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Abstract

We introduce mesh quilting, a geometric texture synthesis algo-
rithm in which a 3D texture sample given in the form of a trian-
gle mesh is seamlessly applied inside a thin shell around an arbi-
trary surface through local stitching and deformation. We show that
such geometric textures allow interactive and versatile editing and
animation, producing compelling visual effects that are difficult to
achieve with traditional texturing methods. Unlike pixel-based im-
age quilting, mesh quilting is based on stitching together 3D geom-
etry elements. Our quilting algorithm finds corresponding geom-
etry elements in adjacent texture patches, aligns elements through
local deformation, and merges elements to seamlessly connect tex-
ture patches. For mesh quilting on curved surfaces, a critical issue
is to reduce distortion of geometry elements inside the 3D space of
the thin shell. To address this problem we introduce a low-distortion
parameterization of the shell space so that geometry elements can
be synthesized even on very curved objects without the visual dis-
tortion present in previous approaches. We demonstrate how mesh
quilting can be used to generate convincing decorations for a wide
range of geometric textures.
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1 Introduction

Caught between the need for ever richer computer-generated scenes
and the hardware limit of polygon throughput, early computer
graphics researchers developed texture mapping as an efficient
means to create visual complexity while maintaining the geometric
complexity to a reasonable level. More general forms of textures,
such as bump mapping and volumetric textures, were introduced
to palliate the artifacts of image texturing, while still eliminating
the tedium of modeling and rendering every 3D detail of a surface.
However, the graphics processor on today’s commodity video cards
has evolved into an extremely powerful and flexible processor, al-
lowing not only real-time texture mapping, but also interactive dis-
play of tens of millions of triangles. Thus, exquisite details can
now be purely geometrically modeled and directly rendered, with-
out generating the well-documented visual artifacts of image-based
textures such as lack of parallax, smoothed contours, and inaccu-
rate shadows. This purely mesh-based representation of geometric
detail turns out to be also very desirable as it does not suffer from
most of the traditional limitations of modeling, editing, and anima-
tion, offering a versatile and unrestrictive tool for artistic creation.

Alas, modeling such complex geometric details as veins, chain
mails, ivies, or weaves is still a tedious process—more so than im-
age texture synthesis, its 2D counterpart. Whereas many 2D texture
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Figure 1: A bunny model decorated with two typical geometric textures us-

ing Mesh Quilting. Left: a non-periodic tubular weave mesh-swatch can be

successfully grown over the surface; Right: even a chain mail structure can

be seamlessly synthesized from the given swatch, preserving the integrity of

each link.

synthesis techniques have been proposed over the past few years,
the problem of creating mesh-based 3D geometric textures remains
challenging. In this paper, we introduce a solution, called mesh
quilting, to synthesize geometric details by stitching together small
patches of an input geometric texture sample (see Figure 1). We
also propose tools to further edit and animate these geometric de-
tails, facilitating the design of complex geometric textures on arbi-
trary meshes.

1.1 Related Work

Mapping textures on surfaces to add visual complexity has a long
history in graphics; we will only review the most relevant refer-
ences.

Modeling of Geometric Detail on Surfaces The first success-
ful representation for complex geometric details was introduced
in [Kajiya and Kay 1989] as three-dimensional textures, and has
since then been proven to be efficient for rendering complex scenes
containing forests, foliage, grass, hair, or fur [Neyret 1998]. Pro-
cedural 3D texture synthesis [Peachey 1985; Perlin 1985; Perlin
and Hoffert 1989] can extend the applicability of such techniques.
However, manipulating and animating the content of these volumet-
ric textures can be particularly delicate. Recently, [Elber 2005; Po-
rumbescu et al. 2005] advocated a more versatile representation for
geometric detail modeling using mesh-based details. Both method
simply tiles textures over the plane and then maps the textures to
3D surfaces. However, this process is limited to periodic textures
and most importantly it will produce texture discontinuity across
chart boundaries since arbitrary surfaces do not have a global pa-
rameterization over the plane. Although a few other papers have
proposed such a mesh-based creation of geometric textures on arbi-
trary meshes (see [Fleischer et al. 1995]), they are mostly restricted
to the dissemination of simple texture elements over the surface,
like scales or thorns, and do not allow the design of woven materi-
als for instance.

