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Abstract

We present an approach for decorating surfaces with progressively-
variant textures. Unlike a homogeneous texture, a progressively-
variant texture can model local texture variations, including the
scale, orientation, color, and shape variations of texture elements.
We describe techniques for modeling progressively-variant textures
in 2D as well as for synthesizing them over surfaces. For 2D texture
modeling, our feature-based warping technique allows the user to
control the shape variations of texture elements, making it possible
to capture complex texture variations such as those seen in animal
coat patterns. In addition, our feature-based blending technique can
create a smooth transition between two given homogeneous tex-
tures, with progressive changes of both shapes and colors of texture
elements. For synthesizing textures over surfaces, the biggest chal-
lenge is that the synthesized texture elements tend to break apart
as they progressively vary. To address this issue, we propose an
algorithm based on texton masks, which mark most prominent tex-
ture elements in the 2D texture sample. By leveraging the power of
texton masks, our algorithm can maintain the integrity of the syn-
thesized texture elements on the target surface.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism–color, shading, shadowing, and texture;
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding–
texture; I.3.3 [Computer Graphics]: Picture/Image Generation.

Keywords: Texture synthesis, texture mapping, surfaces

1 Introduction

Textures are extensively used to increase the realism of surfaces.
Recently, a number of techniques including [Turk 2001; Wei and
Levoy 2001; Ying et al. 2001; Gorla et al. 2001; Soler et al. 2002]
have been developed for synthesizing textures on arbitrary surfaces.
Given a sample texture, these techniques can create a similar texture
that fits the target surface naturally and seamlessly.

Most of the previous work on surface texture synthesis concen-
trated on homogeneous textures. These textures are stationary in
that they are characterized by stationary stochastic models. Homo-
geneous textures, however, only account for a limited class of real-
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Figure 1: A progressively-variant texture mimicking that of a leop-
ard. Notice the non-trivial progressive transition from the rosette
patterns on the main body to the spots on the legs. In the lower
left corner we show the original homogeneous texture sample and
a texton mask.

world textures. Many textures, including the coating patterns of
various animals such as the tiger, cannot be described by stationary
models [Turk 1991; Tonietto and Walter 2002]. These patterns ex-
hibit complex variations resulting from a biological growth process
[Walter et al. 2001]. Nonetheless, these patterns have a well defined
structure. Intuitively, their texture elements change in a progressive
fashion. The texture is stationary in a small neighborhood around
each point, but the overall texture characteristics vary continuously
over the texture domain. We call such textures progressively-variant
textures. Figure 1 shows a progressively-variant texture mimicking
that of a leopard [Kingdon 1977].

In this paper, we present an approach for decorating arbitrary sur-
faces with progressively-variant textures. The key to harnessing the
modeling power these textures is placing the local variations under
user control. With this goal in mind we developed techniques for
modeling progressively-variant textures in 2D and for synthesizing
such textures on surfaces.

For 2D texture modeling, we introduce techniques for creating
progressively-variant textures from homogeneous texture samples.
The user can control the scale, orientation, color, and shape varia-
tions of texture elements at different levels. At the pixel level, our
field distortion synthesis allows the user to control the scale and
orientation variations of texture elements. This is similar to [Toni-
etto and Walter 2002], but with the additional ability of orientation
control. At the feature level, our feature-based warping provides
user control of shape variations of texture elements. This control
is important for capturing complex variations such as those seen
in animal coat patterns, yet no existing techniques support such
control. We also introduce feature-based blending, which uses a
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blend texture to provide a smooth transition (i.e., smooth changes
of both shape and color of texture elements) between two given ho-
mogeneous textures. In many ways, our feature-based techniques
are similar to feature-based morphing for images [Beier and Neely
1992]. With our techniques, user-specified features are represented
by a texton mask, which is a labeling map that marks the prominent
texture elements.

For synthesizing progressively-variant textures onto surfaces, the
biggest challenge is that the synthesized texture elements tend to
break apart as they progressively change. This is a serious prob-
lem since the main advantage of progressively-variant textures is
the smooth variation of texture elements, and this advantage will be
lost if texture elements break apart as they vary. To prevent break-
ing, we propose an algorithm which synthesizes a texton mask in
conjunction with the target texture. The texton masks we use have
extremely sparse histograms (e.g., binary images), making them
easier to synthesize by existing techniques such as [Efros and Le-
ung 1999; Wei and Levoy 2000]. Leveraging the power of a texton
mask so synthesized, we can maintain the integrity of texture ele-
ments on the target surface.

