
The Visual Computer manuscript No.
(will be inserted by the editor)

Rui Wang · Kun Zhou · John Snyder · Xinguo Liu · Hujun Bao ·

Qunsheng Peng · Baining Guo

Variational Sphere Set Approximation for Solid Objects

Abstract We approximate a solid object represented as
a triangle mesh by a bounding set of spheres having min-
imal summed volume outside the object. We show how
outside volume for a single sphere can be computed us-
ing a simple integration over the object’s triangles. We
then minimize the total outside volume over all spheres
in the set using a variant of iterative Lloyd clustering
which splits the mesh points into sets and bounds each
with an outside volume-minimizing sphere. The resulting
sphere sets are tighter than those of previous methods. In
experiments comparing against a state-of-the-art alter-
native (adaptive medial axis), our method often requires
half or fewer as many spheres to obtain the same error,
under a variety of error metrics including total outside
volume, shadowing fidelity, and proximity measurement.

1 Introduction

Object approximation using sets of simple primitives plays
an important role in many time-critical applications in
computer graphics, such as collision, hit, and proxim-
ity detection, view-frustum and occlusion culling, visi-
bility and ray intersection queries, and shadowing. Many
different geometric primitives have been used including
spheres [3,7,15,19], axis-aligned bounding boxes (AABBs)
[2], oriented bounding boxes (OBBs) [5,11], and discrete
oriented polytopes (k-DOPs) [10]. Typically, a trade-off
exists between the primitive’s simplicity and its fitting

Rui Wang⋆ · Xinguo Liu · Hujun Bao · Qunsheng Peng
State Key Lab of CAD&CG, Zhejiang University
E-mail: {rwang,xgliu,bao,peng}@cad.zju.edu.cn

Kun Zhou · Baining Guo
Microsoft Research Asia
E-mail: {kunzhou,bainguo}@microsoft.com

John Snyder
Microsoft Research
E-mail: johnsny@microsoft.com
⋆This work was done while Rui Wang was an intern at Mi-
crosoft Research Asia.

(a) original (b) clusters (c) outside vol. (d) total vol.
approx. approx.

Fig. 1 Solid approximation (2D). Our approximation (c),
which minimizes outside volume, is more effective than meth-
ods (d) minimizing total volume of the bounding elements
(blue and red circles).

flexibility. A sphere set is probably the simplest represen-
tation to update for dynamic geometry and to perform
collision-related queries on, and so has found widespread
use in applications.

Our goal is to bound an object as tightly as possi-
ble using a user-specified number of spheres, denoted ns.
Previous methods have involved arbitrary decisions and
fitting metrics not directly tied to bounding tightness,
and have been too local/greedy in their fitting approach.
Our solution introduces two contributions: a new metric
that more directly measures tightness of fit, and a global,
variational method that directly minimizes this metric.

Our novel fit function is based on the volume be-
tween the sphere set and the original object, called the
outside volume (Figure 1c). In particular, our notion of
error ignores overlaps in the sphere set as long as they
occur in the object’s interior; only sphere volume that
“sticks out” of the object is penalized. Neglecting inte-
rior overlap provides much-needed flexibility and satisfies
our intuition that for many applications, including those
related to collision detection and (opaque) visibility, in-
terior overlap is irrelevant.

To find the sphere centers and radii, we apply a vari-
ant of the variational approach in [4] using spheres as the
fit primitive and outside volume as the fit function. The
method converges to an approximation minimizing out-
side volume. For a given ns, we demonstrate that our
sphere sets are much tighter than those produced by

2 Rui Wang et al.

other methods, and produce better results in a variety
of applications.

2 Related Work

Sphere set approximation can be computed by sub-
dividing an object into an octree and placing spheres at
each non-vacant leaf node [6,12]. The arbitrary subdivi-
sion grid wastes many spheres.

Quinlan [15] uses top-down recursive splitting (RS).
It first covers the surface with uniformly-sized spheres,
splits the resulting sphere set using the longest axis of its
bounding box, and then recursively visits the two child
lists. RS is used for constructing sphere-trees for visi-
bility culling and level-of-detail rendering [18] and for
collision detection on deformable models [9]. An alterna-
tive is to merge similar spheres in a bottom-up fashion
[16,21]. Splitting or merging is done greedily and thus
suboptimally at each stage. More fundamentally though,
the basic strategy attempts to minimize total bounding
volume rather than outside volume (see Figure 1).