Example-based Texture Synthesis Texture synthesis on surfaces
has, over the past five years, significantly increased the ease of de-
signing complex image-based details on arbitrary meshes. A first
category of algorithms [Turk 2001; Wei and Levoy 2001; Ying et al.
2001; Tong et al. 2002; Zelinka and Garland 2003] achieved such
a synthesis based on per-pixel non-parametric sampling [Efros and



Leung 1999; Wei and Levoy 2000]. Based on the L2-norm, a rel-
atively poor measure of perceptual similarity, such algorithms are
not applicable to a large spectrum of textures. The second category
of algorithms synthesizes textures by directly copying small parts of
an input texture sample (i.e., a swatch), an approach more amenable
to all types of texture input. Earlier algorithms randomly paste
patches and use alpha-blending to hide patch seams [Praun et al.
2000]. Recently, quilting [Efros and Freeman 2001; Liang et al.
2001; Soler et al. 2002; Magda and Kriegman 2003; Kwatra et al.
2003; Wu and Yu 2004; Zhou et al. 2005] generate significantly
better results by carefully placing patches to minimize the disconti-
nuity across patch seams. After placing those patches, [Liang et al.
2001; Magda and Kriegman 2003] simply use alpha-blending to
hide patch seams, while [Efros and Freeman 2001; Kwatra et al.
2003; Zhou et al. 2005] further enhance the smoothness across the
seams by searching for the “min-cut” seams. Since our human vi-
sual system is so sensitive to edges, corners and other high-level
features in textures, [Wu and Yu 2004] proposes instead to extract a
feature map from the sample texture, and perform feature matching
and deformation to best keep the integrity of features. Other rele-
vant texture synthesis techniques include an hybrid approach com-
bining pixel-based and patch-based schemes [Nealen and Alexa
2003], texturing objects in photographs [Fang and Hart 2004], par-
allel controllable texture synthesis on GPU [Lefebvre and Hoppe
2005] and texture synthesis using Expectation Maximization opti-
mization [Kwatra et al. 2005].

Shell Space Parameterization If a geometric texture given as a
mesh over a planar surface needs to be mapped to a 3D curved sur-
face, a one-to-one mapping between the geometric texture and the
shell space (i.e., the thin layer around the curved surface) can be
defined. Unlike previous methods which implicitly construct the
shell space using normal displacement, [Peng et al. 2004] define
a point-to-surface function to generate displacements for vertices.
The shell map approach [Porumbescu et al. 2005] proposes to tetra-
hedralize both the shell space and texture space to build a bijective
mapping between the two spaces using barycentric coordinates of
the corresponding tetrahedra. However, and as admitted by the au-
thors as a limitation, shell mapping is very sensitive to the height
of the shell as it can introduce significant distortion resulting in no-
ticeable artifacts.

1.2 Challenges

Despite fast progress in example-based image texture synthesis,
there has been very little work to provide a similar tool for 3D
geometric texture. To the best of the authors’ knowledge, only
two papers [Bhat et al. 2004; Lagae et al. 2005] explored this is-
sue recently. However, both methods dealt with a more restrictive
representation than meshes. [Bhat et al. 2004] used a voxel-based
approach and [Lagae et al. 2005] used distance fields. Providing a
mesh quilting technique that seamlessly applies a 3D texture sam-
ple (given as a triangulated mesh) inside a thin shell around an ar-
bitrary surface presents multiple hurdles. First, the input texture
sample is not a regular array of pixel values but an irregular mesh
given by vertex positions and connectivity, making adaptation of
image quilting a difficult task. Second, our texture sample consists
of geometry elements, each being truly a small 3D object identi-
fied as a connected component in 3D, and we wish to maintain the
integrity of these geometry elements in the synthesized geometry
texture to facilitate subsequent applications such as interactive edit-
ing and animation. Finally, when mesh quilting is performed on
curved surfaces, geometry elements often exhibit severe distortion
in the 3D space within the shell and a shell mapping procedure to
minimize distortion is essential for generating visually-pleasing ge-
ometry textures.

Figure 2: Modeling a knight’s chain mail shirt from a swatch.

