) =

α(cℓ)Ω
4π (IIIk(cℓ)⋆ ppp)

EEEk(cℓ) = (1−α(cℓ))III
k(cℓ)+ J̃JJ

k
ms(cℓ).

Intuitively, we evaluate the incident radiance from the exitant radi-
ance of the preceding iteration using a process H, which will later
be explained in detail. Then we compute the scattered source radi-
ance by convolving the incident radiance with the phase function.
Here, α(cℓ) is the opacity of RBF Bℓ along its diameter (i.e., the
scattering probability of Bℓ), computed as in [Szirmay-Kalos et al.
2005] by α(cℓ) = 1− e−3.4rℓ . Finally, we add the scattered source
radiance to the transmitted radiance to yield the exitant radiance.

The simulation runs until the magnitude of EEEk+1(cℓ) falls below
a user-specified threshold, or until a user-specified number of it-
erations is reached. In our implementation, this process typically
converges in 5-10 iterations.

Estimation of Incident Radiance IIIk(cℓ) To estimate the incident
radiance at an RBF center cℓ, we consider each of the RBFs in
its neighborhood as a light source that illuminates cℓ, as illustrated
in Fig. 7 (a). The illumination from RBF Bh is approximated as

that from a uniform spherical light source, whose intensity Ek−1
ℓ,h

in direction cℓ − ch is reconstructed from the SH vector EEEk−1(ch)
using Eq. (5):

Ek−1
ℓ,h = EEEk−1(ch) · yyy(s(cℓ,ch)),

where s(cℓ,ch) = cℓ−ch

‖cℓ−ch‖ represents the direction from ch to cℓ.

The SH vector for a uniform spherical light source can be repre-
sented as a zonal harmonic vector, and tabulated with respect to
the angle θ , equal to half the subtended angle by a spherical light
source of unit radius as in [Ren et al. 2006]. Unlike β in Sec-
tion 5.3, θ ranges from 0 to π/2 such that cℓ does not lie within a
light source. From this precomputed table, we can retrieve the SH
vector using the angle θℓ,h, which is half the angle subtended by
RBF Bh as seen from point cℓ:

θℓ,h =

{

arcsin(rh/‖cℓ − ch‖), if ‖cℓ − ch‖ > rh;
π/2, otherwise.

We then rotate the vector to direction cℓ − ch, scale it by
min(rh,‖cℓ − ch‖) to account for RBF radius, and finally multiply

it by the intensity Ek−1
ℓ,h to obtain the SH vector IIIk

ℓ,h.



Figure 8: Ray marching for radiance integration along view rays.

The incident radiance IIIk(cℓ) at cℓ is then computed as:

IIIk(cℓ) = ∑
‖cℓ−ch‖<ρℓ

τ̃(cℓ,ch)III
k
ℓ,h,

where the parameter ρℓ is used to adjust the neighborhood size. In
our current implementation, the default value of ρℓ is 2rℓ.

The source radiance for different numbers of scattering events is
aggregated to obtain the final source radiance due to multiple scat-

tering: J̃JJms(cℓ) = ∑k=2 J̃JJ
k
ms(cℓ). Combining this with the single-

scattering component of Section 5.3 yields the final source radi-
ance:

J̃JJ(cℓ) = J̃JJss(cℓ)+ J̃JJms(cℓ).

Comparison The middle row in Fig. 6 compares our multiple
scattering result with that from the offline algorithm for volumet-
ric photon mapping [Jensen and Christensen 1998; Fedkiw et al.
2001]. Although our algorithm employs several approximations in
the multiple scattering simulation, the two images are comparable.
As in [Fedkiw et al. 2001], we use one million photons in comput-
ing the volume photon map. A forward ray march is then performed
to produce the photon map image.

5.5 Compensated Ray Marching

From the source radiances at the RBF centers, we interpolate the
source radiance of each voxel in the volume and composite the ra-
diances along each view ray:

L(x,ωo) = τ(xωo
,x)Lin(ωo)+

∫ x
xωo

τ(u,x)σtD(u)J(u,ωo)du

≈ τ̃(xωo
,x)Lin(ωo)+

∫ x
xωo

τ̃(u,x)σtD(u)J̃(u,ωo)du

= τ̃(xωo
,x)Lin(ωo)+

∫ x
xωo

τ̃(u,x)σt J̃D(u,ωo)du

(10)
where

J̃D(u,ωo) = D(u)J̃(u,ωo)

= D(u)
(

yyy(ωo) · 1
D̃(u) ∑ℓ wℓBℓ(u)J̃JJ(cℓ)

)

=
(

1+
R(u)
D̃(u)

)

(

yyy(ωo) ·∑ℓ wℓBℓ(u)J̃JJ(cℓ)
)

.