The rest of the paper is structured as follows: Section 2 reviews
related work. Section 3 gives an overview of the pipeline for creat-
ing progressively-variant textures on surfaces. Section 4 describes
2D texture modeling techniques. Section 5 discusses texture syn-
thesis over surfaces. Section 6 presents results. Section 7 concludes
the paper with suggestions for future work. Finally, Appendixes A
and B in the CD-ROM provide additional experimental results.

2 Related Work

Several algorithms have been proposed for synthesizing homoge-
neous textures on surfaces, including [Gorla et al. 2001; Turk 2001;
Wei and Levoy 2001; Ying et al. 2001]. The synthesis quality
these algorithms depends on the performance of the underlying
non-parametric sampling techniques [Efros and Leung 1999; Wei
and Levoy 2000]. Ashikhmin [2001] pointed out a special type of
textures, called “natural textures”, that cannot be synthesized well
by [Efros and Leung 1999; Wei and Levoy 2000]. He noted that the
L2-norm they used is a poor measure for perceptual similarity and
proposed a special-purpose algorithm for “natural textures”. Build-
ing on [Ashikhmin 2001], Ying et al. [2001] presented an algorithm
for synthesizing textures on surfaces. Hertzmann et al. [2001] com-
bined [Wei and Levoy 2000; Ashikhmin 2001] to get the benefits of
both.

Non-parametric sampling can also be done at patch level as in
[Efros and Freeman 2001; Liang et al. 2001]. Soler et al. [2002]
extended this approach for synthesizing textures on surfaces.

Dischler et al. [2002] proposed a technique for generating tex-
tures on surfaces. They first extract “texture particles” from the
sample texture by color thresholding and then paste “texture parti-
cles” onto surfaces. They also showed an example of changing the
scale of texture particles.

The algorithms reviewed so far are designed for homogeneous
textures, which are usually described by stationary Markov random
field (MRF) models (e.g., see [Zhu et al. 1998]). One way to create
textures with local variations is through chemical or biological sim-
ulations. Turk [1991] generated textures on surfaces using reaction-
diffusion differential equations. To change the size of the spots or
stripes on an animal coat, he varied the diffusion rates on the target
surfaces. Witkin and Kass [1991] obtained complex spatial varia-
tions in reaction-diffusion patterns by space-varying diffusion. Like
other procedural textures, reaction-diffusion textures are only suit-
able for modeling certain textures, and much parameter tweaking is
necessary to achieve a desired result. Recently, Walter et al. [2001]
proposed a technique for generating mammalian coat patterns by
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Figure 2: The need for input orientation field. (a) Input texture.
(b) Transition function and orientation field on the input texture.
(c) Transition function and orientation field on the output texture.
(d) Synthesis result without input orientation field. Notice that the
orientation of texture elements do not follow the desired orientation
field in (c). (e) Synthesis result with input orientation field.

biological simulation. Compared with the simulation-based tech-
niques, our approach can produce a wider class of textures. In addi-
tion, our approach usually generates more realistic textures because
of our use of real images as texture samples.

We consider a texture progressively-variant if texture character-
istics change smoothly over the texture domain. More specifically,
at each point of the texture domain there should be a neighborhood
over which the texture is stationary. Hertzmann et al. [2001], Har-
rison [2001], and Zalesny et al. [2002] studied a different type of
non-stationary texture, which is piecewise stationary in the sense
that the texture domain can be divided into patches and textures are
stationary on individual patches. Fig. 16 in [Hertzmann et al. 2001]
touches upon the theme of progressive variation but with no atten-
tion paid to the variation of texture elements. Progressively variant
textures are related to locally-stationary stochastic processes [Mal-
lat et al. 1998]. Research in this recent area has been limited to 1D
processes and at present there is no universally accepted definition
of local stationarity [Mallat 2003].

Our texton mask is similar to the texton channel proposed by
Malik et al. [1999] and the texton map presented by Guo et al.
[2001]. Unlike texton channels and texton maps which are ex-
tracted by visual learning, our texton map is interactively specified
by the user. We experimented with texton channels but found texton
masks more suitable for our goal. Texton masks are easy to specify
and they provide a lot of user control.

3 Overview

We represent a progressively-variant texture by a tuple (T,M,F,V )
with a texture image T and three user-specified control channels.
The texton mask M is a labeling map that marks the prominent tex-
ture elements in T . At each pixel p, the texton map indicates which
type of texture elements p belongs to. The orientation field is a
vector field defining a unit vector at each pixel of T , whereas the
transition function is a continuous scalar function F whose gradi-
ent determines how fast the texture T is changing. Fig. 1 contains a
texture image and its texton mask. Fig. 2 (a) and (b) show a texture
with its transition function and orientation field.