1.3 Contributions

We built upon the traditional texture synthesis framework to design
a mesh-based geometric texture synthesis technique to decorate ar-
bitrary meshes: from a base mesh and a given 3D texture swatch,
a geometric texture, locally similar to the swatch everywhere, is
synthesized over the base mesh. In contrast to previous volumet-
ric texture methods, a unique feature of mesh quilting is that both
the input geometry and output geometry are represented by triangle
meshes. Moreover, our technique maintains the integrity of geom-
etry elements in the synthesized texture so that subsequent texture
editing and texture animation can be easily performed. For stitch-
ing together geometry elements our algorithm finds corresponding
elements in adjacent texture patches, aligns elements through local
deformation, and merges elements to connect texture patches. This
explicit manipulation of geometry elements distinguishes our tech-
nique from image texture synthesis, which strives to maintain im-
age features implicitly through manipulation of image pixel values.
For mesh quilting on curved surfaces, we introduce a low-distortion
parameterization of the shell space so that geometry elements can
be synthesized without the visual distortion present in previous ap-
proaches.

2 Mesh Quilting Synthesis

As already proposed in the 2D case for texture images, an interest-
ing design tool to generate geometric details on a surface is to use a
swatch of geometry texture (a mesh representing a portion of wicker
or rattan fabric, or a section of a wall-climbing vine with its foliage,
see Figure 10) and create an entire “shell volume” by repeating and
stitching this swatch in a visually seamless manner. Alas, such a
geometry texture synthesis cannot proceed like its 2D counterpart:
the domain to synthesize upon is non-flat, and the swatch is an ir-
regular, potentially high-genus mesh—not a regular array of pixels.
In this section, we present the details of our algorithm to synthe-
size such a swatch-based texture. We will only consider a planar
extension of the swatch first; its extension to curved surfaces will
be presented in a subsequent section.

2.1 Setup & Nomenclature

Let Min = {Vin,Fin} be the input sample mesh of geometry tex-
ture, where Vin is the set of vertex positions and Fin is the set of
triangles. Its bounding box has dimensions lin ×win × hin, where
hin is the smallest dimension (that is to say, the thickness of the
shell). We wish to synthesize a larger mesh Mout with bounding
box lout ×wout ×hin (that we will denote as the output texture space)
by growing outward the original mesh sample in order to create a
seamless geometric pattern.



Figure 3: Main steps of mesh quilting. (top-left) Geometry matching (seed

shown in red, output-sub-patch delimited by blue bounding box, old patch in

grey and new patch in pink); (top-right) After element deformation; (bottom-

left) After element merging (the graph-cut seam is highlighted in magenta);

(bottom-right) Result of one iteration of our synthesis.

Each connected component of Min or Mout will be referred to as a
geometric element and we will explain how mesh quilting synthe-
sis can preserve the integrity of these texture elements. Notice the
similarity to previous work [Dischler et al. 2002; Zhang et al. 2003]
that show that image texture synthesis can benefit greatly if salient
2D texture elements can be extracted from the input sample and
kept intact during texture synthesis. Unfortunately, these methods
rely on the user’s manual labor for finding image features, while
our method is fully automated.

2.2 Algorithm Overview

Our mesh quilting synthesis proceeds in steps similar in spirit to
the patch matching and patch fitting stages of [Kwatra et al. 2003].
More precisely, the output texture space is filled progressively by
iterating the following actions:

1. Seed Finding: Find a seed region R from which to grow the
output mesh texture further out.

2. Geometry Matching: Find the best patch placement around
region R using geometry matching to minimize mismatch be-
tween the new and the old patch.

3. Element Correspondences: Find correspondences between
elements in the new patch and those in the old patch.

4. Element Deformation: Align the corresponding elements
through local deformation.

5. Element Merging: Expand the output texture by merging the
new patch into the output texture space.

2.3 Seed Finding

Traditional texture synthesis algorithms often proceed by growing a
new texture patch out with a reference texture swatch, until all pix-
els of the patch have been processed. Alas, mesh textures have an
irregular connectivity, so finding where the output mesh Mout needs
to be extended and when the process is completed requires special
care. In order to both closely mimic previous algorithms and reduce
computational cost, we also use a grid-based approach. The bound-
ing boxes of both Mout and Min are subdivided in finer regular grids,
of the same grid cell size, and each triangle of these two meshes is
assigned to the grid cells containing it. Note that these grids are
only two-dimensional: there is no need for subdividing the height
of the space. Initially, the cells of Mout are tagged unprocessed.
Then, each time we wish to grow out the current mesh Mout , we

look for an unprocessed cell with the largest number of adjacent
cells that are already processed: this will be the seed cell that we
will try to process next. Notice that this cell is selected so that it
already contains some nearby patches of the input texture: this will
ensure that our mesh texture will be extended in a manner that is
consistent with the already processed portions of the output mesh
texture Mout .