(11)

For efficient ray marching, we decompose the RBF volumes into
N slices of user-controllable thickness ∆u along the current view
frustum, as shown in Fig. 8. We calculate the discrete integral of
Eq. (10) slice by slice from far to near in a manner similar to [Levoy

(a) our results (b) ray tracing

Figure 9: Smoke visualization with different lighting conditions. The smoke

bunny at dusk (top) has a different appearance from that at dawn (bottom).

The compensated ray marching results are similar to the corresponding ray

traced images.

1990]:

L(x,ωo) = Lin(ωo)∏N
j=1 τ̃ j +

∑N
i=1

(

J̃D(ui)σt∆u∏N
j=i+1 τ̃ j

)

,

where {ui} contains a point from each slice that lies on the view
ray, γ is the angle between the view ray and the central axis of the
view frustum, and τ̃ j is the transmittance of slice j along the view
ray, computed as

τ̃ j = exp(−σtD̃(u j)∆u/cosγ). (12)

Comparison With compensated ray marching, rendering results
are generated with fine details. The bottom row in Fig. 6 compares
a rendering result with a ray traced image. In this comparison, ray
tracing is performed on the original density field, instead of the ap-
proximated density field. The ray tracing result appears slightly
smoother than our result, because we account for the residual in the
ray march but not in the scattering simulation. The two results are
nevertheless comparable. The similarity between our real-time ren-
dering results and offline ray tracing is also exhibited in Fig. 9 for
a bunny-shaped smoke volume with different lighting conditions.
For a comparison of animation sequences, please view the supple-
mental video.

5.6 GPU Implementation

All run-time components of our algorithm can be efficiently im-
plemented on the GPU using pixel shaders. In the following, we
describe some implementation details.

Single Scattering Source radiances are directly computed at only
the RBF centers. For single scattering computation, we rasterize a
small 2D quad in which each RBF is represented by a pixel. Since
our approximated density model uses at most 1000 RBFs per frame
with our implementation settings, a quad size of 32× 32 is suffi-
cient. The RBF data (cℓ,rℓ,wℓ) is packed into a texture and passed
to the pixel shader.

In the shader, for each pixel (i.e., RBF center) we iterate through
the RBFs to compute the transmittance vector τ̃ττ(cℓ) as described
in Section 5.3. Then the source radiance is computed using the SH
triple product and convolution according to Eq. (9).



(a) σt = 2.46,Ω = 0.25 (b) σt = 5.64,Ω = 0.05

Figure 10: Changing the optical parameters of smoke.

Multiple Scattering Fig. 7 (b) depicts an overview of the GPU
pipeline for multiple scattering. The incident radiance buffer is ini-

tialized with the reduced incident radiance III1 that was calculated
for single scattering. Then for each iteration of the simulation, the

scattered source radiance J̃JJ
k
ms is accumulated in the source radiance

buffer, and the exitant radiance EEEk and subsequent incident radiance

IIIk+1 are evaluated in alternation. The multiple rendering target and
frame buffer object (FBO) of OpenGL extensions are used to avoid
frame buffer readbacks.

Note that for the first iteration, the scattered source radiance is not

accumulated into J̃JJms, and the initial exitant radiance is simply J̃JJ
1
ms.

As in single scattering, we rasterize a 2D quad of size 32× 32 for
each operation.

Ray Marching The ray march starts by initializing the final color
buffer with the background lighting Lin. Then from far to near, each
slice i is independently rendered in two passes.

