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Spherical Harmonics Scaling

Abstract In this paper, we present a new SH opera-
tion, called spherical harmonics scaling, to shrink or ex-
pand a spherical function in frequency domain. We show
that this problem can be elegantly formulated as a lin-
ear transformation of SH projections, which is efficient
to compute and easy to implement on a GPU. Spherical
harmonics scaling is particularly useful for extrapolat-
ing visibility and radiance functions at a sample point
to points closer to or farther from an occluder or light
source. With SH scaling, we present applications to low-
frequency shadowing for general deformable object, and
to efficient approximation of spherical irradiance func-
tions within a mid-range illumination environment.
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1 Introduction

Spherical harmonics (SHs) offer an efficient representa-
tion for a band-limited spherical signal. This represen-
tation has been widely used in computer graphics for
modeling illumination distributions [3], visibility func-
tions [5], and BRDFs [7]. Because of the properties of
a spherical harmonics basis, there are several operations
defined on spherical harmonics projections that can be
efficiently computed and that makes spherical harmonics
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Fig. 1 Scaling operation. Top row: Scale a spherical func-
tions around p. Bottom row: The corrsponding spherical har-
monics scaling.

practical for computer graphics, especially for real-time
rendering of global illumination effects.

1.1 Related Work

For global illumination, the integral of the rendering
equation is computationally expensive and impractical
for real-time rendering. An efficient solution to this prob-
lem is to represent irradiance and surface reflectance
as spherical harmonics projections, and then solve their
spherical convolution by a SH dot product of their SH co-
efficient vectors [3]. This approach was utilized in work
on precomputed radiance transfer (PRT) [5], which con-
volves the SH vectors of a BRDF kernel and transferred
radiance that accounts for visibility and interreflections.

The basic formulation of PRT was presented for static
scenes. To extend the functionality of PRT, operations
on spherical harmonics have been proposed to facilitate
some change in lighting conditions or object configura-
tions. In [5], spherical harmonic rotations are described
for run-time rotation of environment maps without re-
projection. SH rotation was also employed in the shadow
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fields technique [8] for rotation of local light sources and
occluding objects. For PRT with a locally deformable
object, Sloan et al. [6] presented zonal harmonics (ZH),
and demonstrated that a ZH basis is more efficient for
rotation and can be implemented in current GPUs.

In [2], a PRT method is introduced for fast evaluation
of radiance as a SH triple product of lighting, reflectance,
and visibility. The triple product presents an operation
on spherical harmonic projections that is equivalent to an
element-wise multiplication of two spherical functions.
Unlike a dot product, the triple product results in a new
spherical harmonic projection instead of a scalar.

The triple product is somewhat cumbersome to com-
pute, and would be expensive to employ when a large
number of spherical functions are involved. Recently, an
new operation on spherical harmonics called spherical

harmonics exponentiation [4] was proposed for efficient
evaluation of visibility in a scene with deformable ob-
jects. Instead of computing an expensive SH product per
blocker as in previous work, they perform inexpensive
vector sums to accumulate the log of blocker visibility.
SH exponentiation then yields the product visibility vec-
tor over all blockers. With this approach, the visibility
functions associated with numerous occluders can be ef-
ficiently aggregated.

1.2 Overview

In this paper, we propose a new SH operation called
spherical harmonics scaling to shrink or expand a spher-
ical harmonics projected function around a given point
on the sphere. The result of this procedure is illustrated
in Fig. 1 for the input spherical function shown in the
top-center, which is scaled with respect to the point p.
Scaling this spherical function smaller should contract
its region boundary towards p, while a larger scaling
should extend its boundaries away from p. Here we ad-
dress the problem of how to compute a spherical scaling
on a spherical harmonics projection, as illustrated in the
bottom row of Fig. 1. We have found that spherical har-
monics scaling can be formulated as a linear transforma-
tion of SH projections, which is cheap to compute and
can be easily implemented on a GPU.

Spherical harmonics scaling brings a new functional-
ity to PRT by extrapolating visibility and radiance func-
tions from a sample point to other points located farther
from or closer to a light source or occluding object. We
present two real-time applications that take advantage
of this property. One is a low-frequency shadowing tech-
nique for general object deformation, which constructs
approximate shadow fields on the fly by sampling visi-
bility at only a single radial distance from the object and
then rapidly scaling these functions to other radii. The
second application utilizes spherical harmonics scaling
to efficiently approximate spherical irradiance functions
for mid-range illumination, such as from an environment
map defined on a finite sphere.