Methods based on the medial axis [7,1] build a Voronoi
diagram and center spheres at its vertices. The Adaptive
Medial Axis Approximation (AMAA) [3] extends this
idea using greedy optimization to merge pairs of neigh-
boring spheres. The approach is superior to other pro-
posed methods, but still involves many greedy decisions
and is not directly tied to outside volume.

Variational approximation alternates two phases, par-
titioning based on Lloyd clustering [13] and fitting, in or-
der to find an optimal, piecewise-linear approximation of
the input geometry [4]. Further work [24] extends the ap-
proximating primitives from planar elements to spheres
and cylinders. Our method builds on this work but uses
an entirely different metric (outside volume rather than
integrated surface distance) appropriate for solid object
queries such as collision and visibility rather than sur-
face simplification. As is true for nonlinear optimization
in general, increased searching and better heuristics can
locate better solutions but finding the global minimum
can not be guaranteed.

3 Sphere Set Approximation

Surface Approximation Approximation theory deals
with the problem of approximating complicated mathe-
matical objects with simpler ones. In [4], approximation
error is defined as the distance between the original sur-
face X and the approximation Y , defined by

Lp(X,Y) = (
1

|X|

∫∫

x∈X

‖d(x, Y)‖p dx)
1

p (1)

d(x, Y) = inf
y∈Y

‖x − y‖

where ‖.‖ is Euclidean distance and |.| is surface area.

(b) SOV

(a) outside volume (c) SOTV

Fig. 2 Outside volume, SOV, and SOTV. (a) The green re-
gion is the outside volume. (b) A single sphere is divided by
the object’s triangles into two parts: inside (gray) and out-
side volume or SOV (green). (c) One triangle is highlighted
(brown) to show its corresponding SOTV. SOV is computed
via a sum over SOTVs.

Solid Approximation The above definition is appro-
priate for surfaces not solids. On the other hand, [3,7]
present a metric suitable for solids that measures dis-
tance to the sphere surface along the polygon normal di-
rection, over a set of sample points on the original surface
X. Because the method is based on point samples and
projects distances onto discrete polygon normals, it can
easily miss or underweight regions of large protrusion. It
also neglects concavities (see Figure 5). We instead ap-
ply a volumetric version of (1) which measures volume
outside the object but inside an approximating sphere
(Figure 2ab).

More precisely, for a single sphere S the error metric,
called sphere outside volume (SOV), is defined as

E(X,S) =

∫∫∫

y∈S

d(X, y) dy (2)

d(X, y) =

{

0 y ∈ X
1 y /∈ X

where X is the original object and d(X, y) returns whether
a point y is outside X. The global error metric for the
entire sphere set is defined by summing E(X,Si) over
all spheres in the set {Si}. Si is defined by center oi and
radius ri.

Unlike Hausdorff error, this definition is one-sided:
only volume in the sphere set outside the original mesh
counts. This is reasonable since we are computing a bound-
ing approximation through which no part of the original
mesh can protrude. Another issue is that our definition
overcounts volume from Si which overlap outside X. Ne-
glecting this typically small overlap makes the computa-
tion tractable because each Si’s SOV can be computed
independently without a set union operation.

4 Computing Outside Volume

A simple method to compute (2) is to discretize the
sphere set volume into a regular grid and count the num-

Variational Sphere Set Approximation for Solid Objects 3

(a) 3 vert. in (b) 3 vert. out (c) 2 vert. out (d) 1 vert. out

(a) (b)

(c) (d)

Fig. 3 SOTV computation. Four cases (a-d) of the trian-
gle/sphere relation, based on how many triangle vertices are
inside the sphere, are shown in the top row. The triangle
is drawn in red and the darker green region represents its
SOTV. The bottom row shows how the SOTV is computed
in each case.

ber of grid cells outside the object. Too many grid cells
are necessary to compute outside volume accurately. We
instead apply an analytic method to compute the vol-
ume by directly integrating it triangle by triangle. For a
sphere, (2) can be represented as

E(X,S) = V (T, S) (3)

where T is the triangle set representing the object X, and
V is the volume outside T but inside the sphere S. The
outside volume of the entire sphere set approximation
then is:

E(X,Si) =

ns
∑

i=1

V (T, Si). (4)

If a triangle t ∈ T is entirely or partly inside the
sphere S, then volume exists between the sphere shell
and the triangle, denoted V (t, S) and named sphere-
outside-triangle volume (SOTV) (Figure 2c). The total
SOV is accumulated by adding or subtracting these SOTVs
over all triangles t ∈ T in the solid object’s mesh.

