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Abstract

We present mesh puppetry, a variational framework for detail-
preserving mesh manipulation through a set of high-level, intuitive,
and interactive design tools. Our approach builds upon traditional
rigging by optimizing skeleton position and vertex weights in an
integrated manner. New poses and animations are created by spec-
ifying a few desired constraints on vertex positions, balance of the
character, length and rigidity preservation, joint limits, and/or self-
collision avoidance. Our algorithm then adjusts the skeleton and
solves for the deformed mesh simultaneously through a novel cas-
cading optimization procedure, allowing realtime manipulation of
meshes with 50K+ vertices for fast design of pleasing and realistic
poses. We demonstrate the potential of our framework through an
interactive deformation platform and various applications such as
deformation transfer and motion retargeting.

Keywords: Mesh deformation, nonlinear optimization, inverse
kinematics, geometry processing.

1 Introduction

Recent years have seen the emergence of detail-preserving mesh
deformation techniques [Sorkine et al. 2004; Yu et al. 2004; Lip-
man et al. 2005; Zhou et al. 2005; Botsch et al. 2006], offering
a powerful alternative to free-form deformation for direct manip-
ulation of high-quality meshes. However, rigging (i.e., adding a
skeleton to control and animate a mesh) remains a preferred way
in the graphics industry to efficiently design poses and deforma-
tion: a properly-designed skeleton can be quickly and easily ma-
nipulated to deform the posture of a character, then skinning (or
“binding”) is used to match the fine-detail shape of the mesh to
the bones’ positions. While these approaches to mesh deforma-
tion both have their pros and cons, neither allows for interactive
design of high-quality, large-scale or fine-scale deformation of de-
tailed meshes. In this paper, we propose to combine mesh deforma-
tion techniques and skeleton-based rigging to offer mesh puppetry,
a fast, intuitive, and general tool for mesh manipulation and mo-
tion retargeting. At the core of our method is a novel optimization
procedure which enforces the user-selected deformation constraints
onto a mesh through a cascading, multi-threaded process—making
mesh puppetry viable even on regular PCs.
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Figure 1: Armadillo Olympics: The Armadillo model (top left) can be deformed to take

various sport poses in a matter of seconds. Its body automatically leans forward and

raises its left leg backward to keep balance when trying to reach the user-specified (red)

target (shot put, bottom left). Fixing only the positions of its hands and feet is enough to

make the Armadillo look like it is bouncing off a springboard (high diving, top right);

or the pose of a sprint athlete on the finish line (100m, bottom right). With simple,

high-level constraints on length, balance, and joint angles, our framework offers an

intuitive and realtime tool to design pleasing and/or realistic poses while preserving

fine-scale geometric details.

1.1 Related Work

Our approach is related to a long series of work on mesh and skele-
tal deformation; we only cover the most relevant references below.

Mesh Deformation Early detail-preserving mesh deformation
techniques were based on multi-resolution techniques [Zorin et al.
1997; Kobbelt et al. 1998; Guskov et al. 1999], offering mostly lo-
cal shape control. To allow for more global and complex deforma-
tion, many authors proposed to cast mesh deformation as an energy
minimization problem [Sorkine et al. 2004; Yu et al. 2004; Lipman
et al. 2005; Nealen et al. 2005; Zayer et al. 2005; Zhou et al. 2005;
Lipman et al. 2006; Shi et al. 2006]. Typically, the energy function-
als used in these techniques contain terms to preserve detail (of-
ten through Laplacian coordinates), as well as position-constraint
terms to allow for direct manipulation. Introducing more terms in
the optimization (e.g., volume or skeleton constraints) was even ad-
vocated in [Huang et al. 2006] as a convenient way to design more
complex deformation with ease, without the traditional shearing ar-
tifacts appearing in large scale deformation. However, these exist-
ing techniques do not currently scale: the optimizations involved
are often nonlinear and require slow-converging Gauss-Newton it-
erations. This limitation can be overcome through a coarser mesh
embedding (using, e.g., mean value coordinates [Ju et al. 2005]) at
the price of significantly less design control. Recent progress pro-
posed to handle deformation via a mesh-based Inverse Kinematics,
and to “learn” the space of natural deformations from a series of



example meshes [Sumner et al. 2005; Der et al. 2006], enhanc-
ing the efficiency of deformation design by restricting the results
to acceptable ones. Our paper offers a quite different solution to a
similar problem by removing the need for example meshes and by
formulating a large set of (mostly nonlinear) constraints to define
the kinematic behavior of the character.

Skeleton Subspace Deformation and Rigging Skeleton Sub-
space Deformation (SSD) [Magnenat-Thalmann et al. 1988] and
several variants have been used in the graphics industry for quite
some time as a natural and efficient representation for character
animation in games and films. However, while their success lies
in restricting deformation to a particular subspace for efficiency,
the characteristic “collapsing joint” defect (see Figure 7) as well as
the tedious tweaking of vertex weights are well known shortcom-
ings. Despite significant improvements [Lewis et al. 2000; Mohr
et al. 2003] to allow for easier mesh manipulation and interpola-
tion, these rigging tools do not allow for fast design of really com-
plex deformation.

Inverse Kinematics Inverse Kinematics (IK) techniques are now
very mature, offering robust and efficient solutions to on-line or off-
line postural control of complex articulated figures [Badler et al.
1987; Zhao and Badler 1994; Boulic et al. 1997]. Unlike mesh
deformation techniques that focus on shape and detail preservation,
IK allows efficient design of large-scale deformation of skeletal fig-
ures through optimization of an energy functional in the null space
of constraints. Current methods [Yamane and Nakamura 2003;
Baerlocher and Boulic 2004; Le Callennec and Boulic 2006] even
handle the fulfillment of conflicting constraints through prioritiza-
tion, offering robust posture design.