2 Spherical Harmonics Scaling

In polar coordinates, shrinking and expanding of a spher-
ical function Fr(θ, φ) around the θ = 0 axis into a new
function Fd(θ, φ) can be expressed as

Fd(θ, φ) = Fr(τ(θ), φ) (1)

where τ(·) is a monotonically increasing angular scaling

function that rescales the polar angle θ independently of
azimuth angle φ. For a spherical function Fr that repre-
sents visibility from a given point, moving closer to an
occluder results in a scaling of the visibility function in
which τ(θ) < θ. Likewise, moving farther from the oc-
cluder corresponds to an angular scaling function with
τ(θ) > θ.

For some spherical functions, such those representing
radiance, the change in solid angle due to scaling must be
considered for energy preservation. Accounting for solid
angles, Eq. (1) can be rewritten as

Fd(θ, φ) sin θdθdφ = Fr(τ(θ), φ) sin τ(θ)dτ(θ)dφ

= Fr(τ(θ), φ) sin τ(θ)τ ′(θ)dθdφ. (2)

Combining Eq. (1) and Eq. (2), we define spherical
scaling as

Fd(θ, φ) sin θdθdφ = Fr(τ(θ), φ)η(θ)dθdφ (3)

where η(θ) = sin θ without energy preservation, and
η(θ) = sin τ(θ)τ ′(θ) with energy preservation.

2.1 Scaling with SH Representation

When a spherical function is represented by spherical
harmonics coefficients, spherical scaling can also be done
directly in the spherical harmonics domain. We refer to
this operation as Spherical Harmonics Scaling. When
both Fd(θ, φ) and Fr(θ, φ) are represented by vectors Sd

and Sr of spherical harmonics coefficients, Sd can be ex-
pressed as a linear transformation of Sr with respect to
SH basis functions Ψ :

Sd(i) =

∫∫

Ω

Fd(θ, φ)Ψi(θ, φ)η(θ)dθdφ

=

∫∫

Ω

Fr(τ(θ), φ)Ψi(θ, φ)η(θ)dθdφ

=

∫∫

Ω




∑

j∈I

Ψj(τ(θ), φ)Sr(j)



Ψi(θ, φ)η(θ)dθdφ

=
∑

j

(
Sr(j)

∫∫

Ω

Ψj(τ(θ), φ)Ψi(θ, φ)η(θ)dθdφ

)

=
∑

j

(Sr(j) · Mi,j) (4)
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For a given angular scaling function τ(·), spherical
harmonics scaling can be reduced to a matrix-vector
product:

Sd = M · ST
r (5)

where Mi,j =
∫∫

Ω
Ψj(τ(θ), φ) · Ψi(θ, φ)η(θ)dθdφ is called

the SH scaling transformation matrix.

2.2 SH Scaling Transformation Matrix

From Eq. (4), the SH scaling transformation matrix M
is defined as

Mi,j =

∫∫

Ω

Ψj(τ(θ), φ) · Ψi(θ, φ)η(θ)dθdφ (6)

An interesting property of this transformation matrix
is that less than one-fifth of its elements are non-zero,
and that the matrix locations of these non-zero elements
are independent of the angular scaling function τ(·), as
proven in the Appendix. Regardless of whether energy
is being preserved, exactly N(2N2 + 1)/3 of the N4 ele-
ments in M are non-zero for an N th-order spherical har-
monics representation. For example, with fourth-order
spherical harmonics there are only 44 non-zero elements
that are located in the matrix as shown in Fig. 2. Since
the locations of non-zero elements in the transformation
matrix are independent of angular scaling function τ(·),
computational savings can be gained by reducing the
matrix-vector product of Eq. (5) to a set of multipli-
cations and sums for only the non-zero elements.

2.3 Angular Scaling Function

Analogous to the backward warping function used in im-
age processing, the angular scaling function τ(·) repre-
sents a backward mapping of polar angles that is defined
according to the application. Typically, a series of angu-
lar scaling functions τk(·) parameterized by k is provided
to perform scaling for different instances. Correspond-
ingly, there are different scaling transformation matrices

Fig. 2 Locations of non-zero elements in fourth-order SH
scaling transformation matrices. X represents the non-zero
elements.