4.1 Computing SOTV

Figure 3 classifies four possible relations between a sphere
S = (o, r) and a triangle t ∈ T . Cases (a) and (b) are
simple while (c) and (d) are somewhat more complicated.

For case (a), SOTV is given by

V (t, S) = Vstri(t, S) − Vtet(t, o) =
1

3
(r3 Ω − D h)

where Vstri(t, S) is the volume bounded by the spheri-
cal triangle formed by projecting the vertices of triangle
t onto the sphere S, and Vtet(t, c) is the volume of the
tetrahedron formed by the sphere center o and the three

(a) (b) (c)

Fig. 4 Swing volume computation. (a) swing volume inte-
gral, (b) integral slice: S(x), (c) slice decomposition

vertices of the triangle t. Ω is the solid angle of the tri-
angle on the sphere, D is the area of triangle t, h is the
height of t’s plane above o, and r is the sphere radius.
For case (b), the volume is

V (t, S) = π h2 (r − h

3
).

For case (c), we find the arc representing the inter-
section of the triangle and sphere, and the two points,
p0 and p1, where this arc intersects the triangle edges
(green points in Figure 3c, bottom). The outside volume
can be further decomposed into one volume correspond-
ing to case (a) and an additional “swing” volume whose
computation we will describe in more detail later.

Finally, for case (d), the two points of intersection
where the triangle edges exit the sphere, along with the
two triangle vertices inside the sphere, form a quadri-
lateral region that can be split into two triangles. One
triangle’s outside volume corresponds to case (a) and the
other’s to case (c) (Figure 3d, bottom).

Swing volume lies between two planes hinged between
the points p0 and p1 where the triangle edges exit the
sphere (green points in Figure 3c, bottom). One of the
these planes is the triangle’s and the other contains p0,
p1 and the sphere origin o. The angle between these two
planes is denoted ϕ.

To compute swing volume, we use a canonical orien-
tation where the triangle normal aligns to the y axis
while the vector p0 − p0 aligns to the x axis. Define
l = ‖p1 − p0‖. Without loss of generality, we can assume
a unit-radius sphere (r=1), and then scale the result-
ing swing volume by r3. The normalized swing volume
then depends on only two parameters, l and ϕ. As a
preprocess, we record a 2D table of swing volumes us-
ing numerical integration based on the formula derived
below.

In Figure 4a, the swing volume is broken into 2D
slices using planes perpendicular to the x axis. One of
these planes for a particular value of x intersects the
sphere in a circle, shown with a dashed outline in Fig-
ure 4a. This x plane intersects the swing volume to form
a region we denote S(x), colored green in the figure. Its
area can be computed by subtracting the area of the tri-
angle (blue) from the entire sector (yellow), as shown in
Figure 4c.

4 Rui Wang et al.

(a) (b) (c)

Fig. 5 Error metric comparison (2D). (a) polygon and circle,
(b) normal-projected metric [7], (c) outside area

(a) signed areas (b) area accumulation

Fig. 6 Outside area accumulation (2D).

The entire volume can be defined as an integral of
S(x) over x from x0 = −l

2 to x1 = l
2 . Figure 4b shows

the region S(x) in a simpler 2D projection where the
view is now perpendicular to the x axis. The region may
be defined in terms of the variable ry and two constants,

l0 and l1, where ry =
√

1 − x2, l0 is the distance of the
triangle plane to the sphere center o, and l1 is the dis-
tance of the projection of o onto the triangle plane to the
segment from p0 to p1:

l0 =

√

1 − (
l

2
)2 sin(ϕ), l1 =

√

1 − (
l

2
)2 cos(ϕ)

The swing volume Vs can now be expressed as

Vs =

∫ x1

x0

S(x) dx

S(x) = (ϕ − sin−1(
l0√

1 − x2
)) − 1

2
(
√

1 − x2 − l20 − l1) l0

The first term in S(x) corresponds to the yellow sector
and the second to the blue triangle.