2.4 Geometry Matching

We now need to find how to complete the mesh texture in the seed
cell, and possibly add to its surroundings too. Using the nearby
existing mesh texture available near the seed cell, we want to find
a portion of the original swatch Min best matching this surrounding
to extend Mout . To find the best placement of the swatch over the
seed cell and its surroundings, we employ an approach similar to the
sub-patch matching technique presented in [Kwatra et al. 2003].

We first pick a small output-sub-patch Pout (which consists of a
set of grid cells around the seed cell, but is smaller than the input
texture). We now look for translations of the input mesh texture
such that the portion of the input overlapping the output-sub-patch
matches it best. Of course, only translations that allow complete
overlap of the input with the output-sub-patch are considered. Let
Min(t) be the input geometry texture translated by t. We compute
the matching cost as the sum of distances between the output geom-
etry Mout and the input Min(t) within the overlapping region. Sup-

pose f
j

in is a face of Min(t). For each vertex vi
out of the output mesh

Mout in the output-sub-patch we define the “distance” between vi
out

and f
j

in as a combination of geometric distance and normal differ-
ence:

D(vi
out , f

j
in) = (1+λDist(vi

out , f
j

in))(1+‖n(vi
out)−n( f

j
in)‖), (1)

where Dist(vi
out , f

j
in) is the shortest distance between vi

out and tri-

angle f
j

in , n(·) is the mesh normal and λ is the weighting param-
eter (we set it to 1 for all examples in this paper). The matching
cost of vi

out with respect to Min(t) is then defined as the smallest

D(vi
out , f

j
in):

E(vi
out ,Min(t)) = min

f
j

in∈Min(t)
D(vi

out , f
j

in). (2)

The face with the smallest value is denoted as f i
in. Now we are

ready to compute the global matching cost for translation t:

E(t) = ∑
vi

out∈Pout

E(vi
out ,Min(t)). (3)

Ideally, this cost should be minimized over all allowed translations,
leading to impractical computational time. Therefore, we restrict
the translation t to be in grid unit. Such discrete translations are
enough for finding a good patch placement. One could use finer
discretization to get a better placement; but the element deforma-
tion described in Section 2.6 will also compensate for an imperfect
element alignment, and indeed, our tests show that this algorithmic
optimization is well justified. Additionally, we obtained a signifi-
cant speed-up factor for the matching cost computations by building
an octree data structure for the input texture, as distances between
vertices and faces can be more efficiently computed.

2.5 Element Correspondences

Once the best patch placement is found, we are ready to build the
correspondences between the output elements and the input ele-
ments within the overlapping region. Note that the overlapping re-
gion is usually larger than the small sub-patch Pout since the input
mesh texture covers Pout completely.



We first compute the “nearest” face f i
in (for the distance func-

tion defined in Equation 1) for each vertex vi
out in the overlap-

ping region and collect them together as a set of vertex-face pairs
(S = {(vi

out , f i
in)}). We then prune the pairs that obviously indicate

poor matching: vertex-face pairs are removed if the normals of the
face and its corresponding vertex normals are opposite; vertex-face
pairs with a distance much larger than the local edge length average
of the input mesh are also dismissed.

For the remaining pair set S, we tag an output element Cout as
“related” to an input element Cin if there exists a vertex-face pair
(vi

out , f i
in) ∈ S such that vi

out ∈ Cout and f i
in ∈ Cin. This simple test

can, however, create false correspondence: an element Cout may be
tagged as related to an element Cin even if they are far away. To
remove such irrelevant correspondences, we project the triangles of
both elements onto the plane and check whether the two projections
overlap: if they do not overlap, we can safely remove the relation-
ship between the two elements and the vertex-face pairs belonging
to these two elements is subsequently removed from S.

Finally, for each output element within the overlapping region, we
find a set of input elements to which it corresponds.

2.6 Element Deformation

For each output element Cout corresponding to an input element
Cin, we now try to deform them both slightly in order to better align
them: in addition to improving the geometric alignment between
the input swatch and the current output mesh, this will also go a
long way in providing a smooth and visually seamless extension of
the output element.

Our deformation method is built upon recent Laplacian-based mesh
editing techniques [Yu et al. 2004; Sorkine et al. 2004] to best sat-
isfy positional constraints while preserving local geometric details.