1.2 Approach and Challenges

Rigging is extremely practical when it comes to designing mesh
motions. Indeed, a skeleton provides a very natural and intuitive un-
derlying structure to the mesh: the skeleton is “carrying” the mesh
like skin around bones. Each bone in the skeleton influences (at
least locally) the shape and position of the mesh such that, as the
skeleton is animated, the surrounding mesh geometry moves ac-
cordingly and reflects the current pose of the skeleton. In practice,
a “skinned mesh” is animated by simply moving its skeleton, and
the mesh follows—often with unpleasant consequences (local arti-
facts), particularly near joints. On the contrary, mesh deformation
based on functional optimization and differential coordinates is usu-
ally applied to the design of high-quality static poses. Although the
resulting meshes can be made artifact-free (with nonlinear energy
minimization), the time complexity involved in practice inhibits di-
rect manipulation for animation. In this paper, we thus propose to
mix these two approaches into a unified framework. Our mesh pup-
petry approach uses an approximate skeletal structure of a mesh to
enable fast design of large scale deformation while optimizing the
induced local deformation to maintain small-scale features.

Figure 2: Reference meshes and skeletons used in this paper.

However, this task presents many challenges. First, a deformation
energy involving variables as different as vertex positions and bone
transformations is delicate to formulate. Second, traditional IK con-
straints are highly nonlinear, sometimes even involving inequalities.
Finally, using existing mesh deformation solvers to solve these non-
linear constraints would, even with multigrid strategies, lead to poor
performance, ruling out interactive applications.

1.3 Contributions

In this paper we present mesh puppetry, a variational framework
for detail-preserving mesh deformation through a set of high-level,
intuitive design tools. Although we make use of a simplified skele-
tal representation of the mesh in our algorithm to speed up the
treatment of large deformation, the user directly manipulates the
mesh. New poses and animations are created by specifying a
few desired constraints on either vertex positions, balance of the
character, length and rigidity preservation, or joint limits. Given
these constraints, our algorithm adjusts the skeleton and solves for
the deformed mesh simultaneously through a novel cascading op-
timization procedure, allowing realtime manipulation of meshes
with 50K+ vertices. These contributions result in interactive mesh
puppetry as the high-level constraints defined in this paper induce
pleasing and realistic poses (see Figure 1). We demonstrate the po-
tential of our framework through an interactive deformation system
and several applications such as animation transfer and motion re-
targeting.

2 Set-Up and Nomenclatures

We assume that the user has, as an input, a reference (triangle) mesh
M (with V vertices) and a rough skeleton S of this mesh (repre-
sented as a graph made out of B bones, see Figure 2). We also
assume that, along with the skeleton, the corresponding partition of
the mesh is known so that every vertex has the indices of the bones
it is associated with. Note that if only the mesh is known, existing
skeletonization techniques (e.g., [Teichmann and Teller 1998]) can
provide both the skeleton and the corresponding partition automat-
ically. Alternatively, the user can manually create the skeleton and
the corresponding partition very efficiently (the camel’s skeleton in
Figure 19 was created in three minutes from scratch).

2.1 Skinned Mesh

We denote by x̄i the (3D) position of a vertex of the reference mesh
M and by X = {x̄i, i ∈ [1..V ]} the vector of all these positions. We
will be looking for a deformed pose of M, i.e., for another mesh
with the exact same connectivity, but a new set of vertex positions
X = {xi, i ∈ [1..V ]}. To express these mesh coordinates, we use the
now traditional skinned mesh setup: the deformation is encoded
as one affine transformation Tb per bone, and a B×V matrix of
weights W = {wbv,v ∈ [1..V ],b ∈ [1..B]}, such that:

xi =
(

∑
b∈bones

wbiTb

)
x̄i. (1)

Each vertex position is thus defined as a linear combination of the
locations where the vertex would be if it was only following the
transformation imposed by a neighborhood bone. If we call T the
row vector of all matrices Tb, the deformed mesh X is concisely
expressed through:

X = TWX.

Note that the matrix W is extremely sparse: a vertex only has blend-
ing weights to its associated bone and possibly to the direct neigh-
boring bone(s) if the vertex is near a joint.



Figure 3: (a) Tetrabone: given a bone b = PQ (P and Q being joints), we introduce two

points R and S such that the tetrahedron (P,Q,R,S) is regular. This tetrahedron, asso-

ciated to bone b, is called its tetrabone Tb. (b) Bone Transformation: the bone b and

its associated tetrabone is in its original pose Vb (on the left), and in its deformed pose

Vb (on the right). The tetravertices can be used to capture any affine transformation

Tb that the bone undergoes.

2.2 Tetrabones to Encode Transformation

In order to optimize position only (instead of both positions and
transformation, thus avoiding the use of trigonometric functions in
the optimization procedure), we associate to each bone two addi-
tional, virtual vertices so as to create a non-degenerate tetrahedron.
The initial construction is trivial: for each bone b = PQ (P and Q
being joints), we introduce two points R and S such as the tetrahe-
dron (P,Q,R,S) is regular (see Figure 3). This tetrahedron, associ-
ated to bone b, is called its tetrabone Tb, and its vertices (that we
generically denoted as P,Q,R and S so far) will be called tetraver-
tices (v1

b,v
2
b,v

3
b,v

4
b) to avoid any confusion with mesh vertices.