4.2 Accumulating SOTV into SOV

While accumulating SOTV over mesh triangles, the vol-
ume must be signed according to two factors: whether
the sphere center is inside or outside the object, and
whether the sphere center is behind or in front of the
triangle’s plane.

(a) Sphere center inside object. The SOTV is positive if
the sphere center is behind the triangle plane, and neg-
ative otherwise. Total outside volume is thus computed
as

Vin(T, S) =
∑

tj∩S 6=∅

sign (nj · (pj − o)) V (tj , S)

where tj is a triangle in the mesh T , o is the center of S,
nj is the normal of triangle tj , and pj is the projection
of o onto triangle tj . The sign function returns −1 if its
argument is negative and +1 otherwise.

(b) Sphere center outside object. In this situation, we
invert the signs used in (a) and then subtract the result
from the total sphere volume, yielding

Vout(T, S) =
4π

3
r3 + Vin(T, S)

2D Example Figure 6 shows a 2D example with circle
center inside the object. Unlike our outside volume com-
putation in Figure 5c, the approximate error metric from
[7] does not handle concavities correctly. For example,
the red edge has normal-projected distance of d in Fig-
ure 5b, an overestimate which effectively ignores the con-
cavity.

Total outside area is accurately computed by travers-
ing all edges of the 2D polygon to accumulate their out-
side areas one by one. Depending on the position of the
circle center relative to the “outward” halfspace of each
polygon edge, each area is signed positive (green) or neg-
ative (blue). Accumulation of 3D volumes with respect
to a sphere is analogous.

5 Minimizing Outside Volume

To find an optimal sphere set approximation for solid
objects, we minimize (4) using a variant of the Lloyd
clustering algorithm [13]. We discretize the object into a
set of points including points on its surface and within
its interior. Lloyd clustering takes place over this set of
points and a sphere is used to bound each of the ns

clusters. Clustering iteratively apply three steps: point
assignment to clusters, cluster sphere update, and clus-
ter teleportation, until error converges. Each point is as-
signed to the cluster whose bounding sphere’s outside
volume increases least. Given the cluster’s set of assigned
points, its bounding sphere center and radius are up-
dated by minimizing (3). To avoid getting stuck in an
undesirable local minimum, the “teleportation” strategy
from [4] is applied.

Preprocessing A mesh object is discretized into two kinds
of points: inner and surface. Inner points are generated
by voxelizing the object into a regular grid and eliminat-
ing grid points outside the object. A grid size is manually
chosen to ensure the object’s interior is sampled well.
Points on the mesh surface are generated by sorting tri-
angles by their areas and sampling points randomly in
proportion to these areas [23]. The inner grid points and
surface samples are combined and regarded as the volu-
metric representation to be partitioned in clustering.

To initialize the cluster spheres, we randomly choose
ns inner points for the sphere centers oi and set their
radii ri=0.

Variational Sphere Set Approximation for Solid Objects 5

Point Assignment A point p is assigned to the cluster it
is closest to, based on outside volume (Figure 7). More
precisely, the cluster’s bounding sphere radius is enlarged
in order to include p, and the enlarged sphere’s outside
volume (SOV) is computed. p is assigned to that cluster
whose outside volume increases least. In case of a tie, p
is assigned to the cluster whose sphere center is closest.

We use a flood fill (stack-based) algorithm to order
the set of points for cluster assignment. The algorithm
starts from the cluster centers and progresses to adjacent
points. Once a point is assigned, the bounding sphere
radius of its cluster is updated, and its adjacent points
are pushed onto the stack. Assignment terminates when
the stack is empty.

Unlike VQ [13], whose point assignment step is order-
independent and simply assigns points to the closest clus-
ter, our point assignment can not guarantee a decrease
in outside volume. In practice, it almost always achieves
one. If point assignment yields an error increase, sphere
teleportation is triggered (see below). If this fails to de-
crease error, the algorithm terminates.