For every pair (vi
out , f i

in) ∈ S, we will call (vi,1
in ,vi,2

in ,vi,3
in ) the three

vertices of face f i
in, while:

hi
in = α iv

i,1
in +β iv

i,2
in + γ iv

i,3
in

will denote the closest point to vi
out in f i

in. We also compute the
Laplacian coordinates for all vertices:

L (vi) = vi −
1

#N (vi) ∑
v j∈N (vi)

v j, (4)

where N (vi) is the 1-ring vertex neighbors of vertex vi, and # in-
dicates its cardinality.

We wish to compute new positions {pi
out} ({pi

in}) for vertices in
Cout (Cin). First we get the position constraints by computing the
average points of the vertex-face pairs: ci = (vi

out +hi
in)/2. The de-

formation should satisfy the position constraints while preserving
the local geometry details (i.e. Laplacian coordinates). For the out-
put element Cout , this goal can be achieved by solving the following
quadratic minimization problem:

Eout({wi}) =
Nout

∑
i=1

‖L (wi)−L (vi
out)‖

2 + µ
m

∑
i=1

‖wi − ci‖2, (5)

where the parameter µ balances the two objectives and is set to 1
by default.

Similarly, the vertices of Cin can be deformed by finding the posi-

(b)

(a)

(c) (d)

Figure 4: Mesh quilting on flat domain. Left: from two dozen apples, our

approach automatically generates a non-periodic, single, arbitrarily-sized

layer of apples of various shapes (due to the deformation component of

our algorithm). Right: a weave pattern creates a dense interwoven net,

preserving the integrity of each thread.

tions {wi} minimizing the following energy:

Ein({wi}) =
Nin

∑
i=1

‖L (wi)−L (vi
in)‖

2

+ µ
m

∑
i=1

‖α iwi,1 +β iwi,2 + γ iwi,3 − ci‖2. (6)

The above deformation energies can be adapted to elements with
multiple corresponding elements by collecting all position con-
straints together. We found that maintaining the original Laplacian
coordinates instead of using a transformed Laplacian coordinates
as in [Yu et al. 2004; Sorkine et al. 2004] works well enough in our
context since we only have to deal with small deformations to get a
better element alignment.

2.7 Element Merging

We are now ready to piece elements together to extend the current
output mesh. First, every element (either from Cout or Cin) without
correspondence is directly added to Mout . For every established
correspondence (Cout ,Cin), the merging proceeds as follows. If Cout

is entirely within the overlapping region, Cout is ignored and Cin is
instead added to the final results. Similarly, if Cin is entirely within
the overlapping region, Cin is ignored and Cout is added to Mout .

In all other cases, we need to stitch parts of Cin and Cout to get a
singly-connected, combined element, and we add it to Mout . To
smoothly stitch two partially overlapping elements Cout and Cin to-
gether, we first seek a cut path in each element such that the two
cut paths are close to each other: these paths can be found using
the graph cut algorithm presented in [Boykov et al. 2001] using
the following approach. We first build an undirected flow network
graph for Cout representing the dual graph adjacency between trian-
gles. The weights of this graph are set as follows: for two adjacent

triangles sharing an edge (vi
out ,v

j
out), a weight of

(1+‖vi
out −v

j
out‖)(1+Dist(vi

out ,Cin)+Dist(v
j
out ,Cin)), (7)

is assigned to the graph edge, where Dist(vi
out ,Cin) is the shortest

distance from vi
out to Cin. Two additional nodes are added, repre-

senting the two possible choices for triangles, deleted (SINK) or
undeleted (SOURCE). Triangles lying outside the overlapping re-
gion are linked to SOURCE by an edge with infinite weight, to
guarantee that those triangles will not be deleted. Suppose that a
vertex vi

out in Cout has a closest face f i
in in Cin. If f i

in lies outside of

the overlapping region or there exists a face which is adjacent to f i
in

and does not have any corresponding vertices in Cout , then all tri-
angles sharing vertex vi

out are linked to SINK with infinite weight,



to guarantee this time that these triangles will be deleted. Applying
the graph cut optimization algorithm [Boykov et al. 2001] to the
constructed graph will provide a min-cost cut which separates Cout

into disconnected parts: triangles linked to SOURCE are kept while
those linked to SINK are simply deleted. A cut path for Cin is found
using the exact same approach.