For creating a progressively-variant texture in 2D, our input con-
sists of a homogeneous texture sample and user-specified texton
mask M, transition function F and orientation field V . The specifi-
cation of F and V is similar to the familiar task of specifying vector
fields for synthesizing (homogeneous) textures on surfaces [Turk
2001]). Specification of texton mask T is based on a simple but
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Figure 3: (a) Field distortion synthesis. (b) Homogeneous texture
sample. (c) Synthesis result. The green blobs are made progres-
sively smaller towards the right.

effective color thresholding method described in Section 4.
From the above input, a progressively-variant 2D texture can be

created by our field distortion or feature-based techniques. The
field distortion algorithm generates a texture by scaling and rotating
the local coordinate frame at each pixel according to the transition
function and orientation field. The key to feature-based techniques
is to create texton masks first, which then guide the synthesis of
the target textures by providing a rough sketch of the distribution
and shapes of the synthesized texture elements. Specifically, the
feature-based warping algorithm first warps the texton mask and
then uses that to synthesize a new texture. The feature-based blend-
ing algorithm takes two homogeneous textures with texton masks
as input and generates first a blend texton mask and then a blend
texture.

To synthesize a progressively-variant texture on a mesh, we start
with a 2D progressively-variant texture sample (To,Mo,Fo,Vo). The
user needs to specify a transition function Fs and orientation field
Vs on the target mesh [Turk 2001]. On the mesh, the synthesis al-
gorithm controls the scale and orientation variation of texture ele-
ments by matching Fs and Vs with their 2D counterparts. Most im-
portantly, our algorithm synthesizes a texton mask Ms in conjunc-
tion with the target texture Ts and uses Ms to prevent the breaking
of texture elements.

4 2D Texture Modeling

Techniques for modeling progressively-variant 2D textures from
homogeneous texture samples include field distortion synthesis and
feature-based techniques.

4.1 Field Distortion Synthesis

The field distortion algorithm synthesizes a progressively-variant
texture To from a homogeneous sample texture by controlling scale
and orientation variations of the texture elements in To. For texture
elements in To to change size and orientation smoothly, the user
needs to supply a continuous transition function Fo and a continu-
ous orientation field Vo of the size of To. The user specifies scale
and orientation vectors at a few locations. Our system then auto-
matically interpolates these “key” scales and orientations to gener-
ate the entire Fo and Vo by using radial basis functions. This tech-
nique is widely used in previous work for generating vector fields
on surfaces (e.g., in [Praun et al. 2000]).

Figure 3 (a) illustrates the synthesis process. Essentially the field
distortion algorithm extends [Wei and Levoy 2000] by incorporat-
ing scale and orientation variations controlled Fo and Vo. The al-
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Figure 4: Specifying texton masks by color thresholding. (a) and
(c): Textures. (b) and (d) Texton masks. In both cases the texton
mask is binary. Specifying a texton mask takes a few seconds.

gorithm synthesizes To pixel-by-pixel. To synthesize a pixel p, the
algorithm first finds all neighborhoods in the sample texture that
are similar to p’s neighborhood N(p) and then chooses the neigh-
borhood that is the most similar, taking its center to be the newly
synthesized pixel p. Fo and Vo control the target texture through
the construction of the neighborhood N(p). As shown in Figure 3
(a), the pixels in N(p) are not of the same size as the pixels of the
target texture To; instead they are scaled by the scalar d = Fo(p). In
addition, N(p) is oriented according to the vector Vo(p). The pixels
in N(p) are resampled from that of To. In our implementation, we
compute a pixel in N(p) from the four nearest pixels in To by bilin-
ear interpolation. This is a simple approximation that works well
for a wide range of scales and orientations. Ideally, the resampling
should be weighted by the coverage of N(p)’s pixels in To. How-
ever, computing pixel coverage is a costly operation and should be
avoided whenever possible.

The synthesis order has a large effect on the synthesis quality.
An order established as in [Turk 2001] generates the best results.
Note also that the self-similarity based texture editing [Brooks and
Dodgson 2002] can be easily adapted for interactive editing of
progressively-variant textures.