Fig. 3 Plot of six randomly selected elements in M with
respect to k for scaling visibility functions.

Mk with respect to different k. In most cases, Mk cannot
be expressed analytically, and even if an analytical form
exists, such as for τk(θ) = kθ, Mk is often too expen-
sive to calculate. We choose to numerically compute Mk

for sampled values of k, and then linearly interpolate for
intermediate values. As shown in Fig. 3, elements in dif-
ferent scaling transformation matrices change smoothly
with respect to k, and we have empirically found it suf-
ficient to sample 40 values of k in an exponential distri-
bution.

3 Applications of SH Scaling

3.1 Shadow Fields for Deformable Objects

Traditionally, soft shadows are directly computed from
the relative positions of a light source and an occluder.
Because of this dependence on scene configuration, pre-
computation becomes difficult due to the large number
of possible object arrangements in a dynamic scene. To
enable some amount of precomputation in soft shadow
generation for dynamic scenes, the shadow fields tech-
nique [8] decouples lighting and visibility by modeling
the shadowing effects of illuminants and occluders indi-
vidually. This decoupling allows precomputation that is
independent of arrangement. At run time, these precom-
puted shadowing effects are then efficiently combined ac-
cording to scene arrangement to give fast performance.

For a light source, its shadow field is called a source
radiance field (SRF), and is precomputed by sampling
the incoming radiance distribution at points in an empty
space surrounding the illuminant. These points are sam-
pled at uniform intervals angularly and radially. Points
at a given radial distance from the center of the light
source form a sphere, which is sampled angularly in a
uniform distribution. At each of these sample points, the
incoming radiance distribution is recorded as a cube map
of incoming radiance values from different directions.
For shadow fields of occluding objects, called object oc-
clusion fields (OOFs), cube maps are similarly sampled
but instead record visibility information as alpha values.
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Fig. 4 Cone geometric approximation. vr is a sampled point
on the bounding sphere, whose visibility is extrapolated to
a point vd in the same angular direction but at a different

radial distance. The angle θ̂d is our approximation to the
actual angle θd of the object silhouette.

For intermediate locations within the sampled points of
a shadow field, cube maps are trilinearly interpolated
from the cube maps of the eight nearest sample points.
These cube maps are represented in terms of fourth-order
spherical harmonics to facilitate processing.

For a deformable object, precomputation of shadow
fields becomes infeasible due to the large number of pos-
sible object configurations. To address this problem, we
take advantage of the observation that as one views a
shadow field entity from increasing (decreasing) distances,
the form of the visibility function or radiance distribu-
tion appears approximately the same, but at decreasing
(increasing) scale, as illustrated in the top row of Fig. 5.
Based on this property, we propose to sample shadow
fields at a single radial distance and then rapidly extrap-
olate samples at other radii by SH scaling. In principle,
the geometry of the object must be known in order to
obtain a precise angular scaling function τ . Since this
information is generally unknown, we utilize a cone ge-

ometric approximation that the object surface forms a
cone that faces the sample point as shown in Fig. 4. The
angle α of this virtual cone from the radial direction is

Fig. 5 Approximate visibility by scaling of visibility func-
tions. Top row: actual visibility at different radii. Bottom row:
corresponding visibility computed by cone geometry approx-
imation from visibility acquired from the bounding sphere
(radius r). From left to right, the radius is 0.5r, 0.7r, 0.9r,
1.3r, and 2r.

set to π/4 in our implementation, but may be adjusted
by the user to obtain a better approximation for a given
object. With this geometric approximation, the angular
scaling function τk from θd to θr is given by

θr = τk(θd) =

{
θ′ θ′ ≥ 0

θ′ + π θ′ < 0

where

θ′ = arctan

(
k tan θ

1 + tan θ − k tan θ

)
, (k = d/r)

The result of this geometric approximation is exhibited
for the bird model in Fig. 5, where the approximated vis-
ibility functions in the bottom row closely resemble the
actual visibility functions given in the top row. While
some slight discrepancies exist in the approximated vis-
ibility function, the approximation is nevertheless ade-
quate for low-frequency shadowing.