Stitching together the two cut elements is finally performed through
mesh merging [Yu et al. 2004]. We simply set the average boundary
points as position constraints and deform the two cut elements using
the deformation energy defined in Equation 5. The mesh connec-
tivity of the elements is then updated to create a single connected
component.

2.8 Results

Even though the technique described above is only valid for planar
design, several interesting effects can already be obtained. Figure 4
demonstrates how a small swatch representing a few apples can
generate a whole, seemingly non-repetitive layer of apples; it also
shows the more challenging case of a non-tilable weave swatch,
creating long thread-like elements interwoven in the output mesh.

3 Mesh Quilting Over Curved Surfaces

Extending mesh quilting synthesis to be applicable to curved sur-
faces in 3D requires further work. In this section, we describe how
a seamless quilting can be obtained using local surface parameter-
izations and, optionally, a guidance vector field, before embedding
the resulting mesh into shell-space.

3.1 Geometric Texture Synthesis on Surfaces

Setup Let Mbase be the base mesh that we wish to enhance with
added geometric details. We still denote as Min the geometric tex-
ture mesh used as a swatch that we wish to seamlessly tile the base
mesh with. A parameter s is also provided to allow the user to
specify the relative size of the input texture with respect to the base
surface, i.e., to choose the scale of the geometric details.

From Planar to Curved The algorithm presented in Section 2 re-
quires several modifications to accommodate curved domains.

⋄ First, the 2D grid we used in the planar case is easily replaced
by the base mesh itself: the quilting process will stop only when
there are no more unprocessed triangles. Similar to the 2D case,
we pick the most constrained un-synthesized triangle, i.e., the one
with most triangles synthesized in the neighborhood. We define a
local surface patch by starting from the chosen triangle and grow-
ing the region using breadth-first traversal until we reach a certain
depth or when the total area of the patch exceeds a user-defined
threshold.

⋄ Additionally, the position of vertices should no longer be put in a
global coordinate system: they should, instead, be located with re-
spect to the base mesh itself. Consequently, the coordinates of the
vertices of the texture output mesh are stored as follows: the loca-
tion of a vertex v over a triangle Tbase is defined by the barycentric
coordinates of its orthogonal projection on Tbase along with the
orthogonal distance (i.e., height) from the triangle to v.

⋄ The surface patch is flattened over the 2D plane using a discrete
conformal mapping (DCM [Desbrun et al. 2002] or equivalently,
LSCM [Lévy et al. 2002]). Based on this parameterization, we
can convert the local mesh-based representation of the part of
Mout inside this patch into an absolute representation as in the 2D
case. Finally, the local operations described for planar mesh quilt-
ing can be performed over this parameterization plane, then the
position of the newly synthesized vertices will be reprojected onto
the local mesh-based coordinate system described above. Note

(b)

(a)

Figure 5: Mesh quilting results on curved surface: (a) from a weave struc-

ture, our approach synthesizes the structure over a cup base mesh; (b) a

Venus model is densely covered with nut elements.

that the geometry matching step will still restrict its search to dis-
crete translations in this parametric domain to keep the matching
cost computations to a minimum.

⋄ Finally, we also need to accommodate for the distortion caused
by DCM in very curved regions. In our implementation, if the
area distortion induced by the local parameterization is too large
(above a factor of 4), we reduce the area of the surface patch: this
will, in turn, decrease the size of the output-sub-patch Pout .

Using Guidance Vector Fields One of the major differences be-
tween synthesis on a planar region and synthesis on a curved sur-
face is that it may often be necessary to control the orientation of
the geometric texture over the surface when the swatch contains
obvious privileged directions. We thus allow the user to specify
a vector field in order to control the direction of synthesis [Praun
et al. 2000]. We can use this field to align the direction of the grid
(see Section 2.3) in the shell space.

3.2 Final Mesh Embedding

Using the above method, we can automatically generate highly de-
tailed geometric textures on meshes. However, harnessing the po-
tential of such a representation requires one final step to convert the
generated details into a proper mesh: we must convert the vertex
positions, stored in local coordinates for now, into a stand-alone,
common embedding. A simple conversion to R

3 is, alas, not suffi-
cient: self-intersections can be created in regions of high concavity
since the local coordinate frames of two adjacent triangles forming
a concave angle may overlap (Figure 8, left and middle). Instead,
we build a texture atlas for Mbase, and convert the above local rep-
resentation of vertex positions to locations in a geometry texture
space (see Figure 6). Then we construct a shell space around Mbase,
i.e., a thin volume between Mbase and one offset of it. Finally, map-
ping the vertices from the geometry texture space to the shell space
will fix the location of the vertices in 3D space, thus turning Mout

into a properly embedded mesh (see Figure 8, right). To minimize



Figure 6: Bunny mesh parameterized over low-distortion multi-chart texture

atlas. Left: base mesh decorated with flower geometry; Right: texture atlas

(chart individually colored for clarity).

the distortion introduced in this step, we propose next to design a
stretch-minimized shell mapping.