With those tetrabones in place on the undeformed mesh M, we
can now capture any affine transformation Tb that a bone under-
goes through the displacement of its tetravertices (see Figure 3). If
we call Vb the matrix with each column being the original homoge-
neous coordinates (i.e., with 1 as the last coordinates) of the vertices
(v1

b,v
2
b,v

3
b,v

4
b), and Vb a similar matrix but now with the homo-

geneous coordinates of the deformed tetrabone (v1
b,v

2
b,v

3
b,v

4
b), the

following linear relation trivially holds:

Vb = TbVb.

Provided that Vb is a full-rank matrix (since the initial tetrahedron
is regular, thus non-degenerate), we simply get:

Tb = VbVb
−1

(2)

Substituting Eq.(2) into Eq.(1), we get

xi =

(

∑
b∈bones

wbiVbV
−1
b

)
x̄i.

Thus if we define V as the row vector of all Vb matrices and V
−1

as

block-diagonal matrix of all Vb
−1

, we now can write our skinned
mesh setup as a function of only the mesh vertices and the tetraver-
tices:

X = V V
−1

WX. (3)

2.3 Objective Function

With this setup, we can define the variational problem that our mesh
puppetry algorithm is based upon: we look for a deformed mesh
M with vertex positions X (as a function of V and W) such that it
minimizes a global deformation energy E :

M = argmin

X=V V
−1

WX

E (X) , (4)

where E encapsulates a set of constraints that the deformation must
satisfy. We will show in the next section how to deal with con-
venient constraints that make the design of new poses easy and
intuitive. In particular, we will use Laplacian constraint for the
preservation of surface details (similar to, for instance, [Huang
et al. 2006]); position constraints to allow direct manipulation of
the mesh for intuitive design; and Inverse Kinematics constraints
(on balance and bone lengths in particular) that guarantees natural
poses with minimal user interaction.

3 Deformation Energy and Constraints

In this section, we elaborate on the constraints offered in our frame-
work. Each constraint is implemented through the addition of an
energy term to the global deformation energy. We also present in-
equality constraints (namely, the joint limit and the balance con-
straints), implemented as conditional energy terms.

3.1 General Constraints

The first and foremost energy term we will introduce in our defor-
mation energy is the Laplacian constraint described in [Huang et al.
2006], using Laplacian coordinates [Sorkine et al. 2004] to pre-
serve the surface details of the undeformed mesh. Another simple,
yet essential constraint is to allow the user to assign a target position
for either a mesh vertex or a linear combination of mesh vertices.
The energy term we will use for each such position constraint in
our solver is:

∥∥∥AX− X̂

∥∥∥
2

with: AX =
1

∑ j∈I α j
∑
i∈I

αixi (5)

where I is the set of indices corresponding to the vertices involved,
the αi’s are weights, and X̂ is the target position. This formulation
can be used for either vertex-position constraints or arbitrary point
constraints. Note that these two constraints involve both tetrabones
and mesh vertices. Next we describe energy terms depending solely
on V or W.

3.2 Constraints on Tetrabones Only

Constraints on tetrabones can be quite powerful at preventing a pose
from being grossly distorted or kinematically unnatural.

Length Constraint Controlling the change in length of the bones
is particularly useful when dealing with humanoid figures. We im-
plement such a length constraint by adding an energy term of the
form:

∑
(i, j)∈bones

(
‖vi −v j‖−Li j

)2
(6)

where vi and v j are the position of joints i and j, respectively, and
Li j is the original (or more generally, the desired) length of bone

Figure 4: Length Constraint: The Armadillo’s right hand is dragged while its left hand

and the feet are held fixed (left). Without length constraint, the body stretches out to fit

the point constraint (middle). With length constraint, no stretching occurs (right).



(i, j). Figure 4 shows an example of the effects of this constraint by
comparing two poses, one without and one with this energy term.
Although our length constraint resembles the skeleton constraint
in [Huang et al. 2006], note that our formulation uses the skeleton
instead of the mesh; we will also show in Section 4.2 that our solver
will provide much improved convergence rates (factor 30) when
dealing with this particular constraint.

Rigidity Constraint If we not only want the bones to keep their
length, but also wish the skin around them to mostly deform as a
rigid object, we can use a stronger version of the length constraint
where we now have one length-based penalty term per tetrabone
edge:

∑
(i, j)∈tetra(b)

(∥∥vi −v j

∥∥− li j

)2

where tetra(b) is the tetrabone b, vi and v j are the position of
tetravertices i and j, respectively, while li j is the original distance
between tetravertices i and j. Forcing each edge of the tetrabone to
be of equal length amounts to imposing a rigid body transforma-
tion of the bone: it renders the deformation of each limb as rigid as
possible. Figure 5 illustrates the effects of this constraint.

Figure 5: Rigidity Constraint: The Dinosaur’s right foot is dragged while its right

hand and left foot are held fixed (left). Without rigidity, the right leg significantly

shrinks (middle). With rigidity, the model recovers its normal leg (right).

Balance Constraint A particularly nice tool for mesh puppetry
is to automatically constrain a new pose to be physically realizable.
To keep their balance, humanoid characters must have their center
of mass above their supporting area (e.g., above the convex hull of
the vertices touching the ground). Enforcing this constraint guaran-
tees a well-balanced, thus visually-plausible pose [Baerlocher and
Boulic 2004]. Let’s first examine how to achieve this balance con-
straint by forcing the projection of the barycenter onto the floor to a
given position g. We first precompute the barycenter and estimated
“mass” of each bone based on the local volumes of the partition of
the mesh in the original pose. The new barycenter, i.e., the center
of mass of a deformed pose, will thus be the mass-weighted sum of
these barycenters once their corresponding affine transformations
are applied. We implement this idea by adding the following en-
ergy term:

‖GV−g‖2

where G is a matrix which maps V, using the precomputed bone
masses and a projection onto a given floor, to the location of the
barycenter of the deformed mesh.