For OOFs of occluding objects, we utilize the SH scal-
ing function of Eq. (1). For SRFs of light sources, the
spherical functions also express radiant energy in terms
of unit solid angle instead of binary visibility. To account
for radiant intensity with respect to solid angle, we use
the energy preserving SH scaling function in Eq. (2).

Our rendering algorithm is performed at run time
for each frame in two stages. In the first stage, visibil-
ity/radiance functions are computed on the fly at 6*8*8
sample points on the bounding sphere of scene entities.
At each sample point, we rasterize a rectangle of 32*32
pixels towards the center of the object or light source,
then use the glReadPixels function in OpenGL to read
back the visibility or radiance functions. Next, the visi-
bility/radiance functions are converted into fourth-order
spherical harmonic coefficients Sr. In the second stage,
for each scene vertex, the SH visibility function with re-
spect to each object and the SH radiance function with
respect to each light source Sd are scaled from the cor-
responding Sr by computing M · ST

r , where M is the
corresponding SH scaling transformation matrix. Soft
shadow values are then computed according to the al-
gorithm given in [8].

Since visibility functions of deformable objects are
sampled and extrapolated on-the-fly by SH scaling, shadow
fields of deformable objects/lights are computed at real-
time rates. Moreover, self-shadowing on object surfaces
can be also approximated within the bounding sphere us-
ing ratios of k < 1, which expand the original visibility
function instead of shrinking it.

3.2 Mid-Range Environment Lighting

For efficient rendering of global illumination effects with
complex distant lighting, several methods based on pre-
computed radiance transfer have been proposed (e.g., [5,
2]). These PRT techniques address the transfer of dis-
tant directional illumination from environment maps to
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Fig. 6 SH scaling for mid-range environment lighting.

an object or a fixed surrounding scene, but do not effec-
tively handle lighting from non-distant sources, for which
the distribution of incoming source illumination can vary
from point to point in a scene. To efficiently address this
issue, Annen et al. [1] approximate the incident lighting
over an object by sampling the illumination distribution
at only a few points (about 8 samples per object) and
then interpolating them for other points using gradients
of spherical harmonic coefficients.

With spherical harmonic scaling, we present a sub-
stantially more efficient technique for the case of environ-
ment map illumination that is not distant but originates
from a sphere of radius R. By capturing the single irra-
diance function Fr(θ, φ) at the center vr of the sphere,
the irradiance function at any other locations within the
sphere can be scaled from Fr(θ, φ). As shown in Fig. 6,
θr of vr corresponds to θd of vd. By denoting the vector
from vr to vd as a signed quantity d, the angular scaling
function τk from θd to θr is given by

θr = τk(θd)

= 2 arctan

(√
cot2 θd + 1 − k2 − cot θd

1 + k

)
(7)

k = d/R ∈ (−1, 1)

Fig. 7 Comparison between a fully sampled shadow field
(left column) and extrapolation by SH scaling (right column).

Table 1 Performance data of deformable shadow fields.

Scene Vert. Model/Plane FPS
Flying Dragon 1.1k/10k 35.4
Egg + Deform Light 0.5k/10k 14.2
Bending Sponge 8.4k/10k 13.4
Teapot Plane 10k/10k 26.8

Our rendering algorithm involves two steps at each
vertex. First, we scale the radiance function Fr(θ, φ) at
the sphere’s center to the vertex’s position to obtain
Fd(θ, φ). Since the vertex can be in arbitrary direction
relative to the sphere’s center, Fr is first rotated to that
direction and scaled then rotated back. Second, we com-
bine the incoming radiance Fd(θ, φ) represented in a SH
basis with the precomputed transport vector/matrix at
the vertex to calculate the soft shadow value as described
in [5].

4 Experimental Results

We have implemented the two applications described in
Sec. 3 on a 2.8-GHz Pentium IV PC with 1GB RAM
and an nVidia FX6800GT graphics card. A fourth-order
spherical harmonics representation is used in all the pre-
sented experiments. The overall performance data is listed
in Table 1.

Deformable shadow fields We display rendered frames
for sequences of a flying dragon in Fig. 8, a transforming
egg in Fig. 9, and a bending sponge block in Fig. 10. For
complete sequences of these scenes, we refer the reader
to the supplementary video. The scene in Fig. 8 contains
a deformable local light source that consists of a planar
red emitter and a green emitter that are connected and
have an adjustable angle. In all of these examples, the
visibility functions approximated by spherical harmonics
scaling generate soft shadows consistent with the defor-
mations of the animated object. Fig. 7 compares the re-
sult of our approximation with a fully sampled shadow
field as used in [8].

Mid-Range environment lighting We show in Fig. 11 some
rendered images of a teapot on a plane with mid-range
environment lighting. In this example, we only sample
the irradiance distribution at the center of the scene; the
irradiance distribution at each vertex is then extrapo-
lated using SH scaling. The upper-left corners of each
image illustrate the lighting distribution, which consists
of a red and a green source, and also shows the position
and orientation of the teapot within the environment
lighting sphere. Notice that the shadow and shading are
changing when the teapot plane is moving in the scene.
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5 Conclusion

We proposed a new operation on a spherical harmonics
basis to efficiently scale spherical functions represented
in SH. Spherical harmonics scaling is amenable to GPU
implementation, and can be used to extrapolate visibility
and radiance functions at a sample point to points closer
to or farther from an occluder or light source.

In future work, we plan to examine methods for re-
ducing extrapolation errors in visibility and radiance func-
tions. One source of this error occurs when a sampled
point on the bounding sphere lies on the surface of an
object. This results in a visibility function that is half
occluded regardless of object shape, while direct extrap-
olation of such a visibility function leads to circular sil-
houettes. Although this problem is partly mitigated by
the visibility functions of nearby sample points that do
not lie on the object surface, we plan to examine differ-
ent sampling schemes to reduce this error. For example,
this error may potentially be decreased by sampling at
different radial distances for different (θ, φ) directions ac-
cording to certain geometric criteria.

Extrapolation error may also arise from the geomet-
ric approximation described in Sec. 3.1. To address this
issue, we plan to investigate the possible solution of par-
titioning the object or light source into a small number
of sub-volumes that are handled separately from one an-
other.
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Appendix: Structure of SH Scaling Transforma-

tion Matrix

Real-valued spherical harmonics are defined as

Y m
l (θ, φ) =






√
2Km

l cos(mφ)Pm
l (cosθ), m > 0√

2Km
l sin(−mφ)P−m

l (cosθ), m < 0
K0

l P 0

l (cosθ), m = 0

where P denotes the associated Legendre polynomials
and K is a normalization factor:

Km
l =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)! .

Further, Each spherical harmonics can be decomposed
as Y m

l (θ, φ) = Sm
l (φ)Tm

l (θ), where

Sm
l (φ) =






√
2Km

l cos(mφ), m > 0√
2Km

l sin(−mφ), m < 0
K0

l , m = 0

Tm
l (θ) =






Pm
l (cos θ), m > 0

P−m
l (cos θ), m < 0

P 0

l (cos θ), m = 0

Denote Ψj(θ, φ) as Y m
l (θ, φ) and Ψi(θ, φ) as Y m′

l′ (θ, φ) in
Equation 6, Equation 6 can be rewritten as

Mi,j =

∫∫

Ω

Y m
l (τ(θ), φ) · Y m′

l′ (θ, φ)η(θ)dθdφ

=

∫∫

Ω

(Sm
l (φ)Tm

l (τ(θ)) · (Sm′

l′ (φ)Tm′

l′ (θ))η(θ)dθdφ

= (

∫
2π

0

Sm
l (φ)Sm′

l′ (φ)dφ) · (
∫ π

0

Tm
l (τ(θ))Tm′

l′ (θ)η(θ)dθ)

= δmm′ ·
∫ π

0

Tm
l (τ(θ))Tm′

l′ (θ)η(θ)dθ

It can be easily proved that δmm′ is non-zero only when
m = m′. This means that Mi,j is zero for all m 6= m′,
whatever τ(·) is chosen. Thus the non-zero entries in the
transformation matrices M lie at fixed positions that
are independent of the angular scaling function τ(·), and
that they are relatively sparse.
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Fig. 8 Shadow fields for deformable objects: Flying dragon.

Fig. 9 Shadow fields for deformable objects: Transforming egg with deforming light source.

Fig. 10 Shadow fields for deformable objects: Deforming sponge block.

Fig. 11 Mid-range environment lighting: The positions of the teapot relative to the environment light are shown at the
upper-left corners.
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