In the first pass, we set the OpenGL blend mode to GL ONE for
both the source and target color buffers, then iterate over all the
RBFs. For each RBF Bℓ, its intersection with the slice is first calcu-
lated. This plane-to-sphere intersection can be efficiently computed
given the center and radius of the sphere. If an intersection exists,
we compute a 2D bounding quad for the circular intersection re-
gion, and render this 2D quad. For each pixel in the quad, denote
its corresponding point in the volume as ui. In the pixel shader,
the density wℓBℓ(ui) is evaluated and saved in the alpha channel,

and J̃D,ℓ(ui) = wℓBℓ(ui)(yyy(ωo) · J̃JJ(cℓ)) is computed and placed in
the RGB channels. With the residual R(ui) from the hash table, we
calculate and store J̃D,ℓ(ui)R(ui) in the RGB channels of a second

color buffer. After the first pass, we thus have ∑ℓ J̃D,ℓ(ui), D̃(ui),

and R(ui)∑i J̃D,ℓ(ui) in the color buffers, which are sent to the sec-
ond pass as textures through the FBO.

In the second pass, the OpenGL blend mode is set to GL ONE
and GL SRC ALPHA for the source and final color buffers, re-
spectively. Instead of drawing a small quad for each RBF as in the
first pass, we draw a large bounding quad for all RBFs that intersect
with the slice. In the pixel shader, J̃D(ui) for each pixel is evaluated
according to Eq. (11) as

J̃D(ui) = ∑
ℓ

J̃D,ℓ(ui)+

(

R(ui)∑
ℓ

J̃D,ℓ(ui)

)

/D̃(ui).

The RGB channels of the source buffer are then computed as
J̃D(ui)σt∆u/cosγ , and the alpha channel is set to τ̃i, computed us-
ing Eq. (12).

The residual R(ui) is decoded by perfect spatial hashing as de-
scribed in [Lefebvre and Hoppe 2006]. Eight texture accesses are
needed in computing a trilinear interpolation. To avoid divide-by-
zero exceptions, residuals are set to zero during preprocessing when
D̃(u) is very small (< 1.0e−10).

(a) Constant (b) Henyey-Greenstein

Figure 11: Changing the phase function of smoke. The lighting, shown as

upper-right insets, is fixed. The top and bottom rows are rendered with

different viewpoints. The dependence of scattered radiance on the view di-

rection can be seen.

6 Results and Discussion

We have implemented our algorithm on a 3.7GHz PC with 2GB
of memory and an NVidia 8800GTX graphics card. Images are
generated at a 640× 480 resolution. Please see the supplemental
video for live demos. The three sets of smoke animation data used
in this paper are all generated by physically-based simulation. The
data in Fig. 1 and Fig. 15 are provided by the authors of [Shi and Yu
2005], and the data in Fig. 9 is provided by the authors of [Elcott
et al. 2007].

Smoke Visualization As a basic function, our system allows users
to visualize smoke simulation results under environment lighting
and from different viewpoints. Examples are shown in Fig. 9 and
Fig. 15. In Fig. 15, we also compare results with and without resid-
ual compensation. With compensated ray marching, we obtain im-
ages with fine details.

The optical parameters of the smoke can be edited in real time. Both
images of Fig. 10 contain the same smoke density field and lighting.
Adjusting the albedo downward and increasing the extinction cross
section darkens the appearance of the smoke. In Fig. 11, with fixed
lighting we change the phase function from constant to the Henyey-
Greenstein (HG) phase function (with eccentricity parameter 0.28).
The dependence of the scattered radiance on the view direction can
be seen.

Shadow Casting between Smoke and Objects Combined with
the spherical harmonic exponentiation (SHEXP) algorithm for soft
shadow rendering [Ren et al. 2006], our method can also render
dynamic shadows cast between the smoke and scene geometry,
as shown in Fig. 12. For this scene containing 36K vertices, we
achieve real-time performance at over 20 fps.

For each vertex in the scene, we first compute the visibility vector
by performing SHEXP over the accumulative log visibility of all
blockers. Each RBF of the smoke is regarded as a spherical blocker
whose log visibility is the optical depth vector as computed in Sec-
tion 5.3. Vertex shading is then computed as the triple product of
visibility, BRDF and lighting vectors. After the scene geometry is
rendered, we compute the source radiance at RBF centers due to
single scattering, taking the occlusions due to scene geometry into
account using SHEXP. Finally, we run the multiple scattering sim-
ulation and compensated ray marching to generate the results.



(a) without shadow casting (b) with shadow casting

Figure 12: Shadow casting between smoke and scene objects. Top row: the

smoke casts a shadow on the terrain. Bottom: the pterosaur casts shadow

on the smoke.