We found that a more general balance constraint, where the cen-
ter of mass is constrained to be over a given (convex) area of the
floor, is more helpful for fast design. Thus, we propose to turn this
constraint on or off within the solver, depending on whether the
current center of mass is over the desired area: when activated, the
constraint uses a target location g which is the closest point from
the current projection on the floor to the desired area. As Figure 6
demonstrates, such a simple constraint results in the ability to get
natural poses with very little user input.

Figure 6: Balance Constraint: a user drags the right hand of the Armadillo with its

right foot held fixed (left). Without balance constraint, the Armadillo seems to lean

excessively (middle). With balance constraint, the Armadillo (naturally) leans its body

forward trying to reach the target point while (even more naturally) raising its left leg

backward to keep its balance (right). The small green sphere shows the projection of

the center of mass onto the floor, while the small red sphere shows the target position

of barycenter at the border of the red polygon (demarcating the supporting area).

Joint Limit Constraint Joints of skeletal structures often have
restricted ranges. Such joint limit constraints can be enforced by
simply introducing an energy term to the minimization process. We
control the relative orientation between two adjacent bones by sim-
ply constraining the distances between their corresponding tetraver-
tices. For two bones b1 and b2, if a joint angle is exceeding the
prescribed limit, we add a term of the form:

∑
(i, j)∈pairs(b1,b2)

∥∥(vi −v j)−θi j

∥∥2

where vi and v j are the position of tetravertices from each bone,
and θi j is the target vector between them to enforce the correct
limit angle; pairs(b1,b2) denotes the few pairs of tetravertices of
b1 and b2 required to resolve the joint limit currently violated. The
pairs involved in this energy term depend on whether the joint limit
is imposed laterally (rotation, see Figure 7), or axially (twisting, see
Figure 8). We will detail these terms in Section 4.2.

Figure 7: Lateral Joint Limit: a user drags the horse’s hoof up (left). Without joint

limit constraint, the mesh self-intersects (second). Our joint limit constraint prevents

the foreleg of the horse from bending too much; however, the joint looks collapsed

(third). After our full-space postprocessing of the vertices near joints (see Section 4.4),

the leg looks natural while the lateral angle limit is still maintained (right).

Figure 8: Axial Joint Limit: the Armadillo’s arm is twisted by the user with its shoul-

der fixed (left). Without this constraint, the arm twists excessively (middle). With the

constraint, the twisting is automatically limited, and the arm looks natural.

3.3 Constraints on Vertex Weights Only

Smooth dependence of the vertices on the transformation of the
bones is finally added through an energy term that penalizes strong



s = 0
repeat

// PERFORM ONE V-PHASE

for i = 1 to v-step-cnt do
// s-th iteration in convergence sequence
s++
// For each (active) level
for k = 1 to min(s,5) do

// m-th iteration on this level k
m = s− k
// Sum up first k constraints

E = ∑
k
j=1 E j(m,k)

Linear solve to get M[m,k] = arg min E

// PERFORM ONE W-PHASE

for i = 1 to w-step-cnt do
E = E1(M)+EW (M)
Linear solve to get M = arg min E

until (convergence criterion met)

Figure 9: Pseudocode of our solver.

local variations of the skin weights. This smoothness constraint,
dependent only on W, is enforced as follows:

∑
wbi∈W

(
wbi −

1

|N (i)| ∑
j∈N (i)

wb j

)2

+ ∑
i∈[1..V ]

(

∑
b∈B

wbi −1

)2

(7)

where i is the index of the vertex, b is the index of the bone and
N (i) is the one-ring neighborhood of vertex i. The reader will no-
tice that the first term of this energy effectively tries to annihilate the
biLaplacian of the weights (by minimizing the Laplacian squared),
a well-known way to regularize a scalar field. We opted not to use
the geometric Laplacian matrix of the original mesh to avoid any
numerical issue due to negative cotangents. Instead, we use the
graph Laplacian, as it suffices to make the weights well-behaved
without creating geometric artifacts. Notice that this smoothness
constraint also takes care of the usual overfitting issues reported in,
for instance, [James and Twigg 2005]. The last term of the energy is
added to get the weights of the vertices around the joints to form a
partition of unity. Although this condition is unnecessary for static
poses, getting to be close to a unit sum for each vertex’s weights
will guarantee that if a rigid transformation is applied to the skele-
ton during modeling, the vertices will follow rigidly and thus will
require no optimization.

4 Custom Solver through Cascading Optimization

Now that all the different energy terms have been described, one
could directly apply a nonlinear solver (such as sequential quadratic
programming) to the total energy in order to solve for the deformed
mesh. Given the number of unknowns involved in the solve, this
turns out to be quite a herculean task for large meshes—preventing
any hope of realtime manipulation. In this section we present our
optimization procedure, which exploits the structure of the problem
to optimize efficiency.

4.1 Overview of Solver

We are looking for a deformed pose X = VV
−1

WX̄ such that X
minimizes the energy functional we defined. Optimizing for V and
W simultaneously is intractable, due to the number of unknowns in-
volved and the highly nonlinear nature of the total energy E . In or-
der to reach interactive speed at least for moderately large meshes,

we propose a custom optimization scheme (we give pseudocode in
Figure 9).

Alternating Phases First, we leverage the fact that X is a linear
function of V when W is held fixed, and a linear function of W
when V is fixed, by adopting a Lloyd-like approach [Lloyd 1982].
That is, we find the optimal deformed mesh by alternating between
optimizations of V with W fixed and of W with V fixed: each op-
timization phase is still a nonlinear problem, but with significantly
less variables. We will call V-phase the optimization of V only, and
W-phase the other optimization.