Shell Mapping Defining a thin volume around an arbitrary mesh
has been proposed as an easy way to model geometric texture [Peng
et al. 2004; Elber 2005]. Porumbescu et al. [2005] even proposed
a simple mapping between shell space and texture space for an ar-
bitrary surface patch by meshing the shell space with tetrahedra
and using barycentric coordinates. Unfortunately, the authors also
pointed out that such a mapping design systematically creates large
distortion in curved regions (see Figure 8(left) where the flower pat-
terns are significantly enlarged). In this section, we alleviate this is-
sue by optimizing a stretch metric on this tetrahedral mesh—a natu-
ral extension of low-distortion parameterization of triangle meshes
[Sander et al. 2001].

Stretch Metric on Tetrahedra A shell map defines a piecewise-
linear, bijective mapping between shell space and texture space
based on barycentric coordinates (see Figure 3 in [Porumbescu et al.
2005]). However, as often happens for piecewise-linear mapping
between a triangle mesh and its parameterization, this bijection can
have significant stretching in certain regions if no special care is
taken. To limit this occurrence, one can tweak the texture space
coordinates in order to minimize a distortion measure.

Let g be the shell mapping defined between a point in shell space
(x,y,z) (inside a tetrahedron Ts = (v1,v2,v3,v4)) to a point in tex-
ture space (u,v,w) (inside a tetrahedron Tt = (q1,q2,q3,q4)). Due
its piecewise linear nature, the Jacobian of g (i.e., the deformation

gradient) J = [ ∂g
∂x

, ∂g
∂y

, ∂g
∂ z

] is constant over Ts. Let π1, π2 and π3 de-

note the three eigenvalues of the Cauchy deformation tensor JT J,
representing the principal length dilation factors (called stretch).
The root-mean-square stretch over all directions can now be com-
puted as:

L2(g,Ts) =
√

(π1 +π2 +π3)/3 =
√

(

ag +bg + cg

)

/3, (8)

with ag = ∂g
∂x

· ∂g
∂x

, bg = ∂g
∂y

· ∂g
∂y

and cg = ∂g
∂ z

· ∂g
∂ z

.

Assuming that the shell space consists of tetrahedra {T i
t }, the total

L2 stretch is then:

L2(g,M) =

√

∑
i

(

L2(g,T i
s )

)2
|T i

s |/∑
j

|T
j

s | (9)

where |T i
s | is the volume of tetrahedron T i

s in the shell space cor-

responding to the tetrahedron T i
t in texture space. As indicated

in [Sander et al. 2001], the L2-stretch value can be further normal-

ized by multiplying it by

√

∑k |T
k

t |/∑m |T m
s | such that 1.0 is a lower

bound for the stretch value.

Minimization Algorithm To minimize L2(g,M), we start with the
initial shell map and perform several optimization iterations to min-

Figure 7: Shell map distortion on curved surface. Left: before optimization,

L2 = 1.14. Right: after optimization, L2 = 1.08. The upper row shows

the offset surface distortion of the shell map (using a regular checkerboard

pattern), while the lower row shows a cut in the shell volume to inspect

inner distortion.

imize this stretch measure. Remember that for a shell map [Po-
rumbescu et al. 2005], the vertices on the offset surface are set to
the same 2D texture value (u,v) as their originating vertices, vary-
ing only in height value w. To respect this layered mapping, we
only update the u and v texture coordinates of the vertices on the
offset surface plane at each optimization iteration. The update re-
sults are determined from a random line search, i.e., we perform
optimization of the stretch metric along a randomly chosen search
direction in the (u,v) plane as in [Sander et al. 2001]. Note that the
texture coordinates of vertices on the lateral boundaries of the shell
patch are fixed to preserve continuity across patch boundaries.