The above (naive) algorithm for point assignment can
be accelerated. Naive point assignment computes n×ns

SOV queries, where n is the number of points and ns

the number of clusters. We can significantly reduce this
number by observing that cluster bounding sphere cen-
ters oi remain fixed during point assignnment; only their
radii ri are progressively enlarged as more points are as-
signed. The current outside volume of each cluster sphere
is thus only a function of its current radius. As points are
assigned, we keep track of the outside volume for each
cluster sphere as a function of the points’ distance to oi.
In other words, we build a table of the relation between
radius and SOV for each cluster based on its fixed center
oi.

To assign a new point p, for each cluster Ci we look
up a (previously assigned) point q in its table which is
closer to oi than p, yielding a lower bound on p’s outside

(a) initial clusters (b) potential assignment

(c) increased outside volume (d) final assignment

Fig. 7 Point assignment by outside volume. Though point
p is closer to cluster S0’s center than to S1, outside volume
increases less by assigning it to S1.

volume. By subtracting Ci’s current outside volume from
this, we obtain a lower bound on the outside volume
increase without performing a new SOV query.

Using this method, we compute lower bounds on out-
side volume increase for assigning p to each cluster Ci. If
no q closer than p exists in Ci’s table, then we must com-
pute the actual SOV for p with respect to oi. We then
compute actual SOV (and trivially, outside volume in-
crease) for the cluster having the smallest lower bound.
Clusters whose lower bounds are larger can be culled
without the need to perform an expensive SOV query.

Sphere Fitting Once we have a new cluster assignment,
we independently update the bounding spheres of each
cluster Ci. Starting from its old parameters, the cluster
bounding sphere Si=(oi, ri) updates its center and ra-
dius in order to best approximate the points assigned to
cluster Ci. The best center and radius are determined
using (3), via

argminoi
V (T, Si) (5)

while constraining ri to continue bounding all the clus-
ter’s assigned points.1 The minimal oi is found using
Powell’s multidimensional minimization [14].

Sphere Teleportation Like many variational methods, the
algorithm easily gets stuck in a local minimum. To avoid
this, we employ sphere teleportation, similar to “region
teleportation” in [4]. Teleportation is triggered when in-
sufficient error improvement occurs in cluster assignment
/update iterations. The sphere having the maximum over-
lap ratio (and thus most redundant) is chosen as the tele-
portation source and the largest error sphere is chosen
as teleportation destination. Overlap ratio is defined as
the ratio of volume shared with at least one other sphere
in the set to the total volume.

After teleportation, the teleportation source sphere
is deleted and the destination sphere split into two. The
two points farthest from each other in the maximum er-
ror cluster are chosen as the two initial sphere centers.
Another iteration of point assignment and cluster up-
date is then computed to evaluate this teleportation. If
the new error is less, the teleportation is accepted.

6 Applying Sphere Sets

Animating sphere sets can be achieved by “skinning”
based on mean value coordinates [22]. A sphere set is fit
to the rest pose and the sphere centers updated as the
model moves using a linear combination of the deformed
vertex positions (see [17]). Bounding sphere radii can re-
main fixed for typical motions of articulated characters.

1 Actually, to ensure that the sphere set bounds the triangle
mesh, each sphere is emlarged as a post-process to bound the
edge mid-points and triangle centers of all triangles entirely
or partially inside the sphere [8].

6 Rui Wang et al.

Er=4.10,ns=575 Er=2.78,ns=128 Er=0.52,ns=64 Er=0.35,ns=64
(a) octree [6,12] (b) RS [15] (c) AMAA [3] (e) our approx.

Fig. 8 Method comparison on “Armadillo”.

Sphere hierarchies can be built using a simple bottom-
up approach, using our algorithm’s sphere sets as its leaf
nodes. Hierarchy levels are constructed one at a time
from the leaves up to the root, based on Lloyd clus-
tering. Each cluster stores its current bounding sphere.
Clustering iteratively assigns spheres to the closest clus-
ter, based on the distance from the sphere center to
the cluster’s, and then updates the cluster’s bounding
sphere. Its center is initially taken as the average center
over all spheres assigned to it and then optimized using
Powell’s method to reduce its radius. After convergence,
each cluster is made a parent node in the hierarchy; the
spheres assigned to it become its children. The next hi-
erarchy level above can then be computed by recursively
clustering over the list of parent nodes just computed.
The average branching ratio of the hiearchy is chosen by
the user.