Scene Fig. 1 Fig. 9 Fig. 11

Volume grid 1283 1003 1003

Frames 600 500 450

Avg. RBFs per frame 460 247 314

RBF approx. RMS error 2.48% 1.03% 1.34%

Decomposition (min) 140 43 85

Hashing (min) 35 18 20

Hash table (MB) 218 57 67

Performance ( f ps) 19.1 ∼ 95.1 36.4 ∼ 57.8 35.8 ∼ 74.8

Table 2: Statistics and timings. The total preprocessing time is the sum of

the decomposition time and hashing time.

Performance Table 2 lists statistics for the three examples shown
in the paper. Note the reasonable preprocessing time, which ranges
from 1 to 3 hours. The residual hash tables are significantly smaller
than the original density field sequences.

Discussion Although our method currently does not handle all-
frequency lighting, it can be reasonably approximated as shown
in Fig. 13. On the left is the rendering result from our algorithm
using a 4th-order SH approximation of environment lighting. On
the right is the corresponding image ray traced using the original
environment map.

In our implementation, the user can specify the maximum number
of RBFs per frame for density approximation. The default value
of 1000 works well for the examples shown in this paper. Fig. 14
exhibits rendering results in which the number of RBFs is fixed at
various levels. In principle, the source radiance at each voxel can be
exactly reconstructed using a sufficiently large number of RBFs, but
clearly a limit on RBFs is needed in practice. This tradeoff between
accuracy and performance is an area for future investigation.

7 Conclusion

In this paper, we have presented a method for real-time render-
ing of smoke animations that allows for interactive manipulation
of environment lighting, viewpoint, and smoke attributes. Though
a number of techniques have been proposed for efficient rendering
of static participating media, they nevertheless require substantial
computation or precomputation, making them unsuitable for edit-
ing and rendering of dynamic smoke. Based on a presented decom-
position of smoke volumes, our method utilizes a low-frequency

(a) 4th-order SH lighting (b) original lighting

Figure 13: Comparison between the low-frequency lighting used in our

implementation and the all-frequency lighting of the original environment

map.

Figure 14: Rendering results with different numbers of RBFs. Top left: 200.

Top right: 400. Bottom left: 600. Bottom right: 800.

density field approximation to gain considerable efficiency, while
incorporating fine details in a manner that allows for fast process-
ing with high visual fidelity.

Local light sources, particularly light sources inside the medium,
are challenging to process efficiently in our current method. As in
[Ren et al. 2006], analytical circular local light sources could be
incorporated, but with the cost of evaluating Lin (or LLLin) at each
RBF center. A sorting problem arises when the local light source
enters the smoke volume, since RBFs behind the local light source
should not be added into the accumulative optical depth vector. We
plan to examine these problems in future work.

Additionally, we are interested in extending our method to handle
reflections between an object and the medium. Since our method
currently handles shadowing only between the medium and an ob-
ject outside of it, we would also like to explore solutions for shad-
owing of objects inside the medium.

Finally, we intend to compare our multiple scattering results with
those from the diffusion process described in [Stam 1995], which
also simulates multiple scattering among RBFs, given the single
scattering result as the boundary condition. This diffusion tech-
nique, however, needs to solve a linear system, so would be unsuit-
able for real-time applications.

Appendix

For the objective function

f ({cℓ,rℓ,wℓ}ℓ=1...n) = ∑ j,k,l(D(x jkl)− D̃(x jkl))
2,

the partial derivatives for each parameter are given by

∂ f
∂v

= ∑ j,k,l 2
(

D(x jkl)− D̃(x jkl)
)

(− ∂ D̃
∂v

)



Figure 15: An initial smoke blob evolves into a smoke horse. Top row: rendering results with residual compensation. Bottom row: results without residual

compensation.

where v denotes a variable in {cℓ,rℓ,wℓ}ℓ=1...n. The partial deriva-
tives of D̃ with respect to each variable are

∂ D̃
∂cℓ

= wℓ

(

44∆ℓ

9r2
ℓ
− 68∆ℓ‖∆ℓ‖2

9r4
ℓ

+
8∆ℓ‖∆ℓ‖4

3r6
ℓ

)

,

∂ D̃
∂ rℓ

= wℓ

(

44‖∆ℓ‖2

9r3
ℓ

− 68‖∆ℓ‖4

9r5
ℓ

+
8‖∆ℓ‖6

3r7
ℓ

)

,

∂ D̃
∂wℓ

= G(‖∆ℓ‖,rℓ),

where ∆ℓ = x jkl − cℓ.
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