V-phases Note that some constraints involved in our optimiza-
tion are more stringent than others; while the position constraint
alone can be optimized through a simple linear solve, the other
constraints are nonlinear, and the balance and joint limit constraints
are inequality constraints. Moreover, constraints can be conflict-
ing: some deal with detail preservation, while others control large-
scale deformation. The mixed nature of these constraints makes
any brute-force numerical attempt to optimize the total objective
function in the V-phase inefficient. After trying several optimiza-
tion strategies, we settled for a cascading objective optimization
method, where objective increments are added in cascade to the
optimization procedure to accelerate convergence as described in
Section 4.2.

W-phases Contrary to a V-phase, a W-phase contains very few
contraints (only the Laplacian, position, and smoothness con-
straints) that are straightforward to minimize. Hence, we perform a
traditional iterative method to optimize this objective function.

Polishing Phase When high quality results are desired, a final
phase is added to rectify the vertex positions around joints, as our
SSD-based approach can suffer from the “collapsing joint” effect
for extreme poses (see Figure 7).

Note finally that every iteration performed during this optimization
procedure (be it for the V-phase or the W-phase) consists of a sim-
ple linear solve: as in the Gauss-Newton method and as advocated
in [Huang et al. 2006], we deal with the nonlinear optimization us-
ing repeated quadratic approximations.

4.2 V-Phase: Cascading Objective Optimization

Our V-phase is devised to optimize the affine transformation (via
the positions V of the skeleton’s tetrabones) applied to each skele-
ton bone, in order to minimize the objective function containing
(some of, or all) the constraints mentioned in Section 3.

[0,1] [1,1] [2,1] [3,1] [4,1] [5,1]

[0,2] [1,2] [2,2] [3,2] [4,2]

[0,3] [1,3] [2,3] [3,3]

[0,4] [1,4] [2,4]

[0,5] [1,5]

...

...

...

...

...

Figure 10: Cascading Algorithm: each row represents the workflow of a thread.

M[m,k] denotes the result from the m-th state of thread k while the arrows indicate

data dependency. A new state is solved for as soon as all its prerequisites are finished

so as to exploit thread parallelism. Note that there are many ways to parallelize this

process: a thread per line or per diagonal are the two most obvious parallelization

techniques that this dependency graph calls for.



Threads with Increasing Number of Constraints We divide
the V-phase into several threads, in which increasingly-constrained
optimizations are performed in parallel. Instead of using all the
constraints at once, we first start a thread that evolves the mesh from
its current shape towards satisfying only the most basic constraints.
In parallel, we start a second thread of optimization which now uses
the results of the first thread as initial conditions, and an objective
function including the basic constraints plus one more constraint,
and so on (see Figure 10). The final thread contains all the desired
constraints, and will result in the final, deformed mesh (Figure 11
illustrates the results of each thread on a simple example).

This may, at first glance, seem like a lot of additional operations
to perform compared to a regular optimization of the total energy;
but optimizing fewer constraints is very efficient, and using the re-
sult of a previous thread to guide a later thread will greatly benefit
the efficiency of the solver, making the optimization process more
stable and efficient. We will show that this cascading approach
accelerates convergence significantly, and is easy to implement on
multicore processors. A byproduct of this cascading increment-
objective approach is that the terms in earlier threads are better min-
imized, which allows us to define the order in which constraints are
added according to their respective importance. Note that the idea
of adding constraints one at a time during the optimization was al-
ready proposed in genetic algorithms [Chen and Guan 2004]; we
pushed this idea further by using concurrent threads which feed on
each other to accelerate convergence.

Figure 11: Final States of Each Thread: from left to right, the deformation results of

each thread for a 2-link stick being bent (rest pose, Laplacian and position constraints,

balance constraint added, length constraint added, joint limit constraint added, and

rigidity constraint added).

Optimization Procedure Each optimization step is achieved by
taking only partial sums of quadratic approximations of the vari-
ous constraint energies, making use of the results of earlier steps
to guide later steps. We now detail each of the five threads of our
cascading optimization procedure described in Figure 9. We will
denote the optimization result from the m-th state of thread k as

M[m,k], which contains the positions of all the mesh vertices X[m,k]

and of all the tetravertices V[m,k].

• 1. Laplacian and Position Constraints We implement Laplacian
constraint by adding the following energy term into the deforma-
tion energy:

E1(m,k) =
∥∥∥LX[m,k] − δ̂X[m−1,k]

∥∥∥
2

(8)

where δ̂X[m−1,k] is defined (as in [Huang et al. 2006]) as:

δ̂X[m−1,k] =
LX[m−1,k]
∥∥LX[m−1,k]

∥∥
∥∥LX

∥∥

where X is the mesh in rest pose. This means that we use the
Laplacian coordinates of the previous result of the same thread

as the target direction, while taking the magnitude of the origi-
nal Laplacian coordinates as the target magnitude. This is sim-
ply a linearization of the Laplacian constraint energy term, which
will therefore help preserving the surface details of the unde-
formed mesh. As for position constraints, their implementation
is achieved by adding:

E1(m,k)+ =
∥∥∥AX[m,k] − X̂

∥∥∥
2
,

where A and X̂ are defined in Eq. (5) to impose the desired point-
constraints on top of detail preservation.

• 2. Balance constraint To deal with the balance constraint, we
first need to test whether the current barycenter lies over the de-
sired region. This is easily done using the matrix G defined

in Section 3.2 by checking GV[m,k−1]. If the constraint must be
activated, we add the following energy term:

E2(m,k) =
∥∥∥GV[m,k] −g[m,k−1]

∥∥∥
2

where g[m,k−1] is the closest point from the center of mass of

M[m,k−1] to the supporting area as defined in 3.2.

• 3. Length Constraint We implement our length constraint by
adding the following energy term:

E3(m,k) =

∥∥∥∥∥∥
(v

[m,k]
i −v

[m,k]
j )−

v
[m,k−1]
i −v

[m,k−1]
j

‖v
[m,k−1]
i −v

[m,k−1]
j ‖

Li j

∥∥∥∥∥∥

2

,

which corresponds to a linearization of the deformation energy
defined in Section 3.2 around the previous result. This implemen-
tation, although similar to the one in [Huang et al. 2006], differs
by the fact that the direction of the bones are guided by the de-
formation result of the previous thread, and not the deformation
result from the previous iteration of the same thread. The differ-
ence is significant: their convergence rate was impaired by try-
ing to maintain the directions of the last iteration. Instead, we
rely on the result of the previous thread, which is not using the
length constraint. As a result, on a simple example like a rotating
bone (illustrated in Figure 12), our length-constraint algorithm
converges more than one order of magnitude faster. We measured
an average improvement factor of 30 on complex models for this
particular energy optimization.

Figure 12: Convergence of Length Constraint: when the user tries to rotate a rod-

like mesh through a position constraint, our length constraint (top) converges in 5

iterations, whereas [Huang et al. 2006] takes 150 iterations (bottom).

• 4. Joint Limit Constraint For each constrained joint in the skele-
ton, we first check if the relative orientation between the two
consecutive bones at the joint in its current state (encoded by



V[m,k−1]) is beyond the imposed angle limits1. If so, the joint
limit constraint is activated. For the two bones b1 and b2 adjacent
at the joint, we implement our joint limit constraint by adding the
following energy term into the deformation energy:

E4(m,k) = ∑
(i, j)∈pairs(b1,b2)

∥∥∥(v[m,k]
i −v

[m,k]
j )−θ

[m,k−1]
i j

∥∥∥
2

where θ
[m,k−1]
i j is the target vector (i.e., distance and direction)

between tetravertices to enforce joint limit.

The three possible degrees of freedom for a joint can be expressed
by the direction that b2 is along (2 DoF’s) and by how much b2

is twisted, relative to b1. If the limit of the former is violated,
we try to align b2 to the closest direction that does not violate the
limit by aligning vi − v j to θi j , where i and j are the two ver-
tices of the bones not shared by each other. If the latter limit is
exceeded, we align the displacement between the virtual vertices
of b2 (and/or b1) to a direction that satisfies the twist angle limit.
To determine the closest directions within joint limit, we could
rotate both bones to change their relative orientation. In order to
get more balanced results, instead of fixing one of the bones or
distributing the rotation evenly to both bones, we distribute rota-
tion proportionally to changes in the direction of the two bones in
the previous thread, as it indicates the susceptibility of each bone
to rotation. Figure 13 shows that this simple strategy gives very
natural results.

Figure 13: Enforcing Joint Limit Constraints: a 2-link rod-like mesh is bent with its

one end held fixed. Without joint limit constraint, the fixed end never rotates (top).

With joint limit constraint, a naive approach to derive a target direction during the

optimization can lead to an undesired rotation of the link with fixed end (bottom left).

Using our approach to get the target direction, the fixed end does not rotate (bottom

right), behaving as expected.

• 5. Rigidity constraint For each bone b, we implement our rigid-
ity constraint by adding the following energy term into the defor-
mation energy:

E5(m,k) = ∑
(i, j)∈tetra(b)

∥∥∥
(

v
[m,k]
i −v

[m,k]
j

)
−d

[m,k−1]
i j li j

∥∥∥
2

where tetra(b) is the tetrahedron of bone b, d
[m,k−1]
i j gives the

target direction and li j gives the target length as defined in Eq. (6).

Many possible target directions can be used. Since we aim to keep
the directions of the bones affected as little as possible, we found
the following approach to provide the best results. Instead of ob-
taining the direction through polar-decomposition, which may un-
desirably change the directions of bones, we simply move the two
virtual vertices to positions that make the tetrabone regular while
maintaining the bisector of the dihedral angle of the bone itself
(as described in Figure 14).

1In general, joint limits are specified as a subset of SO(3), or of the unit

quaternion ball, or as ranges of Euler angles.

� ��� � �� � ������ ���
Figure 14: Placing virtual vertices in rigidity constraint: given the position of the four

tetra-vertices a, b, c and d resulting from the previous thread, we first determine the

bisector (blue line) of the dihedral angle (red lines and arc) formed by the bone ab

and its two neighboring faces that goes through ab’s midpoint m (left). We determine

a point s on the bisector such that |ms| =
√

2
2
|ab| (middle). We then find c′ and d′ such

that sc′ and sd′ are perpendicular to both ab and ms with their lengths being 1
2
|ab|

(right). The vertices c′ and d′ are used as the new positions of the virtual vertices.

4.3 W-Phase: Direct Optimization

The W-phase does not require any specific treatment as the con-
straints are much milder. Therefore, we use only one thread and the
quadratic objective function to minimize is simply set to:

E =
∥∥∥LX[k] − δ̂X[k−1]

∥∥∥
2
+
∥∥∥AX[k] − X̂

∥∥∥
2

+ ∑
wbi∈W

(
wbi −

1

|N (i)| ∑
j∈N (i)

wb j

)2

+ ∑
i∈[1..V ]

(

∑
b∈B

wbi −1

)2

.

Notice that this energy includes only the constraints involving W
(i.e., the Laplacian, position, and smoothness constraints). Fig-
ure 15 shows how optimizing vertex weights reinstates the shape
and details of the mesh.

Figure 15: Optimizing Vertex Weights: the Armadillo model (left) is deformed to look

like a sprint athlete on the finishing line. The arm and legs exhibit distortion after the

V-phase (middle). After optimizing vertex weights, the arm and legs recover their shape

(right). The red curve shows the deformation energy, while the green curve shows the

L2 norm of the distance between two consecutive meshes during the optimization.

4.4 Polishing Phase: Full Space Postprocessing

Our optimization procedure heavily benefits from the fact that we
use a skinned mesh. However, a major shortcoming of all SSD
methods is that excessive deformation can result in the collapse of
joint regions (see Figure 7). To avoid this situation when high-
quality meshes are desired, we process the result of our optimiza-
tion by further optimizing the vertex positions directly in full space
(as opposed to the subspace they were constrained to via vertex
blending while satisfying the IK constraints). For each bone, the
vertices with a single weight of 1 (i.e., most of the vertices) are
maintained fixed. The rest of the mesh (i.e., the vertices around
joints) is automatically deformed using the two-step method as
described in [Lipman et al. 2005]. Specifically, the harmonic
field [Zayer et al. 2005] of the transformations is first used to mod-
ify the Laplacian coordinates of the joint vertices, then the final,
deformed mesh is solved so that these joint vertices satisfy these
Laplacian coordinates. Since this postprocessing is only performed
on the vertices near joints, the added overhead is insignificant. See
Figure 7 for an example of postprocessing.



Figure 16: Deformation of Multiple Objects: The horseman model (left) consists of

three parts: a horse, a warrior, and a spear. The warrior is glued onto the saddle of

the horse and the spear is glued into the warrior’s left hand. A balance constraint is

applied to the warrior, with his hips set as supporting area. The joint limit constraint

is applied to the wrist to prevent it from bending too much. Editing is performed by

manipulating the horse’s forelegs, the warrior’s head and the direction of the spear

(middle and right). Notice how the warrior automatically leans forward to keep his

balance on the saddle when the horse is moved (see accompanying video).

5 Applications and Results

Our implementation of the two-phase cascading solver presented in
this paper is fast enough to allow direct manipulation of moderately
large meshes (50K+ vertices) in real-time on a dual-core Pentium
4 PC (see Table 1 for detailed timing and model statistics for some
of the examples shown in this paper, and Figure 2 for the skele-
tons used for our different examples). Notice that having all five
threads concurrently only slows down each step of the optimiza-
tion by 60% compared to solely enforcing Laplacian and position
constraints (i.e., a single thread), demonstrating that our cascading
approach makes efficient use of each thread’s progress to help the
following threads. The temporal coherency of the mouse position
throughout the design of new mesh poses results in quick conver-
gence of the various threads, as the difference between two consec-
utive poses is often small. For larger meshes we also reduce the
number of threads to three during realtime interaction, running the
full five threads only as a final, polishing phase when the user stops
dragging the mesh around. Larger meshes can even be first sim-
plified via mesh decimation for their interactive manipulation, then
finalized through optimization initialized with the optimal pose of
the simplified mesh. Note that in our experiment and all the exam-
ples of this paper, it took from 5 to 10 iterations for the V-phase to
converge, while it usually takes 2 to 5 iterations for the W-phase.
We thus recommend such an average scheduling for these two al-
ternating phases. Finally, we wish to point out that weighting of
various deformation energies can be used as a further tool to “tai-
lor” the way models react to constraint, i.e., to define an implicit
prioritization of the constraints—although we never had to recourse
to this option in our tests.

To validate the efficiency of our cascading approach, we imple-
mented a brute-force solver that minimizes the total energy di-
rectly via repeated Gauss-Newton iterations as shown in [Huang
et al. 2006]. That is, each iteration of the brute-force minimization
is exactly the same computational complexity as our last thread.
However, our cascading approach pays off nonetheless: the con-
vergence time for a deformation of the Armadillo (30K vertices) is
0.45s in our case, compared to 17s for the brute-force way. The
difference in timings is explained by the huge discrepancy in itera-
tions needed for convergence: we converge in 10 iterations of our
cascading solver, while brute-force solving requires over 1000 iter-
ations. So despite the larger cost of our iterations, the total timings
are dramatically improved.

This level of interactivity, along with the numerous design con-
straints we introduced (automatic balancing and most-rigid con-
straints in particular), makes our interactive mesh deformation
framework a true mesh puppetry workshop: the user can easily ma-
nipulate an inanimate mesh to create natural, life-like poses in no
time, and our position constraint, when used with length/balance
constraints, is akin to a puppeteer pulling the strings of a puppet.

5.1 Interactive Multiple-Object Deformation

Rather than handling individual models, our system can naturally
support simultaneous deformation of multiple objects. With the
features defined in this paper, complex deformation tasks on multi-
ple objects can be defined efficiently and intuitively. In particular,
relative positions of objects can be easily maintained or adjusted
through common point constraints. For example, in Figure 16 the
warrior and his horse are two separate meshes, maintained into one
single entity by constraining the warrior’s hip onto the horse’s sad-
dle and enforcing the balance of the warrior on the saddle. The user
can then raise the body of the horse: the warrior will automatically
lean forward in order to stay on the horse and maintain a natural
balance (Figure 16).

Self-Collision Detection and Handling An important improve-
ment of our technique in the context of multiple-object editing is the
treatment of collisions. Our cascading optimization solver enables
(self-)collision detection and handling rather well, contrary to ex-
isting mesh deformation techniques. We achieve this collision han-
dling by adding one more thread (of very low cost compared to the
others in order to maintain interactive rates). Each V-phase starts by
performing a collision detection routine using the COLDET pack-
age [ColDet 2002]. In practice we use a fast, approximate collision
detection using either bounding boxes, or the rigid mesh partition
of each bone. If a collision is detected, we add a deformation en-
ergy (inserted in between the Laplacian and the balance constraints)
very similar to the length constraint case to force the middle of
each bone to be sufficiently away from the other bone’s center: the
two bones will thus move away from each other, preventing self-
collision. Figure 17 shows a result of this collision handling where
the armadillo performs a ballet routine: since the motion capture
data comes from a real dancer with a much less prominent torso, the
armadillo shows a self-collision if no special treatment is provided.
Once activated, the collision-handling thread removes the issue and
the process is only slowed down by 5%. Note that while our simple
procedure avoids most intersections and greatly improves the qual-
ity of the deformation results, we cannot formally guarantee self-
intersection-free deformation results contrary to [von Funck et al.
2006].

Figure 17: The Armadillo Dance: Motion retargeting of long sequences inevitably

induces self-collision. With our self-collision handling, the hand of the Armadillo does

not penetrate his thorax as it dances.



model # vertices # bones # tetravertices 1 thread 2 threads 3 threads 4 threads 5 threads

Horse 8,431 23 70 169 116 95 77 65
Cavalry 17,808 24 75 98 67 54 43 37
Camel 21,887 19 58 77 53 43 35 30

Dinosaur 25,002 17 52 63 45 37 30 26
Armadillo 50,002 18 55 39 26 21 17 15

Table 1: Performance statistics, including sizes of the meshes and the frames-per-second (fps) rates that we achieved when using only a few or all five threads in our cascading

optimization solver. All timings reported here were measured on a 3.2GHz Intel Xeon workstation with 4GB RAM.

5.2 Deformation Transfer and Motion Retargeting

Our framework can be used to transfer the pose of a model to an-
other very easily: this pose transfer is achieved by establishing a
few correspondences between the original model and a target mesh
and applying our deformation algorithm. As demonstrated in Fig-
ure 18, we can put point constraints on the legs, head, neck, and tail
of some existing cat’s poses and transfer them onto a horse while
asking for the horse’s limbs to keep their length and rigidity. Al-
though the horse’s neck and legs are longer than the cat’s, our mesh
deformation procedure successfully produces plausible results in-
teractively.

We can also transfer a whole existing animation to a skinned mesh
by transferring each individual pose across time. A few correspon-
dences are defined on the very first frame and derived automatically
for the rest of the animation (we suppose here that the model dis-
cretization remains the same throughout the animation). Putting
these correspondences as position constraints for another skinned
mesh, and minimizing the resulting deformation energy for each
frame will automatically re-target the motion. Since the previous
pass is used as the initial condition of the next pose’s optimiza-
tion, we obtain excellent time coherency (see our accompanying
video). One can define additional IK constraints to enforce specific
characteristics of the target mesh so as to best capture the initial
animation while sticking to the constraints of the target mesh. For
instance, adding a limp to a character only requires enforcing a stiff
knee by adding a joint limit constraint: the original animation will
be followed as closely as possible while preventing any bending
of the knee (see accompanying video for such an example on the
Armadillo). Note that we do not have restrictions on the format
of the source animation: it could be a mesh sequence, or even a
point-set sequence (tracker positions). We do not have restrictions
on the compatibility between skeletons of the source animation and
skinned mesh either. In fact, only a few correspondences and the
skeleton of the resulting skinned mesh animation needs to be spec-
ified. Note that the resulting animation is compactly represented by
a series of skeleton poses together with a set of weights for vertices
near joints.

In the accompanying video, we show another example of motion re-
targeting. Using as reference the cloth-like camel animation falling

Figure 18: Pose transfer: various poses of a cat can be transferred onto a horse model

through a few point constraints, despite the disparity of the neck and leg size between

the two animals.

down on the ground, we created a simple skinned camel, and then
transferred the animation onto this skinned mesh. We can further
edit this animation by adding IK constraints (here, length and joint
limit constraints) to significantly alter the motion with very little
user interaction: the camel now appears to slip on an icy surface
(Figure 19 shows snapshots).

Figure 19: Camel Falling: the falling motion of the cloth-like camel (top row, cour-

tesy of [Sumner and Popović 2004]) is transferred onto a skinned mesh of the same

camel; the use of length, rigidity, and joint limit constraints dramatically changes the

animation (with little user supervision), as the camel now seems to slip on ice (bottom

row).

Limitations Our approach can only handle articulated models,
and does not apply to the modeling of plastic deformations. An-
other limitation comes from our soft constraint enforcement. If
a handle is dragged too far from the character (i.e., far from
the character’s reach), the position constraint and the length and
rigidity constraints can start conflicting a lot. Consequently, the
length/rigidity constraints may no longer be fulfilled, possibly lead-
ing to unnatural deformation—although altering the weight of these
constraints can partially resolve this issue.

6 Conclusion

We have presented a variational approach for mesh puppetry. Our
framework supports direct manipulation of vertices in the mesh,
various IK-based deformation constraints, and self-intersection
avoidance. Our solver, using a novel two-phase cascading optimiza-
tion procedure, provides an efficient numerical tool to solve the op-
timization of all the constraints. Our experiments demonstrate that
our custom solver can handle meshes with 50K vertices in realtime
(15 frames/s) on a dual-core Pentium 4 PC. We have also shown
that several applications can benefit from this fast solver, including
deformation transfer and collision detection/handling.

The applications of such a framework are manifold. First, our
solver’s strategy could be used in games to improve the efficiency of
realtime animation. An intriguing application would also be to of-
fer an interactive platform for template matching: medical datasets
of body parts (with known structures and specificities) could be
mapped to a particular patient’s part through a fast and simple user-
guided procedure based on our approach—potentially providing an
extremely robust shape matching. As for future work, we wish to



develop additional high-level constraints to further improve design
efficiency.
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