7 Results

To our knowledge, AMAA [3] is the state-of-the-art method
for sphere set approximation (see Figure 8). We compare
our result to AMAA’s, based on visual and geometric
error, and in applications of shadow computation and
proximity query. We use the author’s software, available
at http://isg.cs.tcd.ie/spheretree/.

Figure 15 shows some individual objects and assem-
bled scenes, using shadow rendering from [17]. More ex-
amples are shown in Figure 16. Construction time for
one of the models, “Armadillo”, using clustering over
5000 points is documented in Figure 9. Our computa-
tion time is not much more than AMAA’s, but yields a
significantly better approximation.

Visual and Geometric Error Figure 16 compares our ap-
proximation to AMAA using three different sphere set
sizes: ns=32, ns=64, and ns=128. Geometric error is
measured by relative outside volume, Er, the sphere set’s
outside volume divided by the original mesh’s volume.
Figure 17 graphs Er as a function of ns. Although our
method’s curve does not appear dramatically lower than
AMAA’s in terms of absolute error, it should be noted
that both curves flatten out dramatically after an ns

greater than 20-40 spheres. The absolute error value is
much less important than how many spheres are required

to achieve it. Intersecting the two curves with horizon-
tal lines of constant error, it can be seen that AMAA
often requires many more spheres than our approach to
achieve the same error – two or three times as many in
some cases (e.g. Armadillo graph).

Shadow Application The sphere set can be used as a
proxy for rendering the original mesh [18] or its shad-
ows [17]. We compare results using sphere sets to cast
shadows from distant, environmental light rendered us-
ing diffuse PRT [20]. A ground plane is used to “catch”
shadows underneath the objects and the resulting image
differences analyzed in terms of RMS error over all pixels
and all orientations of the lighting environment. Image
results are presented in Figure 10 (the top row shows the
original view while the bottom row shows the ground
plane images) and error graphs in Figure 11. Shadows
from our sphere sets are significantly closer to the ground
truth shadows, allowing us to use many fewer spheres in
order to achieve results similar to AMAA (see graphs).

Proximity Application We also tested sphere set approx-
imations in proximity queries, using a pair of “armadillo”
models (Figure 12). The experiments are based on out-
side distance queries (Figure 14) which measure the dis-
tance of a line segment spent either outside the model
(a) or outside the sphere set (b). The line segments for
the queries were generated using 3000 random pairs of
points on the two models, sampled uniformly in mesh
area. The average difference between the actual outside
distance and sphere set outside distance, e, is a good
measure of the tightness of the sphere approximation
and is graphed in Figure 13.

By performing the distance query over line segments,
we are able to perform a union over the sphere set by
tracking 1D intervals representing sphere entry and exit
points and counting the nesting levels. The outside dis-
tance query thus eliminates overcounting of overlapped
outside volume, unlike our definition in (4). As in the
other applications, our method significantly beats AMAA.
For example, our method with ns=32 spheres has less
average error than AMAA’s with ns=64.

8 Conclusion

We have tested our variational approach on many mod-
els including simple and complex ones. Our method out-
performs alternatives such as the octree and medial-axis
methods, as we’ve demonstrated using visual and quan-
titative comparisons and in applications involving shad-
owing and proximity detection. In many cases, our al-
gorithm’s sphere sets work as well as the current best
alternative’s with only 33-75% as many spheres.

Our algorithm’s effectiveness is based on two factors.
One is a suitable definition of error, which we formu-
late in terms of outside volume. Our error metric con-
siders only volume of the sphere set outside the input

Variational Sphere Set Approximation for Solid Objects 7

Fig. 9 Sphere-set construction time.

(a) original mesh (b) our approx. (c) AMAA

Fig. 10 Sphere set shadows, ns = 48.

Fig. 11 Graphs of shadow error.

(a) original mesh (b) our approx. (c) AMAA

Fig. 12 Proximity query scene

Fig. 13 Proximity query error.

(a) actual (b) using sphere set

Fig. 14 Outside distance.

geometry and neglects how much the spheres overlap in
the object’s interior. This is appropriate for solid ob-
ject approximation in applications based on intersection
and proximity. The second factor is to solve the resulting
minimization problem using variational partitioning and
fitting, which provides a more direct and more global
solution than previous methods.