Results With such an optimized shell map (see a typical result
in Figure 7), a user can enjoy the full range of geometric detail
modeling proposed in [Porumbescu et al. 2005] without having to
painfully edit the details in order to visually compensate for distor-
tion in curved areas. Just as low-distortion mesh parameterizations
offer tremendous help in decorating surfaces with images, this low-
distortion shell map provides the same service for the design of
geometry texture over an arbitrary surface. In particular, this can
easily be used to support the editing of the output mesh through
modification to Mbase without having to redo the whole synthesis.

4 Results and Discussions

With the tools we described, a number of 3D texturing tasks be-
come not only feasible, but quite straightforward for the user. To
demonstrate the versatility of our approach, we show results using
a number of different types of geometric details, and various input
surfaces of arbitrary genus. Figure 5 demonstrates how weave-type
textures can be applied to a curved object (note that in this exam-
ple, the handle is treated separately because the original mesh was
in two pieces); a packed-nut texture can also be applied to highly
curved manifold to achieve quite a different visual effect. Various
chain links and weave like textures can also be successfully applied
to clothes or pieces of furniture as shown in Figures 2 and 9. As a
more complex example, a swatch providing a mesh representation
of a section of ivy has been made to clinch onto a statue, through the
use of guidance vector fields to allow for a natural look as demon-



Figure 8: Shell embedding on a curved surface. Left: using normal dis-

placement; Middle: using original shell mapping; Right: our low distortion

shell mapping. Notice the even scale of the flower patterns in our result, as

well as the intersection-free behavior in concave regions.

strated in Figure 10. With such a pure-geometry texture representa-
tion, editing of the texture colors of the synthesis can easily produce
different visual effects as demonstrated in the wicker chair in Fig-
ure 9. We can also manipulate the synthesized geometry elements
of this chair directly, to add realism for instance. Finally, we can not
only edit, but also animate the resulting all-mesh models. Using a
precomputed animation sequence for the ivy swatch (stored as a set
of position displacements in time in the local frame of each vertex),
one can interactively play with the ivy’s leaves as demonstrated in
our video available on the DVD proceedings.

Table 1 gives the data statistics for all the models listed in this paper.
We believe that these running times can be drastically reduced by
further optimizations of each sequence of our algorithm. We also
believe that given the design time it would take to achieve similar
results without such a mesh quilting tool, even our current imple-
mentation is highly valuable.

Mesh quilting has similar limitations to traditional 2D texture syn-
thesis algorithms. First, since mesh quilting on surface depends on
local parameterization of surface patches, regions with very high
curvature (as in high-genus, complex models) can be badly han-
dled since the parametric distortion of small surface patches may be
high. Another issue is that our algorithm cannot always achieve per-
fect matching if the swatch is untileable, even with major element
deformation; in that case, the integrity of the geometry elements
can sometimes not be established. When this happens, a postpro-
cessing step is performed to remove those visually-displeasing ele-
ments. This was done in the example with nuts synthesized on the
Venus model shown in Figure 5(b).

5 Conclusions

We presented the first mesh-based 3D texture synthesis algorithm
on arbitrary manifolds. As such, there is no doubt that several re-
finements can be provided to further increase the possibilities of-
fered by such a technique. We believe however that our mesh quilt-
ing approach offers a good foundation for detail synthesis. Sim-
ilarly, the use of low-distortion shell mapping is a necessary tool
that we contributed, and it should be found useful in a large number
of applications. Additionally, we can foresee that a notion of mesh
montage (similar to photo- or texture-montage) would also provide
a nice extension to our work.
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Base Mesh Swatch Mesh Output Mesh 
 

#Face #Vert #Face #Vert #Face #Vert #Element 

Synthesis 

Time(min) 

Plane + Wire NA NA 15168 7704 74792 37839 27 3 

Plane + Apple NA NA 3784 1976 321046 160736 86 3 

Bunny + Weave 5243 2652 15168 7704 700815 353123 117 86  

Bunny + Link 5243 2625 9216 4608 940622 471263 1676 80 

Cup 2248 1210 8304 4308 371011 186866 150 45 

Venus 5560 2793 20608 10304 553158 277375 446 59 

Armor 4224 2383 35640 18144 1361726 701833 1965 75 

8304 4308 
Chair 12224 6489 

1872 1008 

320525 164307 321 54 

David 49988 24988 700 441 74780 44591 81 16 

Ivy Wall 2448 1253 700 441 916620 542520 962 45 

 

Table 1: Statistics on all base meshes, texture samples and synthesis results

presented in this paper.
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