4.2 Texton Mask Specification

To apply feature-based techniques, the user must specify a texton
mask on a given texture. The goal of texton masks is to mark promi-
nent features or texture elements. Texton mask construction may be
regarded as an image segmentation problem. Fully automatic seg-
mentation of images remains a challenging problem (e.g., see [Ma-
lik et al. 1999]). We do not attempt to solve this problem; instead
we build a user interface that allows the user to mark prominent
texture elements easily. Our experiences suggest that a texton mask
indicating one or two types of the most prominent texture elements
is sufficient for modeling and synthesis of progressively-variant tex-
tures.

Our user interface is based on color thresholding. The user picks
one or two pixel colors and for each color a threshold for color
differences. The texture is then partitioned accordingly. Fig. 4 pro-
vides examples of texton mask specification. Similar techniques
are used for the “magic wand” tool in Adobe Photoshop and by
Dischler et al. [2002]. This is a simple and effective technique
for textures in which meaningful patterns can be discriminated by
colors. We found texton masks produced by this technique work
well for most textures, mainly for the reason that our feature-based
techniques and surface texture synthesis algorithm have very low
requirements for texton masks and are not sensitive to errors in tex-
ton masks. More sophisticated segmentation methods such as [Le-
ung and Malik 1996] can be used to generate better texton masks
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Figure 5: Feature-based warping. (a) A homogeneous tiger skin
texture and its texton mask. (b) Result after warping. The stripes
are made progressively thinner towards the right.
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Figure 6: Another example of feature-based warping. (a) Texton
mask of the texture in (b). This mask has three colors (black, white,
and grey). (b) A homogeneous leopard skin texture. (c) Warping
result of (b) by progressively shrinking the white and grey areas
together. (d) Warping of (c) by expanding the white areas.

when necessary.
In addition to color thresholding, our user interface also supports

morphological operations such as dilation and erosion for refining
texton masks.

4.3 Feature-Based Warping and Blending

Warping: To apply this technique, the user first uses a texton mask
Mi to mark the features or texture elements in the input texture
Ti and then performs editing operations on this mask, producing
a new mask Mo. The transition function Fo controls the parame-
ters in the editing operations to achieve a smooth progressive vari-
ation of patterns in the mask Mo. Finally, our system synthesizes
a progressively-variant texture To using two texton masks, Mi and
Mo, and known texture Ti.

The synthesis of the texture To can be formulated as an applica-
tion of image analogies [Hertzmann et al. 2001]. Specifically, we
want to find an analogous texture To that relates to the new texton
mask Mo the same way as original texture Ti relates to its texton
mask Mi. Using the terminology of image analogies, Ti and To are
filtered results of the texton masks Mi and Mo respectively. For
this reason, we refer to the step of creating To from Mi, Mo, and Ti
as texton mask filtering. Texton mask filtering bears some resem-
blance to the texture-by-numbers technique in [Hertzmann et al.
2001]. The latter technique synthesizes a non-homogeneous tex-
ture consisting of patches of homogeneous textures from an input
non-homogeneous texture that has been segmented into homoge-
neous patches. The main difference is that texton mask filtering
uses fine-grain partitions of the textures (down to the texture ele-
ment level).

A variety of editing operations can be applied to the original tex-
ton mask Mi to generate a desired target mask Mo. The texton masks
we use have few colors: All masks used in this paper have fewer
than four colors and usually the mask is binary. For this reason
we can easily apply morphological operations such as dilation, ero-
sion, and their combinations. We can also apply image warping
techniques such as mesh warping, field warping, and warping using
radial basis functions [Gomes et al. 1998]. These techniques often
require feature points and feature lines to be specified. We found
[Suzuki and Abe 1985] very useful for this purpose. As shown in
Fig. 4 (b) and (d), a texton mask often has isolated patterns repeat-
ing over the mask. We use [Suzuki and Abe 1985] to extract the
boundary contours of these patterns. For image warping, these con-
tours can be used as feature lines and the contour centers as feature
points.

Fig. 5 shows an example of feature-based warping. We warp the
texton mask by progressively shrinking the stripes horizontally but
not vertically. Fig. 6 provides another example, in which we gener-
ate a progressively-variant texture mimicking the complex variation
of texture elements as seen on a leopard skin [Kingdon 1977]. The
specific transition we try to capture in this example is that from the
rosette patterns on the animal’s main body to the spots on its legs.
Blending: This technique takes two homogeneous textures T0 and
T1 as input and generates a progressively-variant texture Tb that pro-
vides a smooth transition from T0 to T1 as shown in Fig. 7. For
simplicity, we assume T0, T1, and Tb are all of the same size and are
defined on the unit square [0,1]× [0,1]. We also use a simple linear
transition function Fb(x,y) = x defined on [0,1]× [0,1]. Finally, we
use binary texton masks M0 and M1 for T0 and T1, respectively.

Suppose that we can construct the texton mask Mb of the blend
texture Tb. Then we can obtain Tb by color blending two textures
T ′

0 and T ′
1 according to the transition function Fb. T ′

0 is synthesized
from two texton masks, M0 and Mb, and texture T0 by using texton
mask filtering. T ′

1 is synthesized from M1 and Mb, and texture T1 in
the same way. Because T ′

0 and T ′
1 share the same texton mask Mb,

features in T ′
0 and T ′

1 are aligned and thus the color blending of T ′
0

and T ′
1 will not cause “ghosting” [Gomes et al. 1998].

The key to generating T ′
0 and T ′

1 is the construction of Mb. This
can be done in a few different ways. A simple technique is the
following. Ideally, we want Mb(x,y) to be like M0 when x ≈ 0
and like M1 when x ≈ 1. To achieve this goal, we interpolate 2D
binary functions M0 and M1 in 3D and take a diagonal 2D slice,
obtaining M(x,y) = xM1(x,y) + (1− x)M0(x,y). M(x,y) behaves
like M0 when x ≈ 0 and like M1 when x ≈ 1. Then we Gaussian
blur M(x,y) to smooth out the discontinuity inherited from M1 and
M2. Finally, we convert M(x,y) to the binary mask Mb using a
user-selected threshold. Fig. 7 (middle row) is a blending example
generated this way. Note that simply averaging the texton masks,
e.g., by setting M(x,y) = 1

2 (M1(x,y)+M0(x,y)), will generate infe-
rior blending results, as Fig. 7 (bottom row) demonstrates (e.g., pay
attention to the discontinuities at the border of the blend texture).
Fig. 8 analyzes the construction of Mb for Fig. 7.

It is also possible to construct Mb by applying Wei’s texture mix-
ture algorithm [Wei 2001] to texton masks M0 and M1, although
none of examples in this paper was created this way. Wei designed
his algorithm for direct application to textures. Unfortunately this
algorithm often fails to produce good blend textures. See Fig. 7
(top row) for an example. For blending two texton masks, the per-
formance of Wei’s algorithm is comparable to the simple algorithm
described above. An advantage of using Wei’s algorithm is that it
can be used to blend any number of textures.

In addition to Wei’s texture mixture algorithm, there are other
texture mixture approaches such as [Bar-Joseph et al. 2001]. These
general texture mixture methods often focus on mixing texture ele-
ments instead of their progressive variation. In Appendix B in the
CD-ROM, we also compare our feature-based blending with an-
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Figure 7: Feature-based blending. Top row: Result by Wei’s tex-
ture mixture algorithm. For the middle and bottom rows, the input
textures are on the left and right and the blend texture in the middle.
Middle row: Our result. Notice the progressive transition of both
the shape and color of texture elements. Bottom row: Blending re-
sult using the average mask. For the middle and bottom examples,
the borders of the homogeneous textures and the blend texture are
marked by the color-coded line segments at the bottom.
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Figure 8: Generating texton mask Mb for the example in Fig. 7. Top
row: Texton masks M0 and M1 of the left and right textures, respec-
tively. Middle row: Generating Mb with our technique. Images (c),
(d), and (e) are M(x,y), Gaussian-blurred M(x,y), and Mb. Notice
that the left part of Mb looks like M0 whereas the right part of Mb
looks like M1. This is not the case for the corresponding images in
the bottom row, in which Mb is generated by simple averaging.

other related approach called pattern-based texture morphing [Liu
et al. 2002].

5 Surface Texture Synthesis

Given a surface mesh and a progressively-variant 2D texture To with
transition function Fo, orientation field Vo, and texton mask Mo, we
wish to synthesize a progressively-variant texture Ts on the mesh.
As in the case of homogeneous texture synthesis, the user needs to
specify an orientation field Vs on the mesh by providing the orienta-
tions at some key locations. For progressively-variant textures, the
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Figure 9: (a) Texture synthesis without texton masks. (b) Synthe-
sis result of our algorithm, which is based on texton masks. (c)
Zoomed view of (a). (d) Zoomed view of (b). The progressively-
variant 2D texture sample is generated from the homogeneous sam-
ple shown in Fig. 10 (a).

user must also specify a transition function Fs on the mesh in a sim-
ilar fashion. From the user-specified values, our system interpolates
the entire Vs and Fs using Gaussian radial basis functions, where the
radius is the distance over the mesh as in [Praun et al. 2000].

5.1 Using Texton Masks

Our synthesis algorithm is based on texton masks. In a progres-
sively variant texture synthesized without texton masks, texture el-
ements tend to break apart as Fig. 9 (a) demonstrates. The breaking
of texture elements is caused by the fact that the standard L2-norm
is a poor perceptual measure for neighborhood similarity, which is
at the heart of all texture synthesis algorithms following the non-
parametric sampling approach of [Efros and Leung 1999; Wei and
Levoy 2000]. Ideally, a good perceptual measure should account
for the fact that the human visual system is most sensitive to edges,
corners, and other high-level features in images. The simple L2-
norm cannot account for this fact and the associated synthesis pro-
cess often smoothes out the edges in the output texture, leading
to breaking and re-mixing of texture elements. Ashikhmin [2001]
noted this behavior and proposed a coherence-based synthesis al-
gorithm to address this problem for a special class of textures. In
general, due to our incomplete understanding of the human visual
system at present, there is no perceptual measure available that is
reliable and computationally efficient enough for texture synthesis.

To prevent the breaking of texture elements, our algorithm syn-
thesizes a texton mask Ms in conjunction with the texture Ts. This
algorithm is based on two ideas. First, texton masks are resistant
to damage caused by deficiencies in the L2-norm. Specifically, the
non-parametric sampling of [Efros and Leung 1999] and [Wei and
Levoy 2000] can only generate pixel values that already exist in
the input texture and thus cannot smooth out edges when the input
texture has few colors, which is the case for texton masks. Fig. 10
demonstrates this idea with an example. Our second idea is to lever-
age the damage resisting property of texton masks. By synthesizing
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Figure 10: Texton masks are resistant to the damages caused by
deficiencies in the L2-norm. (a) Input texture. (b) Texton mask of
(a). (c) A patch of the synthesized texture. Many texture elements
break apart. (d) The corresponding texton mask synthesized from
(b). No texture element breaks apart. The same synthesis procedure
is used for (c) and (d).

a texton mask on the target surface, we can use the mask to guide
the texture synthesis process by encouraging it to pick, for each
mesh vertex v, the color of a pixel p in the 2D texture sample such
that v and p have the same texton mask value.

5.2 The Algorithm

Our algorithm synthesizes the texton mask Ms along with the target
texture Ts on the mesh. A single-resolution and single-pass version
of our algorithm proceeds as follows. We make a pass through the
vertices of the mesh and pick a color and a texton mask value for
every vertex. Following [Turk 2001], we use the orientation field
Vs to determine the processing order of mesh vertices. We found
that this technique noticeably improves the synthesis quality. At
each vertex v, the color is obtained through the following steps.
First, we construct neighborhoods Nc(v) and Nm(v) in the tangent
plane of the surface at v. Within the tangent plane, Nc(v) and Nm(v)
have the same orientation, which is determined by the surface ori-
entation field value Vs(v). The neighborhood Nc(v) contains color
values resampled from that of the vertices near v. Likewise, the
neighborhood Nm(v) holds texton mask values resampled from that
of the vertices near v.

In the next step, we collect all candidate pixels for vertex v in the
2D texture To and put them in the candidate pool C(v,ε). To qualify
for C(v,ε), a candidate pixel p must satisfy the condition

|Fo(p)−Fs(v)| < ε, (1)

where ε is a prescribed tolerance for mismatch in transition func-
tion values. For all the examples in this paper, we set ε = 0.1 for
transition function values normalized to lie in the interval [0,1] .

Finally, we carry out two searches, one for texton mask value
Ms(v) and the other for vertex color Ts(v). For Ms(v), we find a
pixel p in C(v,ε) such that the distance between the neighborhoods
Nm(v) and Nm(p) is the smallest, where Nm(p) is a neighborhood
of p in the 2D texton mask Mo. Searching for Ts(v) is slightly more
complex. We need to look for a pixel p in the candidate pool C(v,ε)
such that the following sum of two distances

dist(Nc(v),Nc(p))+dist(Nm(v),Nm(p))

is the smallest, where Nc(p) is a neighborhood of p in the 2D tex-
ture To. The neighborhoods Nc(p) and Nm(p) have the same orien-
tation, which is determined by the 2D orientation field value Vo(p).

The pseudo-code of our algorithm is as follows.

For each vertex v on surface
construct neighborhoods Nc(v) and Nm(v)
build candidate pool C(v,ε)
smallest match = INFTY
For each pixel p = (a,b) in C(v,ε)

construct neighborhoods Nm(p)
new match = dist(Nm(v),Nm(p))
If (new match < smallest match)

smallest match = new match
mask value = Mo(p)

Ms(v) = mask value
smallest match = INFTY
For each pixel p = (a,b) in C(v,ε)

construct neighborhoods Nc(p) and Nm(p)
new match = dist(Nc(v),Nc(p)) + dist(Nm(v),Nm(p))
If (new match < smallest match)

smallest match = new match
color = To(p)

Ts(v) = color

As in [Wei and Levoy 2001; Turk 2001], our system uses two-
pass multi-resolution synthesis to improve the synthesis quality. In
addition, we perform a refinement pass with a small neighborhood
size. This refinement pass is very fast and noticeably improves syn-
thesis results.
Neighborhood Construction: In our implementation, we choose
larger (i.e., having more pixels) neighborhoods Nm(v) and Nm(p)
when we search for the texton mask value at v. When we search
for the color value at v, we choose a smaller neighborhood size
for both the color neighborhoods Nc(v) and Nc(p) and the texton
mask neighborhoods Nm(v) and Nm(p). The rationale behind this
choice is that texton masks determine the layout of texture elements
whereas the synthesis of pixel colors is simply a step to fill in the
details.

Another technical issue is the local adaptation of the size of the
neighborhood Nc(p). One would expect that as texture elements
change sizes, the neighborhood used to capture them should also
change. This is indeed the case and Nc(p) should really be Nc(p,s)
where s = Fo(p) is the scale at p. Let Nc(p,smin) be the smallest
neighborhood and Nc(p,smax) be the largest. We determine the size
of Nc(p,s) by linearly interpolating between that of Nc(p,smin) and
Nc(p,smax) and rounding the result up to the nearest integer. The
same local adaptation technique applies to neighborhoods Nm(p),
Nc(v) and Nm(v).
Matching Transition Functions: The synthesis algorithm requires
that we match the transition function values when searching for the
color and texton mask value of a vertex v. We fulfill this require-
ment by confining the search to the candidate pool C(v,ε). This
approach is very different from most existing algorithms for syn-
thesizing stationary textures on surfaces, as these algorithms sim-
ply search all pixels of the 2D sample texture To. An advantage
of searching all pixels is that hierarchical data techniques such as
kd-trees and tree-structured vector quantization (TSVQ) can be pre-
computed and used to accelerate the search. Unfortunately, the
pixel p found by the search may not satisfy the condition in Equa-
tion (1). This is a price we cannot afford to pay for progressively-
variant textures.

In our algorithm, the matching of transition function values is
guaranteed since a qualified candidate p in C(v,ε) is required to sat-
isfy the condition in Equation (1). With C(v,ε) so constructed, we
can no longer use kd-trees or TSVQ to accelerate the search because
C(v,ε) changes from vertex to vertex, making pre-computation
of kd-trees and TSVQ impossible. To address this problem, we
search C(v,ε) using the k-coherence technique proposed by [Tong
et al. 2002]. According to the standard k-coherence criteria, C(v,ε)
should be populated with pixels that are appropriately “forward-
shifted” with respect to pixels already used for synthesis. In addi-
tion to each “forward-shifted” pixel, its (k− 1) nearest neighbors
by the neighborhood distance should also be included in C(v,ε).
Our algorithm builds C(v,ε) using the k-coherence technique with
an additional check for the condition in Equation (1) for each can-
didate pixel p. Following [Tong et al. 2002], we accelerate the k-
coherence technique by pre-computing the k nearest neighbors for
each pixel of the 2D sample texture. For all the examples in this
paper, we set k = 20.
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Figure 11: Homogeneous texture synthesis using texton masks.
Left column shows sample textures. Middle column shows input
texton masks (see Appendix A in the CD-ROM for the target texton
masks). Right column shows synthesis results. In the bottom row,
color thresholding fails and the texton mask is hand painted (white
dots for flowers and black dots for leaves).

An alternative approach to handling the transition functions is to
put the transition function values in the alpha channel and compute
the L2-norm of RGBA-vectors during texture synthesis. This is the
approach taken by [Hertzmann et al. 2001] and it works for texture-
by-numbers applications. For progressively-variant textures, this
technique has the drawback that the pixel found by the search pro-
cedure may not satisfy the condition in Equation (1).
Local Orientation Control: For synthesis of stationary textures
on a mesh, it is standard to have an orientation field on the mesh.
The difference with a progressively-variant texture is that it needs
an orientation field on the input 2D texture as well. Fig. 2 explains
why an input orientation field is necessary.

5.3 Discussion

Texton masks are also useful for homogeneous texture synthesis, as
Fig. 10 shows. A case in which texton masks are extremely useful
is illustrated by the pepper example in Fig. 13. This is a challenging
example for existing algorithms. Wei and Levoy’s method [2000]
would have difficulty because of the L2-norm. The tiling method
[Efros and Freeman 2001; Liang et al. 2001] will also have trou-
ble because it is based on L2-distance matching of boundary zones
of texture patches. When applied to the pepper image, the tiling
method can create ”non-peppers” near texture patch boundary.

The top example in Fig. 11 is also a challenge for existing algo-
rithms. Even with interactively extracted texture elements, Dischler
et al. [2002] reported difficulty with this texture. Our algorithm can
handle this example well because we combine the strengths of both
non-parametric sampling and user-specified texton masks.

6 Results

Fig. 1 shows a leopard-horse generated by our system. This ex-
ample was inspired by the homogeneous leopard-horse in [Turk
1991]. The progressively-variant 2D texture sample was generated
by feature-based warping as described in Fig. 6. Fig. 12 exhibits a
collection of examples. The top left example is the head of a venus
statue. We blended between two kinds of marble by feature-based
blending to create the progressively-variant 2D texture sample. No-
tice that the color and structure of the marble veins progressively
change over the whole surface. The homogeneous texture images
of marble are shown next to the statue. The top right example is the

Figure 12: Progressively-variant textures on surfaces. The initial
homogeneous texture samples are shown next to each example.

Mesh Sample size Vertex number Time (minutes)
Venus 512×128 192k 44
Bunny 512×128 300k 104
Giraffe 384×96 106k 33
Tiger 256×64 170k 51
Horse 448×128 250k 39

Table 1: The timings are measured on a 2.4 GHz Xeon workstation.

pepper bunny. The transition between red peppers to yellow pep-
pers is produced by feature-based blending. Observe that individual
peppers are packed together without breaking. The homogeneous
texture samples of the red and yellow peppers are shown next to
the bunny. The bottom left example is a giraffe. Note that the shape
and size of the texture elements gradually change along the giraffe’s
legs and neck. The bottom right example is a tiger. Notice the
stripes on the tiger’s shoulder are made progressively thinner. This
is achieved by applying feature-based warping to a homogeneous
texture sample as described in Fig. 5. The homogeneous texture
sample used in this example is shown near the tiger. The texture
for the entire body of the animal was generated by our system. The
texture of the tiger’s face was painted by an artist. Table 1 pro-
vides timings for synthesizing progressively-variant textures onto
surfaces.

Although color thresholding may not always generate a good
segmentation in the traditional sense, the resulting texton masks are
usually good enough for our purposes because of the low require-
ments of our techniques on texton masks. Fig. 13 demonstrates the
robustness of our synthesis algorithm to variations in texton masks.
Fig. 11 (bottom row) shows an example for which color threshold-
ing fails to extract a texton mask. In this example, we hand painted
a texton mask and our algorithm was able to produce good results
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Figure 13: Robustness of our synthesis algorithm to variations in
texton masks. (a) Texture sample. (b) and (c): two significantly
different texton masks of the sample. (d) Texture synthesized using
the mask in (b). (e) Texture synthesized using the mask in (c).

with this low-quality texton mask.
Appendix A and Appendix B in the conference CD-ROM pro-

vide additional experimental results.

7 Conclusion

Our main contribution in this paper is a framework for progressively
variant textures on arbitrary surfaces. The most novel aspects of our
work are feature-based warping and blending of textures, as well as
synthesis of progressive variant textures on arbitrary surfaces. We
expect our work to inspire a lot of creative methods for decorating
surfaces with textures. We feel that our contribution may not lie
so much in the technical solutions to each individual problem per
se, but rather in the overall framework of progressively variant tex-
tures. The general framework we propose should be applicable to
most textures, even though individual technical solutions may be
restricted to certain types of textures.

One area of future work is to add more user control to feature-
based blending. Our current method computes a texton mask for
the blend texture such that texture elements change shape smoothly.
However, the user may want more control on the way they change
for achieving the most “natural” blend between the two given tex-
tures. Another topic is to explore the multi-way transition among
more than two textures. Finally, we are interested in other ways to
control the local variations of textures.
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