Our method’s extensive computation limits it to sphere
sets having no more than a few hundred spheres. Fortu-
nately, object approximation with such a limited number
of spheres suffices for many interesting real-time applica-
tions as we have shown. To generate larger sphere sets,
heuristics such as simple Lloyd (L2) clustering can be
used to form initial bounding spheres and then a few it-
erations of outside-volume minimizing cluster iteration
applied.

Acknowledgements This project was partially supported
by 973 Program of China (No. 2002CB312104), NSFC (No.
60021201) and Specialized Research Fund for the Doctoral
Program of Higher Education of China (No.20030335083).

References

1. Amenta, N., Choi, S., Kolluri, R.K.: The power crust.
In: SMA ’01: Proceedings of the sixth ACM symposium
on Solid modeling and applications, pp. 249–266. ACM
Press, New York, NY, USA (2001)

2. van den Bergen, G.: Efficient collision detection of com-
plex deformable models using AABB trees. J. Graph.
Tools 2(4), 1–13 (1997)

3. Bradshaw, G., O’Sullivan, C.: Adaptive medial-axis ap-
proximation for sphere-tree construction. ACM Trans.
Graphic. 23(1), 1–26 (2004)

4. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational
shape approximation. ACM Trans. Graphic. 23(3), 905–
914 (2004)

5. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hi-
erarchical structure for rapid interference detection. In:
Proc. of ACM SIGGRAPH 1996, pp. 171–180 (1996)

6. Hubbard, P.: Interactive collision detection. In Proceed-
ings of the 1993 IEEE Symposium on Research Frontiers
in Virtual Reality 14(2), 24–31 (1993)

7. Hubbard, P.: Collision detection for interactive graphics
applications. PhD thesis (1995)

8. Hubbard, P.: Approximating polyhedra with spheres for
time-critical collision detection. ACM Trans. Graph.
15(3), 179–210 (1996)

9. James, D.L., Pai, D.K.: BD-tree: output-sensitive col-
lision detection for reduced deformable models. ACM
Trans. Graphic. 23(3), 393–398 (2004)

10. Klosowski, J.T., Held, M., Mitchell, J., Sowizral, H.,
Zikan, K.: Efficient collision detection using bounding

8 Rui Wang et al.

volume hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics 4(1), 21–36 (1998)

11. Krishnan, S., Pattekar, A., Lin, M., Manocha, D.: Spher-
ical shells: A higher-order bounding volume for fast prox-
imity queries. In Proceedings of the 1998 Workshop on
the Algorithmic Foundations of Robotics pp. 122–136
(1998)

12. Liu, Y., Noborio, J., Arimoto, S.: Hierarchical sphere
model HSM and its application for checking an inter-
ference between moving robots. In Proceedings of the
IEEE International Workshop on Intelligent Robots and
Systems pp. 801–806 (1988)

13. Lloyd, S.: Least squares quantization in PCM. IEEE
Transactions on Information Theory IT-28(2), 129–137
(1982)

14. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.:
Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, New York, NY, USA (1992)

15. Quinlan, S.: Efficient distance computation between non-
convex objects. IEEE Intern. Conf. on Robotics and Au-
tomation pp. 3324–3329 (1994)

16. Ranjan, V., Fournier, A.: Union of spheres (UoS) model
for volumetric data. In: SCG ’95: Proceedings of the
eleventh annual symposium on Computational geometry,
pp. 402–403. ACM Press, New York, NY, USA (1995)

17. Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun,
B., Sloan, P., Bao, H., Peng, Q., Guo, B.: Real-time soft
shadows in dynamic scenes using spherical harmonic ex-
ponentiation. To appear in Proc. ACM SIGGRAPH 2006
(2006)

18. Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution
point rendering system for large meshes. In: Proc. ACM
SIGGRAPH 2000, pp. 343–352 (2000)

19. Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic dis-
play of complex graphical environments. In: Proc. of
ACM SIGGRAPH 1997, pp. 345–352 (1997)

20. Sloan, P., Kautz, J., Snyder, J.: Precomputed radi-
ance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graphic.
21(3), 527–536 (2002)

21. Tam, R.C., Fournier, A.: Image interpolation using
unions of spheres. pp. 401–414 (1998)

22. Tao, J., Schaefer, S., Warren, J.: Mean value coordi-
nates for closed triangular meshes. ACM Trans. Graphic.
24(3), 561–566 (2005)

23. Turk, G.: Generating random points in triangles. In:
Graphics gems, pp. 24–28. Academic Press Professional,
Inc., San Diego, CA, USA (1990)

24. Wu, J., Kobbelt, L.: Structure recovery via hybrid varia-
tional surface approximation. Computer Graphics Forum
24(3), 277–284 (2005)

Rui Wang received his B.S. in computer science from Zhe-
jiang University in 2001. He is currently a Ph.D. candidate
in the State Key Laboratory of CAD&CG of Zhejiang Uni-
versity. His research interests are image-based modeling, ma-
chine learning and geometry approximation.

Kun Zhou is a researcher/project lead of the graphics group
at Microsoft Research Asia. He received his B.S. and Ph.D.
in Computer Science from Zhejiang University in 1997 and
2002 respectively. His current research focus is geometry pro-
cessing, texture processing and real time rendering. He holds
over 10 granted and pending US patents. Many of these tech-
niques have been integrated in Windows Vista, DirectX and
XBOX SDK.

John Snyder is a Principal Reseacher at Microsoft Research.
He received a B.S. from Clarkson University in 1984, a Ph.D.
from the California Institute of Technology in 1991, and has
been at Microsoft Research since 1994. His research interests
include geometry representation and processing and real-time
algorithms for global illumination.

Xinguo Liu received a B.S. in 1995 and a Ph.D. in 2001 from
the Department of Applied Mathematics in Zhejiang Univer-
sity. He is currently in the State Key Lab of CAD&CG, and
is a Professor of the Computer Science School in Zhejiang
University. Before joined CAD&CG in 2006 April, he was a
researcher of the Internet Graphics Group in Microsoft Re-
search Asia. His main research interests are in appearance
modeling, real-time rendering, geometry processing and de-
formable objects.

Hujun Bao received his B.S. and Ph.D. in applied math-
ematics from Zhejiang University in 1987 and 1993 respec-
tively. His research interests include modeling and rendering
techniques for large scale of virtual environments and their
applications. He is currently the director of State Key Lab-
oratory of CAD&CG of Zhejiang University. He is also the
principal investigator of the virtual reality project sponsored
by Ministry of Science and Technology of China.

Qunsheng Peng is a Professor of computer graphics at Zhe-
jiang University. His research interests include realistic image
synthesis, computer animation, scientific data visualization,
virtual reality, bio-molecule modeling. Prof. Peng graduated
from Beijing Mechanical College in 1970 and received a Ph.D
from the Department of Computing Studies, University of
East Anglia in 1983. He serves currently as a member of the
editorial boards of several international and Chinese journals

Baining Guo is the research manager of the internet graph-
ics group at Microsoft Research Asia. Before joining Microsoft,
Baining was a senior staff researcher in Microcomputer Re-
search Labs at Intel Corporation in Santa Clara, California,
where he worked on graphics architecture. Baining received
his Ph.D. and M.S. from Cornell University and his B.S. from
Beijing University. Baining is an associate editor of IEEE
Transactions on Visualization and Computer Graphics. He
holds over 30 granted and pending US patents.

Variational Sphere Set Approximation for Solid Objects 9

(a) T. Rex, ns=64 (b) Bunny, ns=60 (c) Diplodocus, ns=64 (d) Human, ns=256

(d) Battle scene (e) Dinosaur scene

Fig. 15 Sphere set approximation for different objects and scenes.

orig.

ns=32

Er = 0.66 Er = 0.57 Er = 2.19 Er = 1.36 Er = 1.07 Er = 0.85 Er = 1.83 Er = 1.20

ns=64

Er = 0.52 Er = 0.35 Er = 1.00 Er = 0.64 Er = 0.74 Er = 0.56 Er = 0.95 Er = 0.62

ns=128

Er = 0.34 Er = 0.25 Er = 0.55 Er = 0.31 Er = 0.50 Er = 0.35 Er = 0.43 Er = 0.30

AMAA our approx. AMAA our approx. AMAA our approx. AMAA our approx.
Armadillo Dragon Lion Female

Fig. 16 Sphere set comparison with the AMAA method.

Fig. 17 Graphs of relative outside volume vs